9th Intl. Symposium on System Configuration Management (SCM-9), 5-7 Sept. 1999 © Springer-Verlag

Global Names: Support for Managing Software in a
World of Virtual Organizations

Michael L. Van De Vantérand Tobias Murér

1Sun Microsystems Laboratories, 901 San Antonio Road
Palo Alto, CA 94303 USA
Michael.VanDeVanter@Eng.Sun.COM
2TIK (Computer Engineering and Networks Laboratory)
ETH Zrich, 8092 Zirich, Switzerland
murer@acm.org

Abstract. Emerging technologies such as the Internet, the World Wide Web,
Javd™ technology, and software components are accelerating product life
cycles and encouraging collaboration across organizational boundaries. The
familiar coordination problems of large scale software development reappear in
a context where tools used by collaborators must be less tightly coupled to one
another than before. To the traditional notion of scale, based on the size of soft-
ware systems, must be added a new dimension of scale: organizational complex-
ity. Designing configuration management systems that scale well over both
dimensions requires difficult trade-offs between reliability and flexibility. At the
heart of these trade-offs is the aggregate information shared by collaborators:
how it is represented, maintained, and understood by the people and tools using
it. While designing a prototype development environment intended to scale in
both dimensions, we have revisited the role played by naming. A proposed
extension to the prototype’s naming system addresses issues such as which
objects should be named and how the shared naming system is constructed.

1 Introduction

Software product life cycles are accelerating and increasingly take place within so-
called virtual organizations that require cooperation across a variety of organizational
boundaries [4]. This trend is supported and encouraged by emerging technologies: the
World Wide Web, software components, and J&dechnology [6]. Consequently

ever more software is shared across organizational boundaries and assembled in
increasingly dynamic and varied ways, such as with components and plug-ins.

Highly evolved tools for configuration management, which address familiar prob-
lems of scale, have become indispensable. However, these tools, even when reworked
for the Internet, often fail to address the diversity of collaborating organizations. To the
traditional notion of software size, which we characterize@apositional complexity
must be added a new dimension of scalganizational complexitylools must now
address both dimensions.

The Forest project at Sun Microsystems Laboratories has been developing JP, a
prototype environment designed for reliable development of compositionally complex
systems written in the Java programming language. Complementary issues of organi-

zational complexity and the broader software life cycle are being addressed, in collab-
oration with the Virtual Software House project at ETH Zirich, by #pplication

weh The application web supports the software life cycle across organizational bound-
aries, striking a balance between autonomy and collaboration [13].

It became clear that the application web depends critically upon global naming of
shared information. JP supports a simple naming system that operates both in the small
(editing based on names for individual sources [15]) and in the large (configurations of
arbitrary size and complexity shared across multiple JP repositories [9]). Sharing data
among multiple organizations and tools, however, demands a richer naming system.

It also became clear that design decisions for such a naming system encounter
trade-offs between reliability and flexibility: for example what to name at what granu-
larity and how to support reliable bindings. These decisions require careful thought
about the roles played by naming.

A design strategy was adopted in which names are only given to objects as needed,
and whose bindings are as reliable as possible. The results of this strategy reflect goals
for different parts of the system:

— core configuration management and build systems are designed for utmost reli-
ability, and rely on object structures, not names;

— development tools use a simple, global naming system for JP environments,
designed to make information intelligible; and

- the application web uses names to support dynamic and flexible information shar-
ing across organizational boundaries.

The system is cast as an instance of a general framework for naming, the Java Naming
and Directory Interfac&! (JNDI) standard [8].

This paper discusses the design issues that arose in the development of this strat-
egy, as well as the resulting concrete proposal. Section 2 begins with background on
scaling issues, in particular the different demands of compositional vs. organizational
scale. Section 3 takes a closer look at specific design issues concerning names in JP
and the application web. Section 4 describes the proposed extension to JP naming, fol-
lowed by a discussion of related work and conclusions.

2 Technologies for Scale in Software Development

The JP programming environment and the application web are designed to solve prob-
lems of scale for tools supporting the software life cycle, but along fundamentally dif-
ferent dimensions.

2.1 Compositional vs. Organizational Scale

“Scale” for programs was once measured in lines of code, but the real issue here is
complexity. Configuration management systems (including JP) addressrf@osi-

tional complexityof systems: the number of modules, versions, variants, platforms,
and languages that it takes to construct th@mganizational complexityon the other
hand, arises in the presence of virtual organizations (dynamic networks of organiza-
tions that cooperate for mutual benefit [4]) and involves the whole life cycle of prod-

ucts. Autonomy drives organizational complexity; single software development
organizations don’t face the differences of culture, infrastructure, methods, tool prefer-
ences, and skills one finds at organizational boundaries in virtual organizations. The
application web addresses these aspects of scale.

