
Yes, There Is an “Expertise Gap”
In HPC Applications Development

Susan Squires
Sun Microsystems, Inc.

15 Network Circle UMPMK15-204
Menlo Park, CA 94025

1-650-786-3441

susan.squires@sun.com

Michael L. Van De Vanter
Sun Microsystems, Inc.

16 Network Circle UMPMK16-304
Menlo Park, CA 94025

1-650-786-8864

michael.vandevanter@sun.com

Lawrence G. Votta
Sun Microsystems, Inc.

16 Network Circle UMPMK18-216
Menlo Park, CA 94025

1-650-786-7514

lawrence.votta@sun.com

ABSTRACT

The High Productivity Computing Systems (HPCS)
program seeks a tenfold productivity increase in High
Performance Computing (HPC), where productivity is
understood to be a composite of system performance,
system robustness, programmability, portability, and
administrative concerns. Of these, programmability is the
least well understood and perceived to be the most
problematic. It has been suggested that an “expertise gap”
is at the heart of the problem in HPC application
development. Preliminary results from research conducted
by Sun Microsystems and other participants in the HPCS
program confirm that such an “expertise gap” does exist
and does exert a significant confounding influence on HPC
application development. Further, the nature of the
“expertise gap” appears not to be amenable to previously
proposed solutions such as “more education” and “more
people.” A productivity improvement of the scale sought
by the HPCS program will require fundamental
transformations in the way HPC applications are developed
and maintained.

Categories and Subject Descriptors
D.2.0 [Software Engineering]. D.1.3 [Programming
Techniques]: Concurrent Programming –parallel
programming.

Keywords
High Performance Computing, Software Productivity.

1. INTRODUCTION

The development of application software in the High
Performance Computing (HPC) domain is extraordinarily
difficult. Indeed the Defense Advanced Research Project
Agency (DARPA) has called out programmability as one of

the key goals of the High Productivity Computing Systems
(HPCS) program. DARPA understands productivity to be
a composite of system properties and has set HPCS
program goals in each [2]:
• Performance (time-to-solution): speedup critical

national security applications by a factor of 10X to
40X

• Programmability (idea-to-first-solution): reduce cost
and time of developing application solutions (~10X)

• Portability (transparency): insulate research and
operational application software from system

• Robustness (reliability): apply all known techniques to
protect against outside attacks, hardware faults, &
programming errors

• A fifth property, Systems Administration, was added
at the suggestion of Sun Microsystems, one of the
HPCS vendors.

Acknowledging that productivity is fundamentally not well
understood, DARPA has also funded a broad research
program on HPC productivity that engages universities,
research labs, the program vendors, and the HPCS
“Mission Partners,” including the Department of Defense,
Department of Energy and federally funded sites such as
Sandia National Laboratory and Los Alamos National
Laboratory.
Of the system properties that make up productivity,
programmability is the least well understood and perceived
to be the most problematic. It has been suggested that an
“expertise gap” is a significant barrier to increased software
productivity: “Programming today’s HEC1 systems
requires a high level of expertise, but the current trend of
available skills is increasingly one of few HEC expert
programmers …” [12].
A goal of the HPCS Program is to create a base of
empirical data describing all aspects of productivity.
Although the program is far from complete, preliminary
analysis of data concerning programmability confirms that
there is in fact an HPC “expertise gap” and that it is

1 High-End Computing, another term for High Performance

Computing (HPC)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Conference PPHEC’06, February 12, 2006, Austin, Texas, United
States.
Copyright 2006 ACM 1-58113-000-0/00/0004…$5.00.

fundamental to the ways software is developed in many
areas of the HPC domain.
This paper presents those preliminary analyses, beginning
in section 2 with a discussion of the environment in which
HPC software is developed, maintained, and evolves.
Many of these insights about the environment have
themselves been produced by HPCS program research.
Section 3 describes the interdisciplinary research
methodology used by the Sun productivity program,
drawing on a variety of social science and empirical
software engineering techniques. Selected preliminary
findings are presented in section 4, with primary emphasis
on suggestive case studies. Section 5 discusses some of the
implications of these findings for the HPCS program goals.

