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A highly productive platform accelerates the production of research results. The design of a Virtual Machine
(VM) written in the JavaTM programming language can be simplified through exploitation of interfaces, type
and memory safety, automated memory management (garbage collection), exception handling, and reflec-
tion. Moreover, modern Java IDEs offer time-saving features such as refactoring, auto-completion, and code
navigation. Finally, Java annotations enable compiler extensions for low-level “systems programming” while
retaining IDE compatibility. These techniques collectively make complex system software more “approach-
able” than has been typical in the past.

The Maxine VM, a metacircular Java VM implementation, has aggressively used these features since its
inception. A co-designed companion tool, the Maxine Inspector, offers integrated debugging and visualization
of all aspects of the VM’s runtime state. The Inspector’s implementation exploits advanced Java language
features, embodies intimate knowledge of the VM’s design, and even reuses a significant amount of VM code
directly. These characteristics make Maxine a highly approachable VM research platform and a productive
basis for research and teaching.
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1. INTRODUCTION

Research in a high-level language Virtual Machine (VM) inevitably involves dealing
with complex system software. Adding a feature often requires modifying and extending
code in numerous locations, unveiling intricate dependencies among parts of the sys-
tem that surface only through crashes with hard-to-identify causes. VM and compiler
research typically addresses performance and neglects the productivity aspect. The
goal of the Maxine project [Oracle 2012d] is to create a platform that supports effective
and highly efficient research in VM technology with as few distractions as possible.

We believe that the Maxine VM is highly approachable in many senses: barriers
to entry are reduced, it is coded entirely at a high level of abstraction in JavaTM, al-
ternate implementations of significant subsystems can be “plugged in”, and extensive
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tool support is provided. The code base, including tools, is freely available as open
source from Oracle [2012c], has a simple build process, and is supported on multiple
platforms. Maxine’s architecture is modular, in particular with respect to heap man-
agement, object layout, synchronization, and compilers, and it demonstrates “systems
programming in Java”.

Several strategies guide Maxine’s design and implementation. The VM is written
almost entirely in a single high-level language and aggressively leverages modern ab-
straction mechanisms. The VM’s architecture is modular, with decoupled components
(known as schemes) used both to implement significant subsystems and to specify target
platform characteristics. The design is metacircular: runtime state is represented uni-
formly as objects, and certain code generation specifications are described using Java.

Compiler extensions enable low-level programming that is otherwise unsupported
in Java. The VM is compatible with an otherwise unmodified JDK, with nearly com-
plete coverage of the Java language and VM specification; support for the new Java 7
bytecodes is underway. The entire code base is compatible with standard Java IDEs
for editing, building, and advanced services such as refactoring. Extensive, specialized
tools (co-developed with the VM) leverage advanced features of Java and share code
with the VM. A specialized visualizer/debugger, the Maxine Inspector, displays the
entire runtime state of the VM at multiple levels of abstraction.

The Maxine VM shares many ideas with other metacircular Java VMs, such as
the Jikes Research VM [Rogers and Grove 2009], OVM [Palacz et al. 2005], or the
Moxie VM [Blackburn et al. 2008]. Jikes is probably the best-known of these in the
research community, with several hundred research papers based on it. The general
structure of the Maxine VM and the Jikes RVM are comparable; both have major
components such as the just-in-time compiler and garbage collector written in Java,
use their own compiler to create a boot image, and provide a framework for low-level
programming in a high-level language [Frampton et al. 2009]. We believe that Maxine
improves on Jikes in terms of approachability and developer efficiency. The idea
of metacircularity is not restricted to Java; examples for other languages are the
Smalltalk VM Squeak [Ingalls et al. 1997], the Klein VM for Self [Ungar et al. 2005],
and the Python VM PyPy [Rigo and Pedroni 2006].

In summary, this article contributes the following.

—This is the first comprehensive description of the architecture of the Maxine VM, a
VM for Java written in Java.

—We present the design of a tightly integrated VM visualization/debugging tool, useful
for both beginners and experts.

—We describe the annotations, interfaces, and other source-code techniques that make
the Maxine VM approachable.

—We provide a performance evaluation showing that the Maxine VM is robust and
fast enough to serve as a base for research projects.

2. SYSTEM STRUCTURE

The Maxine VM is a full-fledged Java VM [Lindholm et al. 2012] that is compatible
with the JDK from Oracle and the OpenJDK [Oracle 2012e]. It acts as a replacement
of the Java HotSpot VM [Oracle 2012a] shipped with these JDKs. Figure 1 presents
an overview of the Maxine VM and the interactions among its main components. The
Maxine VM is written almost entirely in Java, with a small part, called the substrate,
written in C. The substrate implements the native launcher for the Maxine VM. It en-
capsulates in a platform-independent API the native services from the Operating Sys-
tem (OS), e.g., virtual memory operation, native thread support, and signal handling.
The substrate also includes native services to support JNI and JVMTI (see Section 3.7).
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Fig. 1. Structure of the Maxine VM.