Tools for compositional complexity must be reliable; tools for organizational com-
plexity must be flexible. Tools that address both aspects of scale (organizational com-
plexity often implies compositional complexity too) face design trade-offs. For
reliability, information is best managed in a tightly coupled fashion, as if in a single
global data structure with complete referential integrity and type safety. Flexibility, on
the other hand, requires information that is less tightly coupled and more open [13] so
that information may be created and managed by autonomous organizations, selec-
tively shared, and structured simply for intelligibility. General naming systems, for
example URLSs, achieve flexibility at the cost of reliability.

The challenge is to find a useful balance. JP was designed to scale with composi-
tional complexity; the application web addresses the additional requirements of orga-
nizational complexity.

2.2 The JP Programming Environment

JP is a prototype programming environment for the collaborative, reliable development
of compositionally complex systems written in the Java programming language. It is
based on close coupling among federated JP repositories, and tool integration via
object-oriented interfaces. Implementation simplicity and reliability derive from archi-
tectural orthogonality among core services, functional programming, and aggressive
use of abstract object interfaces.

Central to the JP approach is the notion of uniquely named, reusable, indepen-
dently versioned packages [9]. JP packages play many roles:

— System Structuré®ackage versions act as software modules: they contain human-
created artifacts such as source code and can use specific versions of other pack-
ages hyimportingthem.

— Storage ManagemenRackage versions arakrivedobjects built from them, as
well as tools such as compilers and editors, reside in repositories of orthogonally
persistent objects [1].

— Building. A package version is built by interpreting isiild script a functional
program that recursively invokes the scripts of imported packages. Previously
derived objects are reliably shared via function caching, a mechanism that is
largely orthogonal to the type of objects and the tools that create them.

— Versioning.Versions of a package are managed by a simple version system that is
orthogonal to version content.

— Configuration ManagementJP configurations are implemented as packages
whose role is to import particular versions of other packages, including other con-
figurations. Each version of a configuration specifies an immutable, arbitrarily
large, aggregation of packages.

— Analysis.Tools for analyzing and visualizing software need not be separately con-
figured, since they have direct access to configuration contents and derived results.

2.3 The Application Web

The application webcomplements JP by addressing problems of organizational scale
[13]. Organizational boundaries discourage tool-based collaboration, in the absence of
which information must be copied and shared manually. The application web fills the
gap between the informality of copying and the tight coupling of conventional tools.

The application web provides an infrastructure for sharing information and sup-
porting collaboration across boundaries within virtual organizations. This brings the
character of the WWW into the software life cycle, where information can be autono-
mously maintained at its origin, but can also be shared through simple protocols. A
software application can consist of parts originating at many sites.

The application web provides ridonnectivitythat spans the life cycle of software
products, beginning with construction and continuing through deployment and ongo-
ing management. For example a deployed, possibly running, application can be que-
ried for complete, precise, and relevant information about its configuration, available
via links back to the organizations in which the parts were created.

Autonomyis just as important. Shared data models are as simple as possible, fol-
lowing the lead of the World Wide Web, enabling dynamic and loosely coupled collab-
oration.

Flexible collaborationis supported by multiple layers of access. Closely related
organizations might construct software jointly, using distributed authoring tools or JP’s
federated build system. Loosely related organizations might have limited HTTP access
to the others’ repositories. In between might be application loading services, bug
reporting and tracking, querying for component interoperability, and reference infor-
mation in support of debugging.

3 Naming Systems: Roles and Requirements

Naming is central to the shared information upon which the application web is built.
The design strategy adopted for the naming system reflects the importance of a balance
between competing requirements for reliability and flexibility. This section discusses
general issues, as well as choices made for different parts of the system.

3.1 Design Issues for Naming

The first question when providing name-based access to complex data is whether to do
it at all.

Closely coupled tools access data slgect referencesyhose referential integrity
and type safety derive from modern programming languages. The persistent object
system used by JP makes object references suitable for reliable, long-term data stor-
age, but such references are not available outside system boundaries.

In contrast, anaming systentypically offers access to data from “outside” system
boundaries. Names are legible to people (names often encode contextual information
and may be redundant) and portable (they can be written down and emailed), but this
flexibility comes at the cost of decreased reliability when compared to object refer-
ences.