2. BACKGROUND AND RESEARCH GOALS

The HPC environment is characterized by very large
problems (measured by both data size and computation)
that require very large, sometimes exotic computing
systems and the exploitation of very high degrees of
parallelism. The focus of the HPCS program has been on
“Mission Partners” in the United States: the Department of
Defense, the Department of Energy, and the intelligence
community. HPC also takes place in commercial
environments and those have been the subject of some
studies as well.
Case studies published to date describe an environment that
has much in common with other kinds of software
development, but which differs markedly in a few respects
[4][5][9][10]. The following characteristics are important
for the purposes of this discussion:
1. HPC codes typically take years to develop.
2. Once developed, HPC codes have a maintenance and

evolution lifetime that can be counted in decades.
3. Because HPC codes have such a long use life, they

may be ported to new machines several times during
their lifetime, possibly every 3-4 years.

4. HPC codes embody very complex science and
numerical methods.

5. As a result of their age, legacy codes are typically
written in Fortran77 and MPI. This sets them apart
from other kinds of programming.

6. New code is often being written in C++.
7. HPC codes are often supported by tools that are

specifically written for them.
The goal of our research is to collect empirical data and
build understanding of HPC application development, with
a particular emphasis on characterizing the key
“bottlenecks” that appear to have negative impact on
application development effectiveness. From this data we
intend to develop a model for reasoning about
programmability and for predicting how bottlenecks might
be ameliorated.

3. METHODOLOGY

To gather more detailed information about HPC software
development, we adopted a case study approach; this
approach provides a data collection framework that is
flexible and allows deep exploration of one or more cases
[4][5][9][10]. We used multiple methods from case study
research [14] that would allow us to gather information
from professionals and teams of professionals who are
writing code for highly parallel machines. These methods
included qualitative data collection including:
• Semi-structured interviews with individual HPC

programmers.

• Structured group sessions (surveys and interviews)
with existing Mission Partner code teams.

We also used quantitative methods that allowed us to
validate case study findings across a larger sample,
including a survey of Mission Partner teams, using a
multiple choice and open-ended questions format.
The use of mixed methods, measuring, observing and
interviewing programmers, has a number of advantages
over reliance on one type of data collection alone. For
example, journal entries allowed us to collect “real-time”
accounts of code development from a programmer
perspective. Individual and group interviews help us
understand long-term team and context issues. Survey
results provide a structured overview and validated
observations.
Of course the raw data alone did not provide us with the
insights we seek. By weaving together the qualitative data,
we were able to compare journal entries, survey responses,
and interviews in order to fill out our understandings and
isolate inconsistencies. From the combined data we then
began to identify patterns across individuals and teams, plot
bottlenecks and create models of HPC programmers based
on empirical data.

4. FINDINGS

The data collected so far shed light on the suggested
“expertise gap” that is widely reported in anecdotal form,
for example as noted by Sarkar et. al. [12]. Analysis can be
carried out from more than one perspective. This paper
examines insights gained by identifying “bottlenecks:”
barriers to the accomplishment of development goals.
Analysis from a workflow perspective will be reported
separately.

4.1 “Hot Spot” interviews

The Sun Microsystems productivity team began to
investigate this evidence with a systematic analysis of data
collected from interviews with five Mission Partners,
conducted through DARPA’s productivity research effort.
There were three components to the data [3]:
1. A set of proposed workflow diagrams, describing

idealized work processes in different aspects of HPC

software development; respondents were invited to
review the diagrams and mark those workflow nodes
they perceived to be “hot spots” causing particular
difficulty or expense.

2. Free-form comments from interview respondents.
3. An oral debriefing of the interviewer, during which

additional respondents’ comments, not otherwise
recorded, were reported.

No clear consensus emerged from the respondents’ node
selections, but additional analysis that included both sets of
comments suggested that respondents had experienced
some difficulty mapping the proposed workflows into their
own work practices. A revised analysis at a coarser
granularity, taking full account of the comments, revealed a
clear consensus, as represented in the following chart.