The Java part of the Maxine VM is structured around a set of components that col-
laborate via public interfaces. Each of these interfaces correspond to a scheme. Schemes
formalize the functional interface between high-level abstractions of a VM implemen-
tation. The intent is to limit exposure of many low-level implementation-dependent
details across these abstractions to ease the replacement of one implementation with
another. The systematic use of interfaces shields schemes from their implementation
details and provides this simple interface between different implementations. A VM
binary contains a single concrete implementation of each scheme; this rule, enforced
at VM construction, allows the optimizing compiler to completely erase otherwise
expensive interface dispatch. The number of schemes in Maxine is not meant to be
fixed, but rather reflects those aspects of VM design for which Maxine encourages
experimentation.

—Object layout (LayoutScheme). This configures how objects are represented in memory,
including header and fields. By default, an object is represented as a contiguous block
of memory with a header stored in the first words of the block. The first header word
holds a pointer to a hub; a second header word stores locking and Garbage Collection
(GC) information. The hub carries the most frequently used metadata associated
with a class, such as object size, virtual method tables, and reference maps.

—Object references (ReferenceScheme). This configures how objects are accessed for
mutator use and how references are encoded, e.g., as direct pointers or handles. The
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default is a direct reference scheme, i.e., a pointer points directly to the first word
of the header of an object. By introducing a dedicated Reference type, this scheme
relieves developers from using explicit handles in VM code.

—Heap allocation and GC (HeapScheme). This defines how automated memory manage-
ment is implemented for objects and for dynamically compiled native code. Objects
are allocated in a heap with its own GC methods, while code is allocated in a code
cache whose implementation may support code eviction. The default heap scheme
implements a straightforward stop-the-world flat semi-space collector for objects,
and a form of semi-space collector for the code cache. Both application objects and
internal VM objects (including class metadata objects) are allocated in the same heap
and are processed by the same collector. More advanced GC algorithms and support
for multiple generations are under development; this source code is available for
exploration. For testing, implementations with limited or specialized functionality
are helpful, e.g., an implementation that allocates but never collects, or one with
extensive heap sanity checking.

—Thread synchronization (MonitorScheme). This represents an abstraction of monitors,
including translation of synchronization bytecodes, as well as implementations of the
wait and notify methods. The default monitor scheme implements a form of thin
locking [Bacon et al. 1998]. It stores lock ownership information in the object header
using nonblocking atomic instructions when satisfying uncontended lock request. On
contention, the locking information embedded in the object header is converted into
a pointer to an external heavyweight locking data structure that relies on OS mutex
functions to handle contention. The lock is inflated as well when the heavyweight
wait and notify object synchronization operations are used. Maxine also has an
implementation of biased locking [Russell and Detlefs 2006], but it is not enabled by
default. For testing, monitors can be disabled completely using the “ignore” monitor
scheme.

—VM startup sequence (RunScheme). This is invoked by the VM after it has started basic
services and is ready to set up and run a language environment. The default “Java"
run scheme starts up normal JDK services and then loads and runs a user-specified
Java class.

—Optimized compilation (CompilationBroker). This handles requests for compila-
tion and adaptive re-compilation of methods. The Maxine VM follows a dynamic-
compilation-only strategy: method bytecodes are always compiled to machine code
on the first method invocation. These initial compilations are performed by T1X,
a template-based baseline compiler that favors fast compilation over code quality
(see Section 3.9). Frequently executed methods are then scheduled for recompilation
using the optimizing compiler C1X (see Section 3.10).

The optimizing compiler is central to the Maxine VM. In addition to dynamic compi-
lation, it compiles (ahead of time) the optimizing compiler itself, the templates used
by T1X, and the methods needed to start up the VM. This centralizes in one place
the mechanisms necessary for generating safepoints, reference maps, and debugging
information, as well as other compiler-generated runtime support such as read and
write barriers.

Safepoints and reference maps support exact GC, which enables the use of GC
algorithms that relocate objects. Safepoints and debugging information support
deoptimization [Hölzle et al. 1992], which is key for recovering from invalidated
assumptions made for speculative optimizations and to support debugging while
running with optimized code. Both exact GC and deoptimization require the thread
stacks to be in a known state. Exact GC requires knowing the location of all references
on the stack. These are recorded in reference maps by the optimizing compiler.
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Fig. 2. Commands to get, build, and execute the Maxine VM.