At one extreme, every object might be named, mirroring an object reference struc-
ture; for example, every element in a hierarchical file system is named. Conversely,
only a small number of objects might be named, as with “persistent root” objects in
object-oriented databases, requiring that further access be structural. These choices
depend on the information clients need and what they know about the structure of the
data. Other design issues include the lifetime and mutability of name bindings as well
as lookup mechanisms and accessibility guarantees.

Unfortunately developers routinely suffedo many naming systerttzat are badly
suited for the task: one for the target language (e.g. class names), another for storage
(location dependent file names), possibly a third for modules (often modeled weakly as
directories), and others for versioning and configuration. Not only must developers
understand all these naming systems, they must keep them arranged in complex rela-
tionships just to keep the tools working. The problem is made worseahying too
many things for example by cluttering the name spaces for sources with derived
objects.

The proposed strategy is to name as few objects as possible, depending on specific
requirements. The rest of this section describes the roles played by names in different
parts of the system. Whereas the JP build system uses no names at all, the JP tool inter-
face layer uses a unified naming system that spans multiple JP repositories. The former
approach permits reliable building for configurations of arbitrary complexity, and the
latter provides a comprehensible user model that abstracts away inessential informa-
tion. Extending JP into the application web, requires a third approach to naming, one
that will serve also as a bridge to non-JP tools.

3.2 Naming in the JP Build System

At the heart of JP is a build system that provides stronger guarantees of reliable and
repeatable builds than is now common. Several technologies support these guarantees,
but naming is not among them.

In order to be built, @ackage versiomust be committed to the repository, and it
must completely specify its build computation. In its build script (a functional pro-
gram) source objects (those created by humans using tools such as editors) appear as
literal data values of the scripting language in declarations equivalent to:

JavaSource myStack = <the text written by a developer>;

JP source objects, known parts are implemented witfunctional objectsthey
are immutable and can be treated as pure values whose object identity plays no role
[2]. JP parts are context-free and not intrinsically named and can thus be safely shared
by many contexts.

Perhaps surprisingly, it is also necessary that package versions themselves be rep-
resented as functional objects; they participate in build scripts as literal values in
import declaration equivalent to:

import <reference to contents of an existing package ver.>;

To the extent that parts do have names in the build system, it is only for the internal
purposes of the computation, for example as in the declaratiory8tack in the first

example. These local bindings, within the computation engendered by each JP pack-

age version, are isolated from the rest of the environment and from other versions.
Objects created during building are likewise bound for the duration of the computa-

tion. Such bindings persist only to the extent that they are captured in a returihéd

result The result is generally not named,; tools invoke ivdd() method on pack-

age versions and operate structurally on the returned value.

3.3 Local Names in the JP Environment

It is one thing to exploit the power of a purely functional build system computing over
a repository of context-free objects treated as values; it is quite another to help devel-
opers create, understand, and manage such objects. People and their work are inher-
ently contextual and must be able to understand data in their own context.

Tools in a JP repository use a simple, unified name system for versioned packages
and their contents [9], as shown in Example 1 and described further in Section 4.1.

Example 1. JP Names

com.sun.labs.forest.jp.util a JP package

com.sun.labs.forest.jp.util/7 a JP package version

com.sun.labs.forest.jp.util/7#Stack asource (“compilation unit”)
in a JP package version

These are the only names a developer normally sees, based on the design decision that
names do not need to carry any other information, and that no other objects need
names.

Unlike many naming systems, these names are reliable: name bindings, once cre-
ated, are eternal, immutable, and always accessible. This makes names redundant,
strictly speaking, but they help make a crucial connection between abstract, buildable
values and the work being done by developers. This separation between internal repre-
sentation and user-visible names permits the design of each to be optimized for its own
purposes. For example, the package name space is aligned with names in the Java pro-
gramming language, eliminating any distinction between storage and language names.
The version name space in JP supports a simple branching and numbering model, but
any name space would do; version names can therefore be aligned with local software
development processes, once again eliminating name distinctions.

Names are used to good advantage by JP’s framework for editor coordination [15].
This framework allows JP developers to commit new package versions, which can then
be built if desired. Constructing a version involves creation of new source objects,
based on editing activity, as well as new folder-like containers that represent changed
contents. The framework makes this process nearly transparent, even in the presence of
multiple editors that are not version-aware. It also arranges that unedited parts be
shared by successive versions. Although the framework operates structurally, editors
appear to be operating in the JP name space. Other tools, for example for navigating,
searching, and creating new objects, operate similarly.