Math
Libraries

Schedule/
Run Code

Optimize
Code

Debug, Test,
V&V

XDevelop
HPC Code

MP1 MP2 MP3 MP4 MP5

n/a

n/a

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

 Chart of Mission Partner Bottlenecks

The chart depicts the areas where data revealed each
Mission Partner to be experiencing difficulty, i.e. where
HPC code developers spend the greatest time and effort.
Five areas were reported by a majority of Mission Partners:

1) Developing HPC Code,

2) Debugging, Testing and Verification &
Validating,

3) Optimizing Code,

4) Scheduling Code Runs, and

5) Creating, Selecting, and Using Math Libraries

Areas identified by fewer Mission Partners do not appear in
the chart. Mission Partner 3 does not develop code.
Importantly, of the five areas that consume time and effort,
Mission Partners unanimously reported that optimizing,
debugging, testing, and Verification and Validation of code
were bottleneck areas.
We concluded that scaling code for HPC systems was the
most likely area to become a bottleneck, which supports
anecdotal reports that specialized "expertise" is crucial for
scaling code for High Performance Computing (HPC). A
lack or “gap” in the availability of that expertise might be
an important factor blocking increased HPC productivity.

4.2 Classroom “defect” studies

Recent quantitative research from a study conducted at the
University of Maryland has confirmed similar bottleneck
areas while studying novice developers [7]. In this study,
students were monitored while developing solutions to
small HPC programming problems; all of the students’
code runs were examined and the “defects” in faulty codes
categorized. Those findings match the first two bottleneck
areas identified in Sun’s analysis: Coding for HPC, and
Optimizing Code. The novices being studied do not engage
in validation, scheduling or significant library use.
We realized that we would need to conduct additional
research to explore and validate our initial findings as well
as expand our knowledge of the expertise gap.

4.3 Scale up with more education?

When people are working hard but do not seem to be
productive enough, it is tempting to think that more
education might address any “expertise gap.”
Will more or better education help solve the expertise gap?
In the case study research with professional HPC
developers, we included questions about education to help
us gain a better understanding of the context of the
developer’s work and associated education challenges. The
following example is representative of the information we
collected.
Don2 is typical of the HPC developers with whom we
talked. His work history provides an example of the
challenges associated with solving the expertise gap
through education.
Don has a Ph.D. in Geophysics with a special interest in
meteorite impact on planetary bodies. Because of his
background in impact studies, he was recruited onto the
Condor team at a Mission Partner Laboratory whose legacy
code modeled impact [5].
The code that Don began to learn has existed for 20 years,
is written in Fortran77 and contains well over 100,000
lines. Over the years this code has developed a large user
base: more than 300 licenses with about 1000 users. Its
users perceive this code as valuable, and Don was hired to
maintain the code: fixing bugs reported by users and
upgrading it when necessary.
Surprisingly, Don joined the code team with no knowledge
of Fortran or MPI. He reports that it took him eight years
to learn his job. Of course it did not take him eight years to
learn Fortran; that took about eight months, which he called
his “on-the-job training.” The reason for his long learning
curve is the complexity of the code itself. The code Don
works on has had many authors over the years. It has also
been ported to new machines several times during its
lifetime use. Not all authors documented their work, and

2 “Don” and other names that appear in case study descriptions are

pseudonyms, used for confidentiality and security.

many legacy features in the code were left intact each time
the code was ported.
Don eventually became the lead developer for this code.
Although Don now feels confident with the code, he
admitted that, after fifteen years working with the code, he
still does not understand what all the code does.
Don’s long learning period appears typical for HPC
development. For example, Sarkar et. al. also reported a
10+ year hands-on learning curve to develop such expertise
[12].
Formal education in languages such as Fortran or
parallelizing tools such as MPI or OpenMP would not have
helped in Don’s case. He quickly mastered the skills in
these areas. Instead the bulk of his learning was centered
on acquiring experience with the legacy code. It was the
complexity of this large code that demanded the extra time
to master.
The learning curve requirements of the HPC developer
working with complex code casts doubt on any long-term
strategy of relying on education to solve the problem. Even
if we could provide appropriate education, the timeframe
for such a solution is unrealistic. The hope that the
expertise bottleneck might be solved through education is
not a long-term answer.