Deoptimization requires information for mapping an optimized method stack frame
state back to an equivalent baseline method stack frame state. This information is
recorded in the debugging information by the optimizing compiler.

Similarly to objects, dynamically compiled code may be relocated by the code cache’s
implementation of code eviction. Code pointers are distinguished from object references
and known to the optimizing compiler, which produces separate reference maps for
pointers to compiled code on the stack.

Class file parsing, verification, class loading, and linking are not implemented as
schemes at the moment. All variants of the Maxine VM use the same code for these.
Each class loader is associated with a class registry that keeps track of the classes it
has defined. Class metadata is represented as Java objects that are currently allocated
in the application heap, not segregated from other standard objects.

The Maxine VM is designed to support multiple architectures and operating systems.
Currently, we support Linux, Solaris, MacOS, and a Virtual Edition [Oracle 2012b] on
the Xen hypervisor [Barham et al. 2003], all on the Intel x86 64-bit architecture.
The source code is available as open source under the same license as the OpenJDK
project [Oracle 2012c]. Documentation and support are available from a wiki [Oracle
2012d] and a public mailing list. Getting started requires only few steps (see Figure 2)
with the mx command line tool for building and running the VM. Automatically gen-
erated project files for Eclipse and NetBeans allow developers to leverage features
of modern IDEs, e.g., incremental compilation of modified source files. Building the
boot image takes less than one minute on a modern laptop, allowing fast testing and
debugging cycles.

3. INGREDIENTS FOR APPROACHABILITY

This section presents selected subsystems and interfaces of the Maxine VM. We focus
on parts that differ from traditional VMs and, as we argue, make the Maxine VM more
approachable.

3.1. Inspector

The Maxine Inspector is a specialized visualizer/debugger that promotes a rapid, highly
productive edit-debug cycle for the Maxine VM implementation. It is closely coupled to
the VM and co-evolves with it. The Inspector’s multiview display (see Figure 3) reveals
important aspects of the VM’s runtime state at many levels of abstraction, layered upon
low-level memory and register contents. Identifying problems in one of the Inspector
views, correcting the VM sources (using a Java IDE), building a new boot image, and
starting a new inspection session often takes just a few minutes. Browsing the VM’s
runtime state is also an effective way for newcomers to become familiar with the design
of the Maxine VM, for example via details presented in popup “tooltips” that appear
when the mouse rolls over a word of memory.

Most views shown in Figure 3 display some specialized regions of VM memory, inter-
preted using intimate knowledge of the VM and displayed in terms of design abstrac-
tions such as objects, references, threads, stacks, stack frames, machine code, bytecode,
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Fig. 3. Screenshot of the Maxine VM Inspector.

and thread-local state. Development bugs can disrupt these high-level interpretations,
in which case low-level memory views support diagnosis. The Inspector can visualize
either the state of a static boot image, a halted process during a debugging session, or
a core dump.

The Inspector operates out-of-process, requires no active support from the VM, and
incurs very little runtime overhead. Using the OS debugging interface, the Inspector
reads memory (from which it “disassembles” runtime state), sets breakpoints (either
concretely at machine code locations or abstractly on bytecodes, possibly on methods
not yet loaded), and sets watchpoints (either concretely at specific memory locations
or abstractly on specific object fields, tracking those fields across object relocations).
Predefined breakpoints are available for interesting VM events, such as the beginning
of a method compilation or the end of a GC.

The Inspector’s architecture broadly comprises two parts: one supporting visual pre-
sentation and user interaction, and another (informally called tele) that mediates all
interaction with VM state, including process management. The central function of tele
is to read VM memory using low-level data access and to build the best possible model
of Maxine’s runtime state, expressed in terms of intelligible (to humans) design ab-
stractions. For performance reasons, this model is incomplete (confined to those objects
and other state that matter in the current session) and must be updated incrementally.
Significant complexity in this effort derives from the circularity of Maxine’s design.
For example, the Inspector provides access to objects in terms of their types, which
requires access to the VM’s metadata, which is also represented in the VM as objects.
Such circularities require a phased approach to construct and maintain tele’s model
of runtime state, mirroring in some respects the phased construction needed for the
Maxine boot image generation. In fact, the Inspector uses some of the same techniques
as the boot image generator (see Section 3.2).

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 30, Publication date: January 2013.



Maxine: An Approachable Virtual Machine For, and In, Java 30:7

The Inspector’s implementation, especially tele, is closely coupled to the VM, using
many of the same language features, design techniques, and even VM code itself. This
is inspired by the reflective debugging approach of the Klein VM [Ungar et al. 2005], a
metacircular Self VM. For example:

—The Inspector loads every class loaded by the VM and uses Java reflection to extract
static properties. Classes are loaded from the shared class path if possible, but the
Inspector can also load directly from class information copied out of VM memory.