3.4 Implementation Challenges

Supporting both structural and name-based access to information has its costs. JP
exploits the implementation of parts as immutable values and permits a value to be

bound to many names, for example in successive versions of a package in which the
part has not been touched. Consequently, any human view of a part must supply appro-
priate context.

For example, from the perspective of the build system an import is bound to the
content(value) of a package version, not a name for the content. A person examining a
build script, on the other hand, expects to see the humantionbehind the import,
which is best captured by the name used when the import was created. Thus, the inter-
nal representation of a build script import must carry this extra contextual information,
however inessential to the builder.

Likewise, build errors cannot be reported usefully when a compiler sees source
code only as byte arrays embedded in a graph of functional objects. Each invocation of
the build system must be given a way to “re-contextualize” any parts mentioned in
communication with humans, for example so that programming errors can be located
and corrected.

JP editors, like the builder and compilers, traffic only in object values: old values
are copied into buffers, and new parts are created when needed. The editor coordina-
tion framework maintains context that explains the meaning of data in each editor
buffer. The framework informs each editor of the current name for each buffer, which
routinely changes as versioning progresses, even though its only purpose is to give the
developer contextual information.

Bridging different areas of JP’s architecture has deeper implications in the underly-
ing implementation, since a JP repository must be able to manage parts created by dif-
ferent versions of editors and derive results using different versions of compilers. This
requires, in effect, a separate type system for each configuration, the consequences of
which are beyond the scope of this paper. These issues do not arise, of course, in sys-
tems where tools and data are not strongly typed.

3.5 Global Names in the JP Environment

In order to support development of large systems, JP must permit collaboration among
developers using multiple, federated JP repositories. The challenge is to approximate
as closely as possible the guarantee of reliable, repeatable builds made by JP in single
repositories.

The organizational aspect of the problem requires a global naming policy. JP aligns
package names with the emergigighal name spactor Java packages, which begins
with reverse DNS names. This grants organizations exclusive authority to create names
in owned domains, which they can subdivide as needed. JP makes the aggressive pre-
sumption that a name, once created, has constant meaning, viewed from any JP envi-
ronment, anywhere in the world, for all time.

JP imports are permitted to cross repository boundaries, which presents implemen-
tation choices for the representation of a non-local import. Two solutions are being
explored, functionally similar but with very different architectural implications:

— At the platform level, an experimental mechanism supports persistent remote ref-
erences to persistent objects.

— At the application level, package version names can, when combined with a loca-
tor service, implement the same binding.

Although neither of these mechanisms can guarantee that remotely implemented bind-
ings are either eternal or accessible, it is possible to check that bindings are immutable.
Objectfingerprints upon which JP’s function caching is based, can be stored with the
representation of an import, making it possible to verify that the retrieved value of a
remote import, if available at all, is the intended one.

3.6 Naming Requirements for the Application Web

Whereas JP embeds names in a closed world designed for reliable, federated building,
the application web is designed for more flexible forms of collaboration that span orga-
nizations, phases of the life cycle, and tools [13]. The application web captures inter-
connected information associated with software development, and makes it available
via a variety of tools throughout the software life cycle. Collaboration requires some
common understanding about software systems and their structure, as reflected in a
shared naming system. Such a naming system must balance requirements for expres-
siveness (for effectiveness), reliability (for compositional scale), and flexibility (for
organizational scale). The goal of expressiveness suggests that the JP name space be
extended by naming objects that otherwise would only be treated structurally. Exam-
ples include build results and the internal structure of configurations.

The World Wide Web is an example of a scalable, global name system that meets
many of these requirements. However, the application web presents additional require-
ments such as versioning and configurations, such as those used in JP.

Equally important is the reliability of names in a well-defined life cycle, where
names are guaranteed to persist and be immutably bound. Confidence that bindings
will be available and will not change encourages effective and efficient communication
among people and toolsy referenceto objects. It also permits reliable name-based
caching. On the other hand, it must be understood that bindings can be subject to ser-
vice interruptions and expirations.

Authentication, trust, and access control are also essential, but are beyond the
scope of the current work.

4 The Extended JP Naming System

The extended JP naming system addresses the goals of the application web and is
based on experience with a simple prototype. This required recasting the original as a
composite naming system, making some syntax adjustments for scalability. It also
involved extending its scope, and defining more carefully such issues as the life cycle
of names'

1. This description uses the terminology of the Java Naming and Directory Interface (JNDI)
standard [8]. Name syntax is described on an EBNF notation that includes ‘'.."] for
options and ‘{"..‘} for zero or arbitrary repetitions.

