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ABSTRACT 

The High Productivity Computing Systems (HPCS) 
program seeks a tenfold productivity increase in High 
Performance Computing (HPC), where productivity is 
understood to be a composite of system performance, 
system robustness, programmability, portability, and 
administrative concerns.  Of these, programmability is the 
least well understood and perceived to be the most 
problematic.  It has been suggested that an “expertise gap” 
is at the heart of the problem in HPC application 
development.  Preliminary results from research conducted 
by Sun Microsystems and other participants in the HPCS 
program confirm that such an “expertise gap” does exist 
and does exert a significant confounding influence on HPC 
application development.  Further, the nature of the 
“expertise gap” appears not to be amenable to previously 
proposed solutions such as “more education” and “more 
people.”  A productivity improvement of the scale sought 
by the HPCS program will require fundamental 
transformations in the way HPC applications are developed 
and maintained. 

Categories and Subject Descriptors 
D.2.0 [Software Engineering]. D.1.3 [Programming 
Techniques]: Concurrent Programming –parallel 
programming.  

Keywords 
High Performance Computing, Software  Productivity. 

1. INTRODUCTION 

The development of application software in the High 
Performance Computing (HPC) domain is extraordinarily 
difficult.  Indeed the Defense Advanced Research Project 
Agency (DARPA) has called out programmability as one of 

the key goals of the High Productivity Computing Systems 
(HPCS) program.  DARPA understands productivity to be 
a composite of system properties and has set HPCS 
program goals in each [2]: 
• Performance (time-to-solution): speedup critical 

national security applications by a factor of 10X to 
40X 

• Programmability (idea-to-first-solution): reduce cost 
and time of developing application solutions (~10X)  

• Portability (transparency): insulate research and 
operational application software from system 

• Robustness (reliability): apply all known techniques to 
protect against outside attacks, hardware faults, & 
programming errors 

• A fifth property, Systems Administration, was added 
at the suggestion of Sun Microsystems, one of the 
HPCS vendors.  

 
Acknowledging that productivity is fundamentally not well 
understood, DARPA has also funded a broad research 
program on HPC productivity that engages universities, 
research labs, the program vendors, and the HPCS 
“Mission Partners,” including the Department of Defense, 
Department of Energy and federally funded sites such as 
Sandia National Laboratory and Los Alamos National 
Laboratory.  
Of the system properties that make up productivity, 
programmability is the least well understood and perceived 
to be the most problematic.   It has been suggested that an 
“expertise gap” is a significant barrier to increased software 
productivity: “Programming today’s HEC1 systems 
requires a high level of expertise, but the current trend of 
available skills is increasingly one of few HEC expert 
programmers …” [12]. 
A goal of the HPCS Program is to create a base of 
empirical data describing all aspects of productivity.  
Although the program is far from complete, preliminary 
analysis of data concerning programmability confirms that 
there is in fact an HPC “expertise gap” and that it is 
                                                             
1 High-End Computing, another term for High Performance 

Computing (HPC) 
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fundamental to the ways software is developed in many 
areas of the HPC domain. 
This paper presents those preliminary analyses, beginning 
in section 2 with a discussion of the environment in which 
HPC software is developed, maintained, and evolves.  
Many of these insights about the environment have 
themselves been produced by HPCS program research.  
Section 3 describes the interdisciplinary research 
methodology used by the Sun productivity program, 
drawing on a variety of social science and empirical 
software engineering techniques.  Selected preliminary 
findings are presented in section 4, with primary emphasis 
on suggestive case studies. Section 5 discusses some of the 
implications of these findings for the HPCS program goals. 

2. BACKGROUND AND RESEARCH GOALS 

The HPC environment is characterized by very large 
problems (measured by both data size and computation) 
that require very large, sometimes exotic computing 
systems and the exploitation of very high degrees of 
parallelism.  The focus of the HPCS program has been on 
“Mission Partners” in the United States:  the Department of 
Defense, the Department of Energy, and the intelligence 
community.  HPC also takes place in commercial 
environments and those have been the subject of some 
studies as well. 
Case studies published to date describe an environment that 
has much in common with other kinds of software 
development, but which differs markedly in a few respects 
[4][5][9][10].  The following characteristics are important 
for the purposes of this discussion: 
1. HPC codes typically take years to develop. 
2. Once developed, HPC codes have a maintenance and 

evolution lifetime that can be counted in decades. 
3. Because HPC codes have such a long use life, they 

may be ported to new machines several times during 
their lifetime, possibly every 3-4 years. 