—At startup, the Inspector examines the configuration of the build. It then loads and
sometimes reuses the specific implementation included for each VM scheme (see
Section 3.3), for example simplifying the reading of object data from memory by
reusing methods defined in the VM’s LayoutScheme.

—The Inspector implements a subtype (RemoteReference) of the VM’s Reference type,
allowing reuse of VM code for data layout and access. It also implements its stack
walker by subclassing the one used in the VM.

—The Inspector can access any remote class member (both fields and methods) using
a combination of Java reflection, local class loading, reuse of the VM’s object layout
scheme, and reuse of platform-specific data i/o. More convenient access to members
of significance (especially critical metadata and other runtime state) is supported by
automatic code generation. An offline tool searches the VM code for the @INSPECTED
annotation and generates specialized Inspector code for direct, named access to those
members in VM memory.

—The Inspector uses a disassembler to display machine code encountered in VM mem-
ory. The results of code disassembly are usefully combined with the analysis of heap
objects, e.g., identifying instruction arguments that point to objects.

—When the Inspector must traverse a particularly complex data structure in VM
memory, for example the map from addresses to method compilations, it can use a
special remote interpreter to execute the VM’s lookup method. The code runs in the
Inspector, but with data access redirected to VM memory.

To aid the understanding of VM behavior, Maxine maintains a circular buffer of
events that are optionally logged by VM components. The log buffer has several im-
plementations, chosen during boot image generation. The default is a tightly encoded,
thread-local buffer. The events can be viewed in the Inspector, which recreates a
single time-ordered view of the log history. The Inspector accesses the log using the
@INSPECTED annotation and preserves events that have been overwritten in the VM
circular buffer. By accessing the metadata associated with a logger class, the Inspector
is able to deduce the types of the event values and display them appropriately, with
all the standard mechanisms for navigating to access further information.

3.2. Boot Image Generation

The vast majority of the Maxine source code is written in Java and translated to Java
bytecodes by the standard javac compiler. Before it can be executed by a specific proces-
sor, the bytecodes must be translated to machine code. This requires similar concepts
to what Maxine needs to execute a Java application at runtime. However, compilation
needs to be done ahead of time. This process is called boot image generation. It produces
a boot image comprising two contiguous regions: a heap populated with class metadata
and objects implementing the VM itself, as well as a code cache populated with code
produced by the optimizing compiler. A small C program from the substrate maps the
boot image into memory before calling the VM entry point via an indirect call. This
effectively hands control over to Java code that implements the Maxine VM.

The boot image generator is a Java application that runs on a preexisting “host” VM,
for which we use the Java HotSpot VM. There is no conceptional problem of using the
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Fig. 4. Maxine VM boot image generation process.

Maxine VM itself as the host VM; however, this is currently not supported because the
boot image generator includes some HotSpot-specific code. Figure 4 illustrates the boot
image generation process. The boot image generator reuses large parts of the Maxine
code: The Maxine class loader loads the bytecodes and generates the same internal
class representation that is later also used for application classes. The C1X optimizing
compiler translates bytecodes to machine code. Since these subsystems run on the host
VM, they produce objects on the heap of the host VM. Using reflection, we collect these
objects and write them into the boot image file.

A small part of the code needs to distinguish between boot image generation and
normal VM execution mode. This can be done by calling MaxineVM.isHosted(), as well
as by annotating a method or field with @HOSTED ONLY. Hosted-only code is not part of
the generated boot image, and therefore imposes no overhead when the Maxine VM is
running.

The boot image generator follows a specification that identifies which implementation
of each particular scheme should be included and on which platform the image is
intended to run. Any class that might be written into the boot image must first be
loaded by the boot image generator, including the JDK classes needed during VM
startup. In the following, the term Maxine Classes describes the bootstrap JDK classes
and the VM classes. At runtime, the VM classes are isolated in their own class loader
VMClassLoader, the parent of which is the standard boot class loader. This makes VM
classes inaccessible to application classes. The structure is mirrored at boot image
generation by HostedBootClassLoader and HostedVMClassLoader.

In Figure 4, two arrows leave the box Maxine Classes. This illustrates that the Maxine
classes are processed twice, at different levels, during boot image generation: First, the
boot image generator loads the Maxine classes using the HostedVMClassLoader. This
initializes the classes in the host VM, i.e., it runs the static initializers. Static fields
can point to larger object graphs. These host VM objects are accessed using reflection,
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converted to the Maxine object layout, and written into the boot image heap. The loaded
classes include the Maxine class loading code and the optimizing compiler.