4.1 Package Versions and Contents

Editing, versioning, system modularity, and building all operate at the granularity of
package versions.

- Every package and package version hasaaonical namethat identifies it
uniquely in the global package name space.

— Every part within a package version may also hawa@aonical namehat identi-
fies it uniquely.

— This composite naming systeimcludes separate naming systems for packages,
package versions, and parts.

Canonical_Name = Package Nameé[Version_Name [# Part Name]]

The Package Naming SystemThis haming system mirrors the increasingly accepted
global name space for Java packages [6], based on reverse DNS names. The hierarchy
implies no inclusion relationships, either in the Java programming language or in JP;
for examplea anda.b name unrelated packages.

Package Name = Atomic_Name { Atomic_Name }

Example 2.Package Naming System

COM.sun.labs.forest.jp | canonical package name

The Version Naming SystemThis naming system identifies each version relative to

its package. JP version names are hierarchical, with alternating numbers and names, as
in Example 3. However, other versioning models can be used to suit particular devel-
opment processes, as mentioned in Section 3.3. This freedom permits organizations to
share information based on names, even when the semantics of particular version
names are not shared.

A canonical name includes at most one version name, reflecting the decision to ver-
sion packages onlin toto. Packages in which contents are to be versioned indepen-
dently must be constructed as configurations of other packages.

Version_Name = Number {" Atomic_Name.” Number }

Example 3.Version Naming System

1.murer.4 version name
COM.sun.labs.forest.jp/1.murer.4 canonical package version
name

The Part Naming System.This naming system identifies human created source
objects within the content of a version. In contrast to package names, hiedoely
imply inclusion. Version content is managed as a single compound document, whose
root part name is null, and in which embedded parts may or may not be named.

Part_ Name = Atomic_Name {*Atomic_Name }

Example 4.Part Naming System

model.layout part name
COM.sun.labs.forest.jp/1.murer.4#model.layout canonical
part name

Alternatives. The above syntax is influenced by URLs. Other approaches could be
used, so long as package names match the name space for Java packages, and compos-
ite names can be parsed unambiguously. An earlier JP naming system used the separa-
tor ‘.’ exclusively, as in Example 5:

Example 5.0ld JP Naming System

COM.sun.labs.forest.jp.1.murer.4.model.layout canonical
part name

The simplicity of the old approach is appealing, but it promised to become confus-
ing with increasing richness of the naming system, since boundaries between the indi-
vidual naming systems are not immediately obvious.

4.2 Configurations

An extension to the JP naming system makes more of the internal structure of configu-
rations visible through naming.

Projections. The global package name space is immense. Developers work in subsets
that include just the package versions aggregated into systems under development.
These subsets are defined by configurations: package versions that recursively aggre-
gate other package versions, as in Example 6:

Example 6.Configuration Names

CH.ethz.ee.tik.vsh/8 configuration version
name

import COM.sun.java.JDK/2.mac.3 imports of package ver-

import COM.sun.labs.forest.jp/4 sions in the configuratior

import CH.ethz.ee.tik.vsh.services/9

The contents of a configuration version can be treated as a projection of the global
name space in which names can be used that have meaning only relative to the particu-
lar context of the configuration, as in Example 7. In this example a part appears in a
configuration version because its containing package version is explicitly imported;
three different names refer to the same part:

- The canonical name, which is independent of any configuration.
- A configuration-relative name, based on an extended syntax as shown. All such
names can be unambiguously translated to canonical names.

10

Example 7.Configuration-relative Names

CH.ethz.ee.tik.vsh/8 configuration name

COM.sun.labs.forest.jp/4#Main canonical part name

CH.ethz.ee.tik.vsh/8/COM.sun.labs.for- part name embedded i

est.jp#Main configuration context

COM.sun.labs.forest.jp#Main part name relative to
implied configuration
context

— A configuration-sensitive name that only identifies the part uniquely in a context
where the configuration version is implied. These shorter names are the ones JP
tools might display when a developer is working in the context of an evolving con-
figuration. In situations where even more context is implied, even shorter names
might appear, for exampjp#Main .

The particular projection used in Example 7 is only one of many that could be
designed to suit various needs for visualizing and working within the context of con-
figurations.

