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Abstract. Emerging technologies such as the Internet, the World Wide Web,
JavaTM technology, and software components are accelerating product life
cycles and encouraging collaboration across organizational boundaries. The
familiar coordination problems of large scale software development reappear in
a context where tools used by collaborators must be less tightly coupled to one
another than before. To the traditional notion of scale, based on the size of soft-
ware systems, must be added a new dimension of scale: organizational complex-
ity. Designing configuration management systems that scale well over both
dimensions requires difficult trade-offs between reliability and flexibility. At the
heart of these trade-offs is the aggregate information shared by collaborators:
how it is represented, maintained, and understood by the people and tools using
it. While designing a prototype development environment intended to scale in
both dimensions, we have revisited the role played by naming. A proposed
extension to the prototype’s naming system addresses issues such as which
objects should be named and how the shared naming system is constructed.

1 Introduction

Software product life cycles are accelerating and increasingly take place within
called virtual organizations that require cooperation across a variety of organizat
boundaries [4]. This trend is supported and encouraged by emerging technologie
World Wide Web, software components, and JavaTM technology [6]. Consequently
ever more software is shared across organizational boundaries and assemb
increasingly dynamic and varied ways, such as with components and plug-ins.

Highly evolved tools for configuration management, which address familiar pr
lems of scale, have become indispensable. However, these tools, even when rew
for the Internet, often fail to address the diversity of collaborating organizations. To
traditional notion of software size, which we characterize ascompositional complexity,
must be added a new dimension of scale:organizational complexity. Tools must now
address both dimensions.

The Forest project at Sun Microsystems Laboratories has been developing
prototype environment designed for reliable development of compositionally com
systems written in the Java programming language. Complementary issues of or
1
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zational complexity and the broader software life cycle are being addressed, in co
oration with the Virtual Software House project at ETH Zürich, by theapplication
web. The application web supports the software life cycle across organizational bo
aries, striking a balance between autonomy and collaboration [13].

It became clear that the application web depends critically upon global namin
shared information. JP supports a simple naming system that operates both in the
(editing based on names for individual sources [15]) and in the large (configuration
arbitrary size and complexity shared across multiple JP repositories [9]). Sharing
among multiple organizations and tools, however, demands a richer naming syste

It also became clear that design decisions for such a naming system enco
trade-offs between reliability and flexibility: for example what to name at what gra
larity and how to support reliable bindings. These decisions require careful tho
about the roles played by naming.

A design strategy was adopted in which names are only given to objects as ne
and whose bindings are as reliable as possible. The results of this strategy reflect
for different parts of the system:

− core configuration management and build systems are designed for utmost
ability, and rely on object structures, not names;

− development tools use a simple, global naming system for JP environme
designed to make information intelligible; and

− the application web uses names to support dynamic and flexible information s
ing across organizational boundaries.

The system is cast as an instance of a general framework for naming, the Java Na
and Directory InterfaceTM (JNDI) standard [8].

This paper discusses the design issues that arose in the development of this
egy, as well as the resulting concrete proposal. Section 2 begins with backgroun
scaling issues, in particular the different demands of compositional vs. organizati
scale. Section 3 takes a closer look at specific design issues concerning names
and the application web. Section 4 describes the proposed extension to JP namin
lowed by a discussion of related work and conclusions.

2 Technologies for Scale in Software Development

The JP programming environment and the application web are designed to solve
lems of scale for tools supporting the software life cycle, but along fundamentally
ferent dimensions.

2.1 Compositional vs. Organizational Scale

“Scale” for programs was once measured in lines of code, but the real issue he
complexity. Configuration management systems (including JP) address thecomposi-
tional complexityof systems: the number of modules, versions, variants, platform
and languages that it takes to construct them.Organizational complexity, on the other
hand, arises in the presence of virtual organizations (dynamic networks of orga
tions that cooperate for mutual benefit [4]) and involves the whole life cycle of pr
2
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ucts. Autonomy drives organizational complexity; single software developm
organizations don’t face the differences of culture, infrastructure, methods, tool pre
ences, and skills one finds at organizational boundaries in virtual organizations.
application web addresses these aspects of scale.