Second, the HostedVMClassLoader invokes the Maxine class loading code to build
class metadata (called actors) as well as bytecodes (as a byte[] array). These objects
are the input for the optimizing compiler to generate the boot image code. Additionally,
the actors are written into the boot image heap. The boot image generator constructs
a series of four prototypes that gradually define the boot image.

(1) Java prototype. Load all the packages that participate in the selected VM config-
uration. This loads and initializes classes, creates certain objects, and arranges
certain settings, resulting in Java objects on the host VM heap.

(2) Compiled prototype. Compile to machine code all methods that are reachable from
VM entry points using C1X.

(3) Graph prototype. Starting from the class registry, gather all transitively reachable
objects.

(4) Data prototype. Iterate over all objects in the Graph Prototype, determine their size,
and assign them to compactly packed positions in a linear address space. Create a
big byte array that can hold all the objects packed together, and then transcode the
objects into the byte array, translating them from host VM format to the Maxine
format for the target platform. Finally, write the byte array to the boot image file.

The smallest boot image would in theory contain the minimal collection of classes
and methods needed to bootstrap the VM to the point where it can dynamically load
further classes from the file system and compile methods for execution. In practice
this set is not easy to define precisely and depends, amongst other things, on details of
the JDK implementation. In particular, it can vary from one JDK release to another.
The boot image generator determines the image content by starting from so-called
entry points plus a subset of the standard platform classes that are known to be
necessary for the bootstrap. Entry points are methods that can be called from the
external environment, e.g., are annotated with @VM ENTRY POINT; methods that are
called by generated code such as stubs; or methods that are manually selected, either to
satisfy bootstrap requirements (and avoid infinite recursion at runtime), or to improve
startup time.

These entry points form the basis of the analysis used to select methods for the boot
image. An example is the run method in the class MaxineVM, which is the entry point
from the native C code. Methods (and the classes that defined them) that are transi-
tively called from this entry point are included in the boot image. This also includes
JDK classes, e.g., many of the standard collection classes. Unfortunately, the amount
of JDK code pulled into the boot image using just this algorithm is too large. Therefore,
certain packages are manually black-listed and excluded. For example, security and
logging packages are excluded since they are not needed for bootstrapping the VM.

3.3. Scheme Abstractions

The Maxine VM is structured as major components that interact with other compo-
nents via standard published interfaces called schemes. This facilitates composition
and replacement of scheme implementations. Many performance-critical implementa-
tion aspects, such as object layout, object references, and monitors are implemented
as schemes. As described earlier, a Maxine VM image only accepts one concrete imple-
mentation per scheme, a rule enforced at boot image generation.

Using class hierarchy analysis [Dean et al. 1995] and constant folding of final fields,
the optimizing compiler can eliminate some of the interface overhead. Still, a couple
of additional annotations are needed in order to eliminate the overhead completely.
A method annotated with @INLINE is unconditionally inlined by the compiler. As the
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compiler must still be able to statically bind the method invocation, the method should
be declared private or final. A method carrying the @FOLD annotation is executed at
compile time. The compiler replaces the invocation with the result, treating it as a
constant. The method can have parameters that must be compile-time constants as
well. This annotation is useful to define abstractions that need more flexibility than
a final field, but where constant folding is still essential for performance. A field
annotated with @CONSTANT is treated as a constant by the compiler. This is similar to a
final field, but without the assignment having to happen in the initializer.

3.4. Substitution of JDK Methods

The power of Java depends also on libraries, and an approachable development and
build process requires that the Maxine VM works with an unmodified standard class
library. The interaction points of VM and class library are small, but crucial. Class
loading, thread synchronization, reflection, and thread introspection are important
areas where the class library needs support from the VM.

Currently, the JDK does not have a standardized and well-specified VM interface
[Oracle 2012f]. Instead, it uses native functions that are linked to entry points specific
to the Java HotSpot VM. When the VM entry points are Java methods, this design
forces two unnecessary transitions across the Java/native code boundary. The Maxine
VM eliminates these transitions using a mechanism for substituting methods of JDK
classes at boot image generation. This is achieved using the following annotations.

—@METHOD SUBSTITUTIONS. This marks a class holding substitution methods for a JDK
class specified by an annotation parameter.