4.4 Scale up with more people?

If more education alone will not solve the expertise gap
perhaps building teams of skilled people can cut down on
the time to solution. In another example from our case
studies we learned that the answer is “maybe.”
The Hawk team filled out surveys and participated in a
group interview as part of our case study research [4].
Asok was a founding member of the team, having been
recruited as a graduate student. His expertise in fluid
dynamics was important to a new project challenged to
model a hi-tech plastic to be used in airplanes and armored
vehicles, whose parts would be fabricated using large
molds. However, it is difficult to fill the molds correctly,
without air pockets. Asok was asked to model the mold
filling as an alternative to expensive experimentation.
Although Asok was knowledgeable about the science, he
was not an HPC programmer, so he was teamed with a
Fortran expert.
Asok understood the fluid dynamics, the programmer
understood Fortran, but they did not understand each other.
Four years later the Fortran code was unsuccessful, and the
programmer quit.
A new programmer was assigned to work with Asok.
Mitch was more fluent in C++ and suggested abandoning
the existing code. It was a bold move, but the two decided
to begin all over again with C++. They worked together to
find a working solution to the modeling, this time creating
a successful serial code. Unfortunately neither was expert
in scaling. Their manager, Jean, was an expert in

optimizing code; she stepped in to scale the code, working
closely with Mitch.
Meanwhile the project sponsor started to become impatient,
and a manager was still needed to handle expectations. So
the project management was taken on by another person.
His main role was to run interference for the team, keeping
the sponsor happy. He also negotiated time to run the code
on the large machine.
It took an additional three years to develop a successful
parallel code in C++ but the team effort paid off. The new
C++ code was delivered to the sponsor.
Asok attributed the success to two factors: his new
programming partner and the coding knowledge he gained
during the four years he spent attempting to write the code
in Fortran. The C++ programmer, Mitch, attributed success
to Asok’s expertise in fluid dynamics and Asok’s
willingness to teach Mitch about it. Both agree that the
project would not have succeeded if their manager had not
stepped in to scale the code for a highly parallel machine.
This case study illustrates the potential for overcoming the
expertise gap with appropriately configured teams. In less
than seven years the Hawk team demonstrated that they
could develop a working code in less time than a lone
developer. But it is a cautionary tale. The team was
successful only when they had the appropriate mix of
knowledge represented in four areas:

• Science

• Programming

• Scaling / Optimizing

• Management

The success of a team strategy for overcoming the expertise
gap relies on a conscious division of labor with a specific
mix of domain knowledge. In the Hawk case, the first
effort at assembling a team did not work. Throwing more
people at the problem without consideration for the team
skill mix led to four years of frustration. It was only when
the mix of skills was balanced between science,
programming, scaling, and management did the effort
move forward.
It is also clear that Asok still had to acquire a working
knowledge of programming in order to find a solution. He
admits that the four years working with the Fortran
programmer enabled him to work successfully with the
C++ programmer with whom he was subsequently
partnered. The programmer needed to gain a working
knowledge in Asok’s area of expertise as well.
This example suggests two “best practices” that can help a
team to succeed.
1. The team needs the right mix of skills: science,

programming, scaling/optimizing and management.
2. It is also important that each team member has a basic

working knowledge of the other skill sets on the team
so that they can communicate effectively.

But assembling a team of appropriate experts is not a
complete solution. Of the four skill sets, scaling/optimizing
remains a scarce resource, and if Jean had not possessed
those skills the project might have stalled. By putting a
team together that addresses the various expertise needs,
the team approach can bridged the expertise gap. However
this is temporary. As systems get even larger and more
complex, this key expertise will become relatively more
scarce, and teams will be unable to scale. For example
adding more programmers to Asok’s team would not have
helped solve the problem any faster. In fact, more team
members would have added a team / human complexity,
without fundamentally addressing the “expertise gap.”

5. DISCUSSION

A combination of qualitative and quantitative research
methods allowed us to develop a more complete
understanding of the issues faced in the HPC community
than might have been possible with any single method.
Using a case study approach allowed us to deeply explore
the work of individuals and teams of HPC code developers.
Quantitative method provided the breadth of data to
validate our findings on a larger scale.
From our research we conclude that complexity is at the
core of HPC bottlenecks, and it is a system level problem.
Previously proposed solutions such as “more education” or
large team approaches are short-term interventions that will
not be viable unless we address the root cause of the
“expertise gap” – increasing complexity [6]. Very few
individuals have the complete set of skills (science,
programming, scaling and management) necessary to
exploit fully these complex machines. Educating individual
developers in all four skills requires both a gifted individual
and many, many years.
Assembling a team of experts is an alternative that has
short-term potential. However, these teams have a limited
ability to scale. Doubling the number of scientists or
programmers adds another layer of complexity to the team.
As machines get bigger and more complex the pool of
experts who have the ability to deal with the increasing
level of complexity will continue to narrow. Unless we
address the system level cause of the expertise gap,
increasing complexity, we will not solve the problem.