Tools for compositional complexity must be reliable; tools for organizational co
plexity must be flexible. Tools that address both aspects of scale (organizational
plexity often implies compositional complexity too) face design trade-offs. F
reliability, information is best managed in a tightly coupled fashion, as if in a sin
global data structure with complete referential integrity and type safety. Flexibility,
the other hand, requires information that is less tightly coupled and more open [13
that information may be created and managed by autonomous organizations, s
tively shared, and structured simply for intelligibility. General naming systems,
example URLs, achieve flexibility at the cost of reliability.

The challenge is to find a useful balance. JP was designed to scale with com
tional complexity; the application web addresses the additional requirements of o
nizational complexity.

2.2 The JP Programming Environment

JP is a prototype programming environment for the collaborative, reliable developm
of compositionally complex systems written in the Java programming language.
based on close coupling among federated JP repositories, and tool integratio
object-oriented interfaces. Implementation simplicity and reliability derive from arc
tectural orthogonality among core services, functional programming, and aggre
use of abstract object interfaces.

Central to the JP approach is the notion of uniquely named, reusable, inde
dently versioned packages [9]. JP packages play many roles:

− System Structure.Package versions act as software modules: they contain hum
created artifacts such as source code and can use specific versions of other
ages byimporting them.

− Storage Management.Package versions andderivedobjects built from them, as
well as tools such as compilers and editors, reside in repositories of orthogon
persistent objects [1].

− Building. A package version is built by interpreting itsbuild script: a functional
program that recursively invokes the scripts of imported packages. Previo
derived objects are reliably shared via function caching, a mechanism tha
largely orthogonal to the type of objects and the tools that create them.

− Versioning.Versions of a package are managed by a simple version system th
orthogonal to version content.

− Configuration Management.JP configurations are implemented as packag
whose role is to import particular versions of other packages, including other c
figurations. Each version of a configuration specifies an immutable, arbitra
large, aggregation of packages.

− Analysis.Tools for analyzing and visualizing software need not be separately c
figured, since they have direct access to configuration contents and derived re
3
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2.3 The Application Web

Theapplication webcomplements JP by addressing problems of organizational sc
[13]. Organizational boundaries discourage tool-based collaboration, in the absen
which information must be copied and shared manually. The application web fills
gap between the informality of copying and the tight coupling of conventional tool

The application web provides an infrastructure for sharing information and s
porting collaboration across boundaries within virtual organizations. This brings
character of the WWW into the software life cycle, where information can be auto
mously maintained at its origin, but can also be shared through simple protocol
software application can consist of parts originating at many sites.

The application web provides richconnectivitythat spans the life cycle of software
products, beginning with construction and continuing through deployment and on
ing management. For example a deployed, possibly running, application can be
ried for complete, precise, and relevant information about its configuration, avail
via links back to the organizations in which the parts were created.

Autonomyis just as important. Shared data models are as simple as possible
lowing the lead of the World Wide Web, enabling dynamic and loosely coupled coll
oration.

Flexible collaborationis supported by multiple layers of access. Closely relat
organizations might construct software jointly, using distributed authoring tools or J
federated build system. Loosely related organizations might have limited HTTP ac
to the others’ repositories. In between might be application loading services,
reporting and tracking, querying for component interoperability, and reference in
mation in support of debugging.

3 Naming Systems: Roles and Requirements

Naming is central to the shared information upon which the application web is b
The design strategy adopted for the naming system reflects the importance of a ba
between competing requirements for reliability and flexibility. This section discus
general issues, as well as choices made for different parts of the system.

3.1 Design Issues for Naming

The first question when providing name-based access to complex data is whether
it at all.