—@SUBSTITUTE. This marks a method that replaces a JDK method, usually with the
same name and signature. During class loading, this method is registered in the
method table of the JDK class, overwriting the original entry. For nonstatic methods,
this leads to a mismatch of the declared and actual types of the this-pointer of the
substituted method: The declared type is the substitution class, while the actual type
is the JDK class. Since they are not in a subclass relationship, the Java compiler will
only convert between these classes using a special @UNSAFE CAST. Additionally, virtual
method calls on substitution classes are not possible, since the virtual method table
of the JDK class would be used. We guarantee that all method calls of substitution
classes can be bound statically by enforcing substitution classes to be final.

—@ALIAS. JDK classes use private fields to maintain their internal state. Substitution
methods need to access and modify this state. A field with this annotation refers
to the field in the JDK class, making the field accessible from within substitution
methods. The annotation can also be used to make private methods of a JDK class
accessible, although this is a less common use case.

Figure 5 shows an example of how these annotations work together. When an exception
is thrown at runtime, the exception object stores the stack trace, i.e., the names and
bytecode positions of all Java methods on the stack. This requires walking the stack,
which the VM must do as the stack frame layout is VM specific. Therefore, the method
Throwable.fillInStackTrace() is declared native in the JDK. The native method
stores the collected stack frames in the private field backtrace. The stack walking code
of the Maxine VM is written in Java. We substitute the method fillInStackTrace()
in the class JDK java lang Throwable (the actual name of this class does not matter,
but we adapted this intuitive naming convention).

The declared type of the this-pointer in this substitution method is
JDK java lang Throwable, but the actual type is always Throwable. The method
thisThrowable() resolves this static typing issue: The @UNSAFE CAST annotation speci-
fies that it just returns the unmodified this-pointer, but with a different static type. It
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Fig. 5. Example showing the substitution of a JDK method.

is a no-op at runtime, i.e., no dynamic type checks are performed. With the help of this
method, we can access and return the original Throwable object.

The field backtrace is private in the class Throwable. Using the @ALIAS annotation,
we declare another name that refers to this field. The substitution method can now
access the field using normal-looking Java code. Note that a nonaliased nonstatic field
in a substitution class does not make sense because the substitution class is never
instantiated. The @ALIAS annotation is also useful outside of substitution classes to
access private fields, therefore the class that holds the aliased fields must be specified
as a parameter all the time, even though it is redundant here.

All substitutions are performed during boot image generation. It is neither desir-
able nor possible to perform additional substitutions at runtime; code that processes
substitutions and aliases is therefore hosted only. Substitution affects class metadata
and machine code generated during boot image generation, but not the code executed
during boot image generation. The boot image generator runs on the host VM, which
does not need the substitutions.

3.5. Field Rewriting During Boot Image Generation

The boot image generator (see Section 3.2) traverses objects on the heap of the host
VM to form the initial heap of the boot image. This means that fields of JDK classes
are computed and written by the host VM, and then later read by the Maxine VM.
Some fields of JDK classes are VM dependent. For example, classes of the package
java.util.concurrent use unsafe but efficient atomic field accesses using the class
sun.misc.Unsafe. In the Maxine VM, the methods of this class are substituted using
the techniques described in Section 3.4, which computes the field offsets according to
the data layout of the Maxine VM. Therefore, the unsafe methods work as expected on
the Maxine VM.

However, the java.util.concurrent classes compute the field offsets only once and
then cache them. When such a class is part of the boot image, initialization was per-
formed by the host VM and not the Maxine VM. We need to rewrite such fields when
the boot image is created using the field offsets of Maxine. Additionally, several caches
need to be reset, i.e., fields need to be set back to their initial value and lists need to be
emptied. This is performed by customizable rewriting rules that can be registered for
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fields. There is no automatic way to detect such fields, so we identified them manually
by using intuition and by debugging crashes of the Maxine VM. Currently, the list
in the class JDKInterceptor contains 160 intercepted fields. Half of them are cached
Unsafe offsets that are recomputed, the other half are caches that are reset.

3.6. Low-Level Memory Access

Memory access in Java is limited to named static or instance fields and elements of
arrays. Further, the safety features of Java require a number of checks to be automat-
ically enforced on access (e.g., null pointer checks, type checks, array bounds checks).
Writing a VM requires some amount of system programming, e.g., to implement a GC
or stack walking, for which raw memory access is essential. Therefore, the Maxine VM
includes a raw pointer type. Frampton et al. describe a similar approach [Frampton
et al. 2009], which was developed concurrently with the Maxine VM. We identified the
following requirements for raw pointers.

—Raw memory access and pointer arithmetic must be possible.
—We must not extend the Java programming language, since that disturbs tool support.
—The pointer type is modeled as a class, and not as a primitive type such as long. This

avoids accidental conversions of numbers to pointers.
—The bit-width of the architecture is transparent, i.e., code using the pointer type can

work unchanged with any architecture.