6. CONCLUSIONS

Productivity improvement on the scale sought by the HPCS
program must address scale and complexity by requiring
fundamental transformations in the way HPC applications
are developed and maintained [1][7][11][13]. In the end we
believe that bottlenecks will be resolved with appropriate
application of automation, abstraction and associated tools.
Abstraction, including languages may solve the science
domain expertise gap by reducing the programming
complexity and allowing scientists to reason in the problem

domain. Opportunity here now revolves around grounding
practices in specific problem domains, automating that
which can be automated, and abstracting away the most
challenging aspects of the machine (parallelization).

7. ACKNOWLEDGMENTS

We are grateful to all of our HPCS program colleagues at
Sun Microsystems, especially Eugene Loh, Michael Ball,
and Victoria Livschitz. We also thank Doug Post, Richard
Kendall, Jeremy Kepner, and many others in the HPCS
community for their helpful discussions and comments.
This material is based upon work supported by DARPA
under Contract No.NBCH3039002.

8. REFERENCES

[1] Ahalt, S. C, and Kelley, K. L., Blue-Collar Computing:
HPC for the Rest of Us. ClusterWorld, 2, 11(Nov.
2004).

[2] Defense Advanced Research Project Agency
(DARPA) Information Processing Technology Office,
High Productivity Computing Systems (HPCS)
Program. <http://www.darpa.mil/ipto/programs/hpcs/

[3] Kepner, J, Personal Communication, 2005.
[4] Kendall, R. P., Carver, J., Mark, A., Post, D., Squires,

S., and Shaffer, D., Case Study of the Hawk Code
Project, Los Alamos National Laboratory Report LA-
UR-05-9011, 2005.

[5] Kendall, R. P., Mark, A., Post, D. E., Squires, S.,
Halverson, C., Case Study of the Condor Code Project,
Los Alamos National Laboratory Report LA-UR-05-
9291, 2005.

[6] Levesque, J., Have We Succeeded Because of
Complex HPC Software or In Spite of It? Times N
Systems, Inc., (August 17, 2001).
<http://www.etnus.com/Company/press/press_release.
php?file=hpc>.

[7] Loh, E., Van De Vanter, M. L., and Votta, L. G., Can
Software Engineering Solve the HPC Problem?,
Proceedings Second International Workshop on
Software Engineering for High Performance
Computing System Applications, St. Louis, 15 May
2005.

[8] Nakamura, T., University of Maryland, Personal
Communication, 2005.

[9] Post, D. E. and Kendall, R. P., Software Project
Management and Quality Engineering Practices for
Complex, Coupled Multi-Physics, Massively Parallel
Computational Simulations: Lessons Learned from
ASCI, International Journal of High Performance
Computing Applications: Special Issue on HPC
Productivity, J. Kepner (ed.), 18(4), Winter 2004.

[10] Post, D. E. Kendall, R. P., and Whitney, E. M., Case
Study of the Falcon Code Project, Proceedings Second

International Workshop on Software Engineering for
High Performance Computing System Applications, St.
Louis, 15 May 2005.

[11] Post. D. E., and Votta, L. G. Computational Science
Requires a New Paradigm. Physics Today, 58(1): p.
35-41.

[12] Sarkar, F., Williams, C, and Ebcioglu, K, Application
Development Productivity Challenges for High-End
Computing, First Workshop on Productivity and

Performance in High-End Computing (P-PHEC),
Madrid Spain. February 14, 2004.

[13] Squires, S, Tichy, W. G., and Votta, L.G. What Do
Programmers of Parallel Machines Need? A Survey.
Second Workshop on Productivity and Performance in
High-End Computing (P-PHEC), San Francisco, Feb.
13, 2005.

[14] Yu, R. K., Case Study Research: Design and Methods
SAGE Publications, 2002.