Closely coupled tools access data viaobject references,whose referential integrity
and type safety derive from modern programming languages. The persistent o
system used by JP makes object references suitable for reliable, long-term data
age, but such references are not available outside system boundaries.

In contrast, anaming systemtypically offers access to data from “outside” system
boundaries. Names are legible to people (names often encode contextual inform
and may be redundant) and portable (they can be written down and emailed), bu
flexibility comes at the cost of decreased reliability when compared to object re
ences.
4
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At one extreme, every object might be named, mirroring an object reference s
ture; for example, every element in a hierarchical file system is named. Conver
only a small number of objects might be named, as with “persistent root” object
object-oriented databases, requiring that further access be structural. These ch
depend on the information clients need and what they know about the structure o
data. Other design issues include the lifetime and mutability of name bindings as
as lookup mechanisms and accessibility guarantees.

Unfortunately developers routinely suffertoo many naming systemsthat are badly
suited for the task: one for the target language (e.g. class names), another for st
(location dependent file names), possibly a third for modules (often modeled weak
directories), and others for versioning and configuration. Not only must develop
understand all these naming systems, they must keep them arranged in complex
tionships just to keep the tools working. The problem is made worse bynaming too
many things, for example by cluttering the name spaces for sources with deri
objects.

The proposed strategy is to name as few objects as possible, depending on sp
requirements. The rest of this section describes the roles played by names in diff
parts of the system. Whereas the JP build system uses no names at all, the JP too
face layer uses a unified naming system that spans multiple JP repositories. The f
approach permits reliable building for configurations of arbitrary complexity, and
latter provides a comprehensible user model that abstracts away inessential info
tion. Extending JP into the application web, requires a third approach to naming,
that will serve also as a bridge to non-JP tools.

3.2 Naming in the JP Build System

At the heart of JP is a build system that provides stronger guarantees of reliable
repeatable builds than is now common. Several technologies support these guara
but naming is not among them.

In order to be built, apackage versionmust be committed to the repository, and
must completely specify its build computation. In its build script (a functional pr
gram) source objects (those created by humans using tools such as editors) app
literal data values of the scripting language in declarations equivalent to:

JavaSource myStack = <the text written by a developer>;

JP source objects, known asparts, are implemented withfunctional objects: they
are immutable and can be treated as pure values whose object identity plays no
[2]. JP parts are context-free and not intrinsically named and can thus be safely s
by many contexts.

Perhaps surprisingly, it is also necessary that package versions themselves b
resented as functional objects; they participate in build scripts as literal value
import declaration equivalent to:

import <reference to contents of an existing package ver.>;

To the extent that parts do have names in the build system, it is only for the inte
purposes of the computation, for example as in the declaration ofmyStack in the first
5
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example. These local bindings, within the computation engendered by each JP
age version, are isolated from the rest of the environment and from other version

Objects created during building are likewise bound for the duration of the comp
tion. Such bindings persist only to the extent that they are captured in a returnedbuild
result. The result is generally not named; tools invoke thebuild() method on pack-
age versions and operate structurally on the returned value.

3.3 Local Names in the JP Environment

It is one thing to exploit the power of a purely functional build system computing o
a repository of context-free objects treated as values; it is quite another to help d
opers create, understand, and manage such objects. People and their work are
ently contextual and must be able to understand data in their own context.

Tools in a JP repository use a simple, unified name system for versioned pack
and their contents [9], as shown in Example 1 and described further in Section 4.

These are the only names a developer normally sees, based on the design decisi
names do not need to carry any other information, and that no other objects
names.

Unlike many naming systems, these names are reliable: name bindings, once
ated, are eternal, immutable, and always accessible. This makes names redu
strictly speaking, but they help make a crucial connection between abstract, build
values and the work being done by developers. This separation between internal r
sentation and user-visible names permits the design of each to be optimized for its
purposes. For example, the package name space is aligned with names in the Jav
gramming language, eliminating any distinction between storage and language na
The version name space in JP supports a simple branching and numbering mode
any name space would do; version names can therefore be aligned with local sof
development processes, once again eliminating name distinctions.