Complete system descriptionsConfigurations capture more than sources. For exam-
ple, they contain a complete prescription for building it, including the precise version
of a compiler (which also comes from a JP package version), compiler options, and
which version of important libraries it is compiled against. These are all examples of
meta-informationrelevant to the configuration. Other kinds of parts might also be
present, for example design documents and test case specifications. Some kinds of
information might not be naturally represented as parts, in which case the naming sys-
tem might be extended explicitly.

4.3 Derived Parts

Information created by building a configuration, although guaranteed by JP to be well-
defined, is not canonically named and is understood to have no meaning outside of its
originating configuration. For the purposes of the application web, any build result
should contain enough information to identify its configuration, perhaps by links lead-
ing back to the repository in which it was originally created.

Access to derived information is structural within the JP environment, but access
can also be provided by describing each build result as a new name space in the com-
posite naming system, relative to its configuration version. This might name such use-
ful information as compiled classes and Javadoc HTML files. A function applied to a
given configuration builds the naming context falexrived parts naming systerfhis
is another hierarchical naming system, for example:

Derived_Part_Name = Atomic_Name.{ Atomic_Name }

In Example 8compile is a distinguished name that refers to the derived name
space. The names that follow can be simple, in situations where build scripts explicitly

11

Example 8.Derived Part Naming System

util. Connection derived part name
CH.ethz.ee.tik.vsh/8/com- derived part name in context of a cop-
pile#util.Connection figuration’s build result

define such names, or they might be expressions whose evaluation would provide
something approximating structural access to the information. The names are reliable
in either case, a considerable advantage when caching derived information.

4.4 The Life Cycle of Names

The use of global names within the application web requires a set of rules about how
names are created and managed. These rules may be summarized in ternmgeof the
cycle for canonical names; projected and derived names are always well-defined in
terms of canonical names, as discussed earlier.

— Creation.A new name is explicitly created by an autonomous organization partic-
ipating in the application web. Intellectual work is recorded in JP by committing a
package version to a repository, and this requires that it be named; likewise, infor-
mation cannot be shared in the application web until it is named.

- UniquenessA newly created name is presumed never to have been used before.
The authority to create valid names is managed at the topmost level by partitioning
the global name space into DNS domains that organizations own and can subdi-
vide as needed.

— Persistent BindingA name is bound to a value when created, and this binding may
never change. This permits loosely coupled organizations to communicate reliably
using names, and permits reliable caching of bindings.

— Unavailability. No non-local lookup service can be constantly available. The
bound value of a name may not be available in situations where there are system
failures and there is no local cache available.

- Eternal NamesA name, once created, must live forever. Even if a binding expires
at its source (see below) caches may live on; names must be remembered so that
they will not be rebound.

- Binding Expiration. Although names live forever, the storage of accumulated
bindings may not always be practical or desirable. Expiration dates would help
organizations negotiate the lifetime of their storage services, much as other arti-
facts in the software business eventually expire.

The rules of the life cycle for names cannot be strictly enforced in the world for
which the application web is designed. The success of names used this way must rely
on the motivation of participating organizations to follow the rules for their own inter-
est, combined with end-to-end tests to ensure that bound values never change.

5 Related Work

The Vesta project [10], from which JP’s core build technology is derived, implemented

12

functional building over a repository of immutable versioned packages. Its package
name space is flat, local, and not related to language names, and there is no integrated
support for integrated editing.

Distributed configuration management systems have been developed, some com-
mercial such as ClearCase Multisite [3]. These generally presume every site is running
the same tools. This restriction can be lifted by desigmmddlewareto glue together
different systems, for example by Kaiser and Dossick [5]. These approaches address
compositional complexity, but often neglect the difficulties of organizational complex-
ity.

Noll and Scacchi address much the same goals as ours with a shared distributed
CM system that connects to each organization’s tools with adapters [14]. Their design
emphasizes a shared model to be understood by all organizations, whereas the applica-
tion web address a much simpler, open ended model; the application web is less
expressive, but may have greater potential for organizational scale. The GIPSY project
addresses organizational complexity by proposing a simple, unified model that repre-
sents software product, process and organization form [12].

Collaborative authoring tools presume close organizational coupling, although
WebDAV aims to bring some of this functionality to the more loosely coupled World
Wide Web [16]. Although this is necessarily embedded in a less expressive name space
than is needed for the application web, WebDAV could serve as an appropriate infra-
structure for parts of the application web.