4. HPC codes embody very complex science and 
numerical methods. 

5. As a result of their age, legacy codes are typically 
written in Fortran77 and MPI. This sets them apart 
from other kinds of programming. 

6. New code is often being written in C++. 
7. HPC codes are often supported by tools that are 

specifically written for them. 
The goal of our research is to collect empirical data and 
build understanding of HPC application development, with 
a particular emphasis on characterizing the key 
“bottlenecks” that appear to have negative impact on 
application development effectiveness.  From this data we 
intend to develop a model for reasoning about 
programmability and for predicting how bottlenecks might 
be ameliorated. 

3. METHODOLOGY 

To gather more detailed information about HPC software 
development, we adopted a case study approach; this 
approach provides a data collection framework that is 
flexible and allows deep exploration of one or more cases 
[4][5][9][10]. We used multiple methods from case study 
research [14] that would allow us to gather information 
from professionals and teams of professionals who are 
writing code for highly parallel machines. These methods 
included qualitative data collection including:   
• Semi-structured interviews with individual HPC 

programmers. 

• Structured group sessions (surveys and interviews) 
with existing Mission Partner code teams. 

We also used quantitative methods that allowed us to 
validate case study findings across a larger sample, 
including a survey of Mission Partner teams, using a 
multiple choice and open-ended questions format.  
The use of mixed methods, measuring, observing and 
interviewing programmers, has a number of advantages 
over reliance on one type of data collection alone.  For 
example, journal entries allowed us to collect “real-time” 
accounts of code development from a programmer 
perspective.  Individual and group interviews help us 
understand long-term team and context issues.  Survey 
results provide a structured overview and validated 
observations. 
Of course the raw data alone did not provide us with the 
insights we seek.  By weaving together the qualitative data, 
we were able to compare journal entries, survey responses, 
and interviews in order to fill out our understandings and 
isolate inconsistencies. From the combined data we then 
began to identify patterns across individuals and teams, plot 
bottlenecks and create models of HPC programmers based 
on empirical data.   

4. FINDINGS 

The data collected so far shed light on the suggested 
“expertise gap” that is widely reported in anecdotal form, 
for example as noted by Sarkar et. al. [12].  Analysis can be 
carried out from more than one perspective.  This paper 
examines insights gained by identifying “bottlenecks:” 
barriers to the accomplishment of development goals.  
Analysis from a workflow perspective will be reported 
separately. 

4.1 “Hot Spot” interviews 

The Sun Microsystems productivity team began to 
investigate this evidence with a systematic analysis of data 
collected from interviews with five Mission Partners, 
conducted through DARPA’s productivity research effort.  
There were three components to the data [3]: 
1. A set of proposed workflow diagrams, describing 

idealized work processes in different aspects of HPC 



software development; respondents were invited to 
review the diagrams and mark those workflow nodes 
they perceived to be “hot spots” causing particular 
difficulty or expense. 

2. Free-form comments from interview respondents. 
3. An oral debriefing of the interviewer, during which 

additional respondents’ comments, not otherwise 
recorded, were reported. 

No clear consensus emerged from the respondents’ node 
selections, but additional analysis that included both sets of 
comments suggested that respondents had experienced 
some difficulty mapping the proposed workflows into their 
own work practices.  A revised analysis at a coarser 
granularity, taking full account of the comments, revealed a 
clear consensus, as represented in the following chart.   
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     Chart of Mission Partner Bottlenecks  

The chart depicts the areas where data revealed each 
Mission Partner to be experiencing difficulty, i.e. where 
HPC code developers spend the greatest time and effort. 
Five areas were reported by a majority of Mission Partners:  

1) Developing HPC Code,  

2) Debugging, Testing and Verification & 
Validating,  

3) Optimizing Code,  

4) Scheduling Code Runs, and  

5) Creating, Selecting, and Using Math Libraries 

Areas identified by fewer Mission Partners do not appear in 
the chart.  Mission Partner 3 does not develop code.   
Importantly, of the five areas that consume time and effort, 
Mission Partners unanimously reported that optimizing, 
debugging, testing, and Verification and Validation of code 
were bottleneck areas.  
We concluded that scaling code for HPC systems was the 
most likely area to become a bottleneck, which supports 
anecdotal reports that specialized "expertise" is crucial for 
scaling code for High Performance Computing (HPC). A 
lack or “gap” in the availability of that expertise might be 
an important factor blocking increased HPC productivity. 