The Maxine VM uses a base class Word to represent raw machine words. Its sub-
classes represent signed and unsigned numerical values (Offset, Size), and pointers
(Pointer). Although all such values are internally represented identically and can be
converted into each other, the different classes are helpful to express the content of a
variable. Additional subclasses of Word are used, e.g., for the Java Native Interface (see
Section 3.7).
Word extends Object as any other class. However, it does not make sense to call

Object methods on it or to cast it to an Object. It would lead to a hard-to-debug crash
at runtime, therefore we check during bytecode verification that such conversions do
not occur (see Section 3.8).

The optimizing compiler has built-in knowledge about the Word type and handles
it in special ways. For example, in the front-end of the compiler, a Word is treated
as an Object, while in the back-end it is treated as a primitive value (long on 64-bit
architectures, int on 32-bit architectures). An explicit compiler phase is responsible for
the conversion. Methods of the class Pointer that perform raw memory access cannot
be implemented using Java code. We use compiler intrinsics to support this.

Intrinsics represent operations that cannot be expressed at all in Java code, as well
as operations that cannot be expressed efficiently in Java code. The optimizing compiler
replaces calls to methods annotated using @INTRINSIC with IR nodes that perform the
low-level operations. Currently, our list of intrinsics includes raw reads and writes of
memory and specific processor registers (e.g., the stack pointer or instruction pointer);
low-level access to the atomic compare-and-swap operations of the architecture; and
unsigned comparison and division operations. Java does not support unsigned numeric
values, so the efficient machine code instructions are not accessible otherwise.

During boot image generation (see Section 3.2), special compiler support for Word
values is not yet available. Since high performance is not necessary at this point, we
use boxing to represent such values. In hosted mode, a machine word is represented
as an object that contains a single long field holding the actual value. The Word class
hierarchy contains the necessary logic. This is an elegant way to reuse code, since clients
of the Word classes do not need to distinguish between normal and hosted execution
mode.
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3.7. Native Interface Support

The specification of Java includes several VM interfaces that are defined as C/C++ code.
This includes the Java Native Interface (JNI), the Java VM Tool Interface (JVMTI), as
well as the nonstandardized interface of the Java class library with the VM. We use
the following approach to transition to Java code as quickly as possible, requiring a
minimal amount of C code.

—The C code of the substrate defines the function tables, but most entries remain
uninitialized.

—In Java code, we implement the functionality of the methods without any boilerplate
code. The methods are annotated with @VM ENTRY POINT. The class containing these
methods is a syntactically correct Java class that can be edited in any IDE.

—A code preprocessor adds boilerplate code to these methods. This includes code to
transition the thread state into Java mode, exception handling, and logging. The
preprocessor must be invoked manually when the input file has been changed, and
creates a second syntactically correct Java class. Only this second class is a part of
the boot image.

—During boot image generation, the methods are compiled by the optimizing compiler.
The annotation instructs the compiler to use the calling convention of the platform
ABI, e.g., the parameter registers of the platform. The boot image generator also
parses the C header files in order to convert function names to table indices.

—Early during VM startup, the C-defined function tables are filled using the informa-
tion collected during boot image generation.

A method defined as native does not have a Java implementation. Instead, the VM
searches loaded libraries for a method with the appropriate name and signature and
links it dynamically before invoking it. The invocation also requires code to transition
the thread from Java mode into native mode so that all Java frames are visible to VM
components requiring stack walking, e.g., the GC. Invocation stubs are produced at
runtime using bytecode generation. The bytecode is then compiled by the optimizing
compiler. Generating bytecode is portable, much easier, and less error prone than hand-
crafting machine code for stubs.

Native methods do not operate directly on object pointers, but use special opaque
references. The Maxine VM implements these as instances of JniHandle, a subclass of
Word. JNI handles implement a level of indirection that enables a GC to move objects
while native code holds opaque references to them. Local JNI handles (parameters
to native functions) are stack-allocated in the stub that invokes the native method.
Global JNI handles (which are requested explicitly by native code) are implemented as
indexes into an object array. This avoids explicit memory management for the native
interface, and avoids special support from the GC.

3.8. Bytecode Verification

Maxine includes bytecode verifiers that implement the Java VM specification. While
implementing bytecode verification could have been deferred, it actually proved useful
to have it available earlier rather than later in Maxine for several reasons.

—Debugging internal bytecode generation: Maxine makes use of bytecode generation
for implementing method invocation via reflection and JNI stubs. Bytecode genera-
tion errors are easier to detect and fix when caught in the verifier.