The application web proposes life cycle connectivity of software to its origin; this
permits copying to be replaced by reliable caching. These features allow for reliable
software deployment as well as other business opportunities within a Virtual Software
House. Such opportunities might include consistent, up-to-date, connected software
catalogues as well as component seeking and matching. The Software Dock proposes a
sophisticated deployable software description format and an agent based deployment
engine to support the software deployment life cycle [7]. Castanet, a product of
Marimba, offers incremental software deployment services based on channels, mirror-
ing and fingerprinting technology [11]. In contrast to more sophisticated approaches,
the application web promotes the simple “web” idea of connectivity where information
relevant for the whole software life cycle is directly accessed from its original source.

6 Conclusions

Reliable, scalable configuration management is essential for developing the next gen-
eration of large software systems. Traditional tools fail to help organizations cooperate

in emerging models for virtual organizations. Java technology makes some of this eas-
ier, but reliable, scalable tools are still needed. Tool strategies for software require a

balance between addressing compositional and organizational complexity; names play
an important role in these strategies.

The application web, an extension to a reliable, scalable development environment
for Java software, addresses the emerging challenge of organizational complexity. It
does this in a simple, scalable, collaboration framework based on global naming that
permits connecting a wide variety of services, applicable to many phases of the soft-

13

ware life cycle. This approach presumes that reliable configuration management and
repeatable building are among the core services, but it also conspires to make available
a wide variety of related meta-information about software.

Early versions of the JP environment are in use, and a simple prototype of the
application web, based on HTTP-coupled tools, has been developed for demonstration
purposes. It supports several of the anticipated services, for example loading and run-
ning applications directly out of their originating repositories, and navigating via infor-
mation present in running applications back to the sources and documents in the
precise configuration in which they were built.

7 Acknowledgments

This work benefits greatly from the vision of Mick Jordan, Principal Investigator of the
Forest Project at Sun Microsystems Laboratories and coauthor of JP. The VSH project
is supported by Professor Albert Kiindig at ETH Ziirich and funded by the Swiss Prior-
ity Program of the Swiss National Science Foundation. Yuval Peduel and anonymous
reviewers made helpful comments on this paper.

8 Trademarks

Sun, Sun Microsystems, Java Naming and Directory Interface, and Java are trade-
marks or registered trademarks of Sun Microsystems, Inc. in the United States and
other countries.

References
1. Atkinson, M., Daynés, L., Jordan, M., Printezis, T., Spence, S.: An Orthogonally Persistent
Java. ACM SIGMOD Recor@5 (1996) 68-75

2. Baker, H.: Equal Rights for Functional Objects or, The More Things Change, The More
They Are the Same. ACM OOPS Messengjdr(October 1993) 2-27

3. ClearCase MultiSitbttp://www.rational.com/products/cc_multisite/

4. Davidow, W., Malone, M.: The Virtual Organization: Structuring and Revitalizing the Cor-
poration for the 21st Century. Burlingame Books (1992)

5. Kaiser, G., Dossick, S.: Workgroup Middleware for Distributed Projects. IEEE Seventh
International Workshops on Enabling Technologies: Infrastructure for Collaborative Enter-
prises (June 1998) 63-68

6. Gosling, J., Joy, W., Steele, G.: The Jé({/aanguage Specification. Addison-Wesley
(1996)

7. Hall, R., Heimbigner, D., Wolf, A.: A Cooperative Approach to Support Software Deploy-
ment Using the Software Dock. Proceedings of the International Conference on Software
Engineering, Los Angeles, CA. (May 1999)

14

10.

11.
12.

13.

14.

15.

16.

JAVA NAMING AND DIRECTORY INTERFACEM(INDI),
http://java.sun.com/products/jndi/ , Sun Microsystems, Inc. (1999)

Jordan, M., Van De Vanter, M.: Modular System Building With Java Packages. In: Ebert, J.,
Lewerentz, C. (eds.): Proceedings 8th Conference on Software Engineering Environments.
IEEE Computer Society Press, Los Alamitos, CA, USA (1997) 155-163

Levin, R., McJones, P.: The Vesta Approach to Configuration Management. Research
Report 105. Digital Equipment Corporation Systems Research Center (1993)

Marimba Inc. Castanet Product Farilfgp://www.marimba.com/ (1998)

Murer, T., Scherer, D.: Structural unity of product, process and organization form in the
GIPSY process support framework. In: Ebert, J., Lewerentz, C. (eds.): Proceedings 8th Con-
ference on Software Engineering Environments. IEEE Computer Society Press, Los Alami-
tos, CA, USA (1997) 93-100

Murer, T., Van De Vanter, M.: Replacing Copies With Connections: Managing Software
across the Virtual Organization. 2nd Workshop on Coordinating Distributed Software Devel-
opment Projects at IEEE Eighth International Workshops on Enabling Technologies: Infra-
structure for Collaborative Enterprises WETICE-8, Stanford University (June 1999)