4.2 Classroom “defect” studies 

Recent quantitative research from a study conducted at the 
University of Maryland has confirmed similar bottleneck 
areas while studying novice developers [7].  In this study, 
students were monitored while developing solutions to 
small HPC programming problems; all of the students’ 
code runs were examined and the “defects” in faulty codes 
categorized.  Those findings match the first two bottleneck 
areas identified in Sun’s analysis: Coding for HPC, and 
Optimizing Code.  The novices being studied do not engage 
in validation, scheduling or significant library use. 
We realized that we would need to conduct additional 
research to explore and validate our initial findings as well 
as expand our knowledge of the expertise gap.  

4.3 Scale up with more education? 

When people are working hard but do not seem to be 
productive enough, it is tempting to think that more 
education might address any “expertise gap.”  
Will more or better education help solve the expertise gap? 
In the case study research with professional HPC 
developers, we included questions about education to help 
us gain a better understanding of the context of the 
developer’s work and associated education challenges. The 
following example is representative of the information we 
collected. 
Don2 is typical of the HPC developers with whom we 
talked. His work history provides an example of the 
challenges associated with solving the expertise gap 
through education.  
Don has a Ph.D. in Geophysics with a special interest in 
meteorite impact on planetary bodies. Because of his 
background in impact studies, he was recruited onto the 
Condor team at a Mission Partner Laboratory whose legacy 
code modeled impact [5].  
The code that Don began to learn has existed for 20 years, 
is written in Fortran77 and contains well over 100,000 
lines.  Over the years this code has developed a large user 
base: more than 300 licenses with about 1000 users.  Its 
users perceive this code as valuable, and Don was hired to 
maintain the code: fixing bugs reported by users and 
upgrading it when necessary. 
Surprisingly, Don joined the code team with no knowledge 
of Fortran or MPI.  He reports that it took him eight years 
to learn his job. Of course it did not take him eight years to 
learn Fortran; that took about eight months, which he called 
his “on-the-job training.”  The reason for his long learning 
curve is the complexity of the code itself.  The code Don 
works on has had many authors over the years.  It has also 
been ported to new machines several times during its 
lifetime use.  Not all authors documented their work, and 
                                                             
2 “Don” and other names that appear in case study descriptions are 

pseudonyms, used for confidentiality and security. 



many legacy features in the code were left intact each time 
the code was ported.    
Don eventually became the lead developer for this code.  
Although Don now feels confident with the code, he 
admitted that, after fifteen years working with the code, he 
still does not understand what all the code does. 
Don’s long learning period appears typical for HPC 
development.  For example, Sarkar et. al. also reported a 
10+ year hands-on learning curve to develop such expertise 
[12]. 
Formal education in languages such as Fortran or 
parallelizing tools such as MPI or OpenMP would not have 
helped in Don’s case.  He quickly mastered the skills in 
these areas.  Instead the bulk of his learning was centered 
on acquiring experience with the legacy code. It was the 
complexity of this large code that demanded the extra time 
to master. 
The learning curve requirements of the HPC developer 
working with complex code casts doubt on any long-term 
strategy of relying on education to solve the problem. Even 
if we could provide appropriate education, the timeframe 
for such a solution is unrealistic.  The hope that the 
expertise bottleneck might be solved through education is 
not a long-term answer. 

4.4 Scale up with more people? 

If more education alone will not solve the expertise gap 
perhaps building teams of skilled people can cut down on 
the time to solution.  In another example from our case 
studies we learned that the answer is “maybe.” 
The Hawk team filled out surveys and participated in a 
group interview as part of our case study research [4].  
Asok was a founding member of the team, having been 
recruited as a graduate student.  His expertise in fluid 
dynamics was important to a new project challenged to 
model a hi-tech plastic to be used in airplanes and armored 
vehicles, whose parts would be fabricated using large 
molds. However, it is difficult to fill the molds correctly, 
without air pockets. Asok was asked to model the mold 
filling as an alternative to expensive experimentation.  
Although Asok was knowledgeable about the science, he 
was not an HPC programmer, so he was teamed with a 
Fortran expert. 
Asok understood the fluid dynamics, the programmer 
understood Fortran, but they did not understand each other.  
Four years later the Fortran code was unsuccessful, and the 
programmer quit. 
A new programmer was assigned to work with Asok.  
Mitch was more fluent in C++ and suggested abandoning 
the existing code. It was a bold move, but the two decided 
to begin all over again with C++. They worked together to 
find a working solution to the modeling, this time creating 
a successful serial code.  Unfortunately neither was expert 
in scaling.  Their manager, Jean, was an expert in 