Names are used to good advantage by JP’s framework for editor coordination
This framework allows JP developers to commit new package versions, which can
be built if desired. Constructing a version involves creation of new source obje
based on editing activity, as well as new folder-like containers that represent cha
contents. The framework makes this process nearly transparent, even in the prese
multiple editors that are not version-aware. It also arranges that unedited par
shared by successive versions. Although the framework operates structurally, ed
appear to be operating in the JP name space. Other tools, for example for navig
searching, and creating new objects, operate similarly.

Example 1. JP Names

com.sun.labs.forest.jp.util a JP package

com.sun.labs.forest.jp.util/7 a JP package version

com.sun.labs.forest.jp.util/7#Stack a source (“compilation unit”)
in a JP package version
6



ts. JP
o be
h the
ppro-

the
ng a

inter-
ion,

urce
on of
d in
ated

es
rdina-
itor
ich
e the

rly-
y dif-
This
ces of
n sys-

ong
imate
single

ligns
s
ames
e pre-
envi-

men-
eing
3.4 Implementation Challenges

Supporting both structural and name-based access to information has its cos
exploits the implementation of parts as immutable values and permits a value t
bound to many names, for example in successive versions of a package in whic
part has not been touched. Consequently, any human view of a part must supply a
priate context.

For example, from the perspective of the build system an import is bound to
content(value) of a package version, not a name for the content. A person examini
build script, on the other hand, expects to see the humanintentionbehind the import,
which is best captured by the name used when the import was created. Thus, the
nal representation of a build script import must carry this extra contextual informat
however inessential to the builder.

Likewise, build errors cannot be reported usefully when a compiler sees so
code only as byte arrays embedded in a graph of functional objects. Each invocati
the build system must be given a way to “re-contextualize” any parts mentione
communication with humans, for example so that programming errors can be loc
and corrected.

JP editors, like the builder and compilers, traffic only in object values: old valu
are copied into buffers, and new parts are created when needed. The editor coo
tion framework maintains context that explains the meaning of data in each ed
buffer. The framework informs each editor of the current name for each buffer, wh
routinely changes as versioning progresses, even though its only purpose is to giv
developer contextual information.

Bridging different areas of JP’s architecture has deeper implications in the unde
ing implementation, since a JP repository must be able to manage parts created b
ferent versions of editors and derive results using different versions of compilers.
requires, in effect, a separate type system for each configuration, the consequen
which are beyond the scope of this paper. These issues do not arise, of course, i
tems where tools and data are not strongly typed.

3.5 Global Names in the JP Environment

In order to support development of large systems, JP must permit collaboration am
developers using multiple, federated JP repositories. The challenge is to approx
as closely as possible the guarantee of reliable, repeatable builds made by JP in
repositories.

The organizational aspect of the problem requires a global naming policy. JP a
package names with the emergingglobal name spacefor Java packages, which begin
with reverse DNS names. This grants organizations exclusive authority to create n
in owned domains, which they can subdivide as needed. JP makes the aggressiv
sumption that a name, once created, has constant meaning, viewed from any JP
ronment, anywhere in the world, for all time.

JP imports are permitted to cross repository boundaries, which presents imple
tation choices for the representation of a non-local import. Two solutions are b
explored, functionally similar but with very different architectural implications:
7
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− At the platform level, an experimental mechanism supports persistent remote
erences to persistent objects.

− At the application level, package version names can, when combined with a l
tor service, implement the same binding.

Although neither of these mechanisms can guarantee that remotely implemented
ings are either eternal or accessible, it is possible to check that bindings are immu
Objectfingerprints, upon which JP’s function caching is based, can be stored with
representation of an import, making it possible to verify that the retrieved value
remote import, if available at all, is the intended one.