—Sanitizing use of Word types: At the language level, the Word type hierarchy (see
Section 3.6) is part of the Object hierarchy, so Word values are accepted where Object
values are expected. However, this is not safe in Maxine. To make programming with
Word types easier, the Maxine verifiers are extended to be aware of the Word hierarchy.
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Fig. 6. Source code of the integer array load (iaload) template.

Any VM source code that incorrectly mixes Object and Word values results in a
verification error.

3.9. T1X Baseline Compiler

The T1X baseline compiler is Maxine’s first line of execution (Maxine has no inter-
preter). As such, its primary goal is to produce machine code as fast as possible. Code
quality is of secondary concern. Therefore, a template-based design is employed where
code generation is little more than copying sequences of prebuilt machine code, one for
each bytecode, into a code buffer.

In addition to the primary goal of being fast, T1X is also designed with approachabil-
ity in mind. It is easy to modify and experiment with the translation of bytecodes. We
want to minimize other concerns when writing or modifying a template compiler. In
particular, we want to minimize the need for hand-crafted machine code, abstract the
details of how the JVM operand stack and local variables are represented, and remove
concerns about template code / GC interactions.

All of these goals are addressed by writing the templates in Java with annota-
tions and using the optimizing compiler to compile them. This is done ahead of time
during boot image generation. The mapping from logical JVM operand stack slots to
template parameters is specified with a @Slot annotation. Reference maps of object
values that are live across a GC point in the template are created by the optimizing
compiler.

Figure 6 shows the source code for the int array load IALOAD bytecode. It consists
of a method annotated with @T1X TEMPLATE that calls two other helper methods, also
shown. The @INLINE annotation forces the optimizing compiler to inline the helper
methods. The other calls in the source code are intrinsified by the compiler, and the
throw statement translates to a runtime call. The machine code generated for this
template is shown in Figure 7. The template is preceded by a prologue emitted by T1X
to move values from the stack into registers for the a and i parameters of the iaload
method. The epilogue pushes the result onto the stack. Prologue and epilogue emission
is automated by the signature of the iaload method and use of the @Slot annotation.

This automation and the fact that templates are written in Java simplifies modifi-
cation of and experimentation in T1X. Furthermore, the template writers need not be
concerned about object values. Figure 8 shows a modified version of Figure 6 where
tracing calls have been inserted before and after the array load. Both of these tracing
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Fig. 7. Machine code of the iaload template.

Fig. 8. Extended iaload template with tracing.

calls are possible GC points. During the first one, the a argument is live. The optimiz-
ing compiler automatically takes care of this as it generates the correct reference map
entry for a at the call site.

Even though T1X templates are straightforward, there is still a lot of similarity
between certain templates given that the bytecode instruction set is (partially) typed
with respect to types. For example, along with IADD, there are also LADD, FADD, and DADD.
To factor out the commonality, we use source-code generation. The generator can itself
be extended. For example, this extensibility is used to generate specialized templates
for the purpose of instrumentation and the debugging functionality of JVMTI.

3.10. Compiler Interface and Optimizing Compiler

Maxine includes a well-defined compiler-runtime-interface (CRI) that separates the op-
timizing compiler from the rest of the VM. The CRI contains Java interfaces and classes
modeling the runtime data structures needed by the compiler, as well as for communi-
cating the result of a compilation back to the runtime. The CRI uses an assembler-like
API (XIR) to specify how certain complex bytecode operations are lowered to machine
code. XIR templates are defined by the VM, not the compiler, to make the compiler VM
independent. This approach is described extensively in Titzer et al. [2010].

The CRI code is independent from the VM and the compiler. This is enforced on the
source-code level: the project defining the CRI has no dependencies to any other project
in the Maxine code base, so using VM classes by accident is impossible. Similarly,
the source-code project for the optimizing compiler only depends on the CRI. As a
consequence, the low-level systems programming features of the Maxine VM, such as
the Word types (see Section 3.6), cannot be used accidentally in the compiler.
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The optimizing compiler of the Maxine VM, C1X, uses the same architecture and
intermediate representations as the client compiler (also called C1) of the Java
HotSpot VM [Kotzmann et al. 2008]. C1X is a more or less literal Java port of the
C++ code of C1. The main difference is the introduction of XIR into C1X, which enables
the separation of the compiler from the VM. C1X and C1 use the same set of compiler
optimizations, e.g., constant folding, global value numbering, and linear scan register
allocation. The visualization tool [Java.net 2012] written for C1 also works also for C1X,
enabling introspection of compiler data structures and intermediate representations,
from bytecode parsing to machine code generation.

Another evidence of the CRI’s VM independence is an implementation of the CRI
classes for the Java HotSpot VM, which allows using the unmodified optimizing com-
piler also