optimizing code; she stepped in to scale the code, working 
closely with Mitch.   
Meanwhile the project sponsor started to become impatient, 
and a manager was still needed to handle expectations.  So 
the project management was taken on by another person.  
His main role was to run interference for the team, keeping 
the sponsor happy.  He also negotiated time to run the code 
on the large machine. 
It took an additional three years to develop a successful 
parallel code in C++ but the team effort paid off.  The new 
C++ code was delivered to the sponsor. 
Asok attributed the success to two factors: his new 
programming partner and the coding knowledge he gained 
during the four years he spent attempting to write the code 
in Fortran.  The C++ programmer, Mitch, attributed success 
to Asok’s expertise in fluid dynamics and Asok’s 
willingness to teach Mitch about it.  Both agree that the 
project would not have succeeded if their manager had not 
stepped in to scale the code for a highly parallel machine. 
This case study illustrates the potential for overcoming the 
expertise gap with appropriately configured teams.  In less 
than seven years the Hawk team demonstrated that they 
could develop a working code in less time than a lone 
developer. But it is a cautionary tale. The team was 
successful only when they had the appropriate mix of 
knowledge represented in four areas:  

• Science 

• Programming  

• Scaling / Optimizing  

• Management 

The success of a team strategy for overcoming the expertise 
gap relies on a conscious division of labor with a specific 
mix of domain knowledge.  In the Hawk case, the first 
effort at assembling a team did not work. Throwing more 
people at the problem without consideration for the team 
skill mix led to four years of frustration. It was only when 
the mix of skills was balanced between science, 
programming, scaling, and management did the effort 
move forward.  
It is also clear that Asok still had to acquire a working 
knowledge of programming in order to find a solution. He 
admits that the four years working with the Fortran 
programmer enabled him to work successfully with the 
C++ programmer with whom he was subsequently 
partnered.  The programmer needed to gain a working 
knowledge in Asok’s area of expertise as well.    
This example suggests two “best practices” that can help a 
team to succeed.  
1. The team needs the right mix of skills: science, 

programming, scaling/optimizing and management.   
2. It is also important that each team member has a basic 

working knowledge of the other skill sets on the team 
so that they can communicate effectively. 



But assembling a team of appropriate experts is not a 
complete solution.  Of the four skill sets, scaling/optimizing 
remains a scarce resource, and if Jean had not possessed 
those skills the project might have stalled.  By putting a 
team together that addresses the various expertise needs, 
the team approach can bridged the expertise gap.  However 
this is temporary.  As systems get even larger and more 
complex, this key expertise will become relatively more 
scarce, and teams will be unable to scale. For example 
adding more programmers to Asok’s team would not have 
helped solve the problem any faster.  In fact, more team 
members would have added a team / human complexity, 
without fundamentally addressing the “expertise gap.” 

5. DISCUSSION 

A combination of qualitative and quantitative research 
methods allowed us to develop a more complete 
understanding of the issues faced in the HPC community 
than might have been possible with any single method.  
Using a case study approach allowed us to deeply explore 
the work of individuals and teams of HPC code developers. 
Quantitative method provided the breadth of data to 
validate our findings on a larger scale.   
From our research we conclude that complexity is at the 
core of HPC bottlenecks, and it is a system level problem. 
Previously proposed solutions such as “more education” or 
large team approaches are short-term interventions that will 
not be viable unless we address the root cause of the 
“expertise gap” – increasing complexity [6].  Very few 
individuals have the complete set of skills (science, 
programming, scaling and management) necessary to 
exploit fully these complex machines. Educating individual 
developers in all four skills requires both a gifted individual 
and many, many years.  
Assembling a team of experts is an alternative that has 
short-term potential. However, these teams have a limited 
ability to scale.  Doubling the number of scientists or 
programmers adds another layer of complexity to the team.    
As machines get bigger and more complex the pool of 
experts who have the ability to deal with the increasing 
level of complexity will continue to narrow.   Unless we 
address the system level cause of the expertise gap, 
increasing complexity, we will not solve the problem. 
 

6. CONCLUSIONS 

Productivity improvement on the scale sought by the HPCS 
program must address scale and complexity by requiring 
fundamental transformations in the way HPC applications 
are developed and maintained [1][7][11][13]. In the end we 
believe that bottlenecks will be resolved with appropriate 
application of automation, abstraction and associated tools. 
Abstraction, including languages may solve the science 
domain expertise gap by reducing the programming 
complexity and allowing scientists to reason in the problem 

domain. Opportunity here now revolves around grounding 
practices in specific problem domains, automating that 
which can be automated, and abstracting away the most 
challenging aspects of the machine (parallelization). 
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