3.6 Naming Requirements for the Application Web

Whereas JP embeds names in a closed world designed for reliable, federated bu
the application web is designed for more flexible forms of collaboration that span o
nizations, phases of the life cycle, and tools [13]. The application web captures in
connected information associated with software development, and makes it ava
via a variety of tools throughout the software life cycle. Collaboration requires so
common understanding about software systems and their structure, as reflecte
shared naming system. Such a naming system must balance requirements for e
siveness (for effectiveness), reliability (for compositional scale), and flexibility (
organizational scale). The goal of expressiveness suggests that the JP name sp
extended by naming objects that otherwise would only be treated structurally. Ex
ples include build results and the internal structure of configurations.

The World Wide Web is an example of a scalable, global name system that m
many of these requirements. However, the application web presents additional req
ments such as versioning and configurations, such as those used in JP.

Equally important is the reliability of names in a well-defined life cycle, whe
names are guaranteed to persist and be immutably bound. Confidence that bin
will be available and will not change encourages effective and efficient communica
among people and toolsby referenceto objects. It also permits reliable name-base
caching. On the other hand, it must be understood that bindings can be subject t
vice interruptions and expirations.

Authentication, trust, and access control are also essential, but are beyon
scope of the current work.

4 The Extended JP Naming System

The extended JP naming system addresses the goals of the application web
based on experience with a simple prototype. This required recasting the origina
composite naming system, making some syntax adjustments for scalability. It
involved extending its scope, and defining more carefully such issues as the life c
of names.1

1. This description uses the terminology of the Java Naming and Directory Interface (JNDI)
standard [8]. Name syntax is described on an EBNF notation that includes ‘[’..‘]’ for
options and ‘{’..‘}’ for zero or arbitrary repetitions.
8
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4.1 Package Versions and Contents

Editing, versioning, system modularity, and building all operate at the granularity
package versions.

− Every package and package version has acanonical namethat identifies it
uniquely in the global package name space.

− Every part within a package version may also have acanonical namethat identi-
fies it uniquely.

− This composite naming systemincludes separate naming systems for packag
package versions, and parts.

Canonical_Name = Package_Name [‘/ ’ Version_Name [ ‘#’ Part_Name ] ]

The Package Naming System.This naming system mirrors the increasingly accept
global name space for Java packages [6], based on reverse DNS names. The hie
implies no inclusion relationships, either in the Java programming language or in
for examplea anda.b  name unrelated packages.

Package_Name = Atomic_Name { ‘. ’ Atomic_Name }

The Version Naming System.This naming system identifies each version relative
its package. JP version names are hierarchical, with alternating numbers and nam
in Example 3. However, other versioning models can be used to suit particular de
opment processes, as mentioned in Section 3.3. This freedom permits organizatio
share information based on names, even when the semantics of particular ve
names are not shared.

A canonical name includes at most one version name, reflecting the decision to
sion packages onlyin toto. Packages in which contents are to be versioned indep
dently must be constructed as configurations of other packages.

Version_Name = Number { ‘. ’ Atomic_Name ‘. ’ Number }

The Part Naming System.This naming system identifies human created sour
objects within the content of a version. In contrast to package names, hierarchydoes
imply inclusion. Version content is managed as a single compound document, w
root part name is null, and in which embedded parts may or may not be named.

Part_Name = Atomic_Name { ‘. ’ Atomic_Name }

Example 2.Package Naming System

COM.sun.labs.forest.jp canonical package name

Example 3.Version Naming System

1.murer.4 version name

COM.sun.labs.forest.jp/1.murer.4 canonical package version
name
9
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Alternatives. The above syntax is influenced by URLs. Other approaches could
used, so long as package names match the name space for Java packages, and c
ite names can be parsed unambiguously. An earlier JP naming system used the s
tor ‘. ’ exclusively, as in Example 5:

The simplicity of the old approach is appealing, but it promised to become con
ing with increasing richness of the naming system, since boundaries between the
vidual naming systems are not immediately obvious.

4.2 Configurations

An extension to the JP naming system makes more of the internal structure of con
rations visible through naming.