Noll, J., Scacchi, W.: Supporting Distributed Configuration Management in Virtual Enter-
prises. Proceedings 7th International Workshop Software Configuration Management (ICSE
97 SCM-7), Lecture Notes in Computer Science, Vol. 1235. Springer-Verlag, Berlin Heidel-
berg New York (1997) 142-160

Van De Vanter, M.: Coordinated editing of versioned packages in the JP programming envi-
ronment. Proceedings System Configuration Management, ECOOP '98 SCM-8 Sympo-
sium. Lecture Notes in Computer Science, Vol. 1439. Springer-Verlag, Berlin Heidelberg
New York (1998) 158-173

IETF WebDAV Working Group, World Wide Web Distributed Authoring and Versioning,
http://www.webdav.org/

15

	Global Names: Support for Managing Software in a World of Virtual Organizations
	Michael L. Van De Vanter1 and Tobias Murer2
	1Sun Microsystems Laboratories, 901 San Antonio Road Palo Alto, CA 94303 USA Michael.VanDeVanter@...
	Abstract. Emerging technologies such as the Internet, the World Wide Web, JavaTM technology, and ...
	1 Introduction
	2 Technologies for Scale in Software Development
	2.1 Compositional vs. Organizational Scale
	2.2 The JP Programming Environment
	2.3 The Application Web

	3 Naming Systems: Roles and Requirements
	3.1 Design Issues for Naming
	3.2 Naming in the JP Build System
	3.3 Local Names in the JP Environment
	Example 1. JP Names

	3.4 Implementation Challenges
	3.5 Global Names in the JP Environment
	3.6 Naming Requirements for the Application Web

	4 The Extended JP Naming System
	4.1 Package Versions and Contents
	Canonical_Name = Package_Name [‘/’ Version_Name [‘#’ Part_Name]]
	Package_Name = Atomic_Name { ‘.’ Atomic_Name }
	Example 2. Package Naming System

	Version_Name = Number { ‘.’ Atomic_Name ‘.’ Number }
	Example 3. Version Naming System

	Part_Name = Atomic_Name { ‘.’ Atomic_Name }
	Example 4. Part Naming System
	Example 5. Old JP Naming System

	4.2 Configurations
	Example 6. Configuration Names
	Example 7. Configuration-relative Names

	4.3 Derived Parts
	Derived_Part_Name = Atomic_Name { ‘.’ Atomic_Name }
	Example 8. Derived Part Naming System

	4.4 The Life Cycle of Names

	5 Related Work
	6 Conclusions
	7 Acknowledgments
	8 Trademarks
	References
	1. Atkinson, M., Daynès, L., Jordan, M., Printezis, T., Spence, S.: An Orthogonally Persistent Ja...
	2. Baker, H.: Equal Rights for Functional Objects or, The More Things Change, The More They Are t...
	3. ClearCase MultiSite http://www.rational.com/products/cc_multisite/
	4. Davidow, W., Malone, M.: The Virtual Organization: Structuring and Revitalizing the Corporatio...
	5. Kaiser, G., Dossick, S.: Workgroup Middleware for Distributed Projects. IEEE Seventh Internati...
	6. Gosling, J., Joy, W., Steele, G.: The JavaTM Language Specification. Addison-Wesley (1996)
	7. Hall, R., Heimbigner, D., Wolf, A.: A Cooperative Approach to Support Software Deployment Usin...
	8. JAVA NAMING AND DIRECTORY INTERFACETM(JNDI), http://java.sun.com/products/jndi/, Sun Microsyst...
	9. Jordan, M., Van De Vanter, M.: Modular System Building With Java Packages. In: Ebert, J., Lewe...
	10. Levin, R., McJones, P.: The Vesta Approach to Configuration Management. Research Report 105. ...
	11. Marimba Inc. Castanet Product Family. http://www.marimba.com/ (1998)
	12. Murer, T., Scherer, D.: Structural unity of product, process and organization form in the GIP...
	13. Murer, T., Van De Vanter, M.: Replacing Copies With Connections: Managing Software across the...
	14. Noll, J., Scacchi, W.: Supporting Distributed Configuration Management in Virtual Enterprises...
	15. Van De Vanter, M.: Coordinated editing of versioned packages in the JP programming environmen...
	16. IETF WebDAV Working Group, World Wide Web Distributed Authoring and Versioning, http://www.we...