Projections. The global package name space is immense. Developers work in sub
that include just the package versions aggregated into systems under develop
These subsets are defined by configurations: package versions that recursively a
gate other package versions, as in Example 6:

The contents of a configuration version can be treated as a projection of the g
name space in which names can be used that have meaning only relative to the pa
lar context of the configuration, as in Example 7. In this example a part appears
configuration version because its containing package version is explicitly impor
three different names refer to the same part:

− The canonical name, which is independent of any configuration.
− A configuration-relative name, based on an extended syntax as shown. All

names can be unambiguously translated to canonical names.

Example 4.Part Naming System

model.layout part name

COM.sun.labs.forest.jp/1.murer.4#model.layout canonical
part name

Example 5.Old JP Naming System

COM.sun.labs.forest.jp.1.murer.4.model.layout canonical
part name

Example 6.Configuration Names

CH.ethz.ee.tik.vsh/8 configuration version
name

import COM.sun.java.JDK/2.mac.3
import COM.sun.labs.forest.jp/4
import CH.ethz.ee.tik.vsh.services/9

imports of package ver-
sions in the configuration
10
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− A configuration-sensitive name that only identifies the part uniquely in a con
where the configuration version is implied. These shorter names are the one
tools might display when a developer is working in the context of an evolving c
figuration. In situations where even more context is implied, even shorter na
might appear, for examplejp#Main .

The particular projection used in Example 7 is only one of many that could
designed to suit various needs for visualizing and working within the context of c
figurations.

Complete system descriptions. Configurations capture more than sources. For exa
ple, they contain a complete prescription for building it, including the precise vers
of a compiler (which also comes from a JP package version), compiler options,
which version of important libraries it is compiled against. These are all example
meta-informationrelevant to the configuration. Other kinds of parts might also
present, for example design documents and test case specifications. Some kin
information might not be naturally represented as parts, in which case the naming
tem might be extended explicitly.

4.3 Derived Parts

Information created by building a configuration, although guaranteed by JP to be w
defined, is not canonically named and is understood to have no meaning outside
originating configuration. For the purposes of the application web, any build re
should contain enough information to identify its configuration, perhaps by links le
ing back to the repository in which it was originally created.

Access to derived information is structural within the JP environment, but acc
can also be provided by describing each build result as a new name space in the
posite naming system, relative to its configuration version. This might name such
ful information as compiled classes and Javadoc HTML files. A function applied t
given configuration builds the naming context for aderived parts naming system. This
is another hierarchical naming system, for example:

Derived_Part_Name = Atomic_Name { ‘. ’ Atomic_Name }

In Example 8compile is a distinguished name that refers to the derived nam
space. The names that follow can be simple, in situations where build scripts expli

Example 7.Configuration-relative Names

CH.ethz.ee.tik.vsh/8 configuration name

COM.sun.labs.forest.jp/4#Main canonical part name

CH.ethz.ee.tik.vsh/8/COM.sun.labs.for-
est.jp#Main

part name embedded in
configuration context

COM.sun.labs.forest.jp#Main part name relative to
implied configuration
context
11
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define such names, or they might be expressions whose evaluation would pro
something approximating structural access to the information. The names are re
in either case, a considerable advantage when caching derived information.

4.4 The Life Cycle of Names

The use of global names within the application web requires a set of rules about
names are created and managed. These rules may be summarized in terms of tlife
cycle for canonical names; projected and derived names are always well-define
terms of canonical names, as discussed earlier.

− Creation.A new name is explicitly created by an autonomous organization par
ipating in the application web. Intellectual work is recorded in JP by committin
package version to a repository, and this requires that it be named; likewise, in
mation cannot be shared in the application web until it is named.

− Uniqueness.A newly created name is presumed never to have been used be
The authority to create valid names is managed at the topmost level by partitio
the global name space into DNS domains that organizations own and can s
vide as needed.

− Persistent Binding.A name is bound to a value when created, and this binding m
never change. This permits loosely coupled organizations to communicate rel
using names, and permits reliable caching of bindings.

− Unavailability. No non-local lookup service can be constantly available. T
bound value of a name may not be available in situations where there are sy
failures and there is no local cache available.

− Eternal Names.A name, once created, must live forever. Even if a binding expir
at its source (see below) caches may live on; names must be remembered s
they will not be rebound.

− Binding Expiration.Although names live forever, the storage of accumulat
bindings may not always be practical or desirable. Expiration dates would h
organizations negotiate the lifetime of their storage services, much as other
facts in the software business eventually expire.

The rules of the life cycle for names cannot be strictly enforced in the world
which the application web is designed. The success of names used this way mus
on the motivation of participating organizations to follow the rules for their own inte
est, combined with end-to-end tests to ensure that bound values never change.

5 Related Work

The Vesta project [10], from which JP’s core build technology is derived, implemen

Example 8.Derived Part Naming System

util.Connection derived part name

CH.ethz.ee.tik.vsh/8/com-
pile#util.Connection

derived part name in context of a con-
figuration’s build result
12
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functional building over a repository of immutable versioned packages. Its pack
name space is flat, local, and not related to language names, and there is no inte
support for integrated editing.

Distributed configuration management systems have been developed, some
mercial such as ClearCase Multisite [3]. These generally presume every site is run
the same tools. This restriction can be lifted by designingmiddlewareto glue together
different systems, for example by Kaiser and Dossick [5]. These approaches ad
compositional complexity, but often neglect the difficulties of organizational compl
ity.

Noll and Scacchi address much the same goals as ours with a shared distri
CM system that connects to each organization’s tools with adapters [14]. Their de
emphasizes a shared model to be understood by all organizations, whereas the a
tion web address a much simpler, open ended model; the application web is
expressive, but may have greater potential for organizational scale. The GIPSY pr
addresses organizational complexity by proposing a simple, unified model that re
sents software product, process and organization form [12].

Collaborative authoring tools presume close organizational coupling, altho
WebDAV aims to bring some of this functionality to the more loosely coupled Wo
Wide Web [16]. Although this is necessarily embedded in a less expressive name s
than is needed for the application web, WebDAV could serve as an appropriate i
structure for parts of the application web.

The application web proposes life cycle connectivity of software to its origin; t
permits copying to be replaced by reliable caching. These features allow for reli
software deployment as well as other business opportunities within a Virtual Softw
House. Such opportunities might include consistent, up-to-date, connected soft
catalogues as well as component seeking and matching. The Software Dock prop
sophisticated deployable software description format and an agent based deploy
engine to support the software deployment life cycle [7]. Castanet, a produc
Marimba, offers incremental software deployment services based on channels, m
ing and fingerprinting technology [11]. In contrast to more sophisticated approac
the application web promotes the simple “web” idea of connectivity where informat
relevant for the whole software life cycle is directly accessed from its original sou

6 Conclusions

Reliable, scalable configuration management is essential for developing the next
eration of large software systems. Traditional tools fail to help organizations coope
in emerging models for virtual organizations. Java technology makes some of this
ier, but reliable, scalable tools are still needed. Tool strategies for software requ
balance between addressing compositional and organizational complexity; names
an important role in these strategies.

The application web, an extension to a reliable, scalable development environ
for Java software, addresses the emerging challenge of organizational complex
does this in a simple, scalable, collaboration framework based on global naming
permits connecting a wide variety of services, applicable to many phases of the
13
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ware life cycle. This approach presumes that reliable configuration managemen
repeatable building are among the core services, but it also conspires to make ava
a wide variety of related meta-information about software.

Early versions of the JP environment are in use, and a simple prototype of
application web, based on HTTP-coupled tools, has been developed for demonst
purposes. It supports several of the anticipated services, for example loading and
ning applications directly out of their originating repositories, and navigating via inf
mation present in running applications back to the sources and documents in
precise configuration in which they were built.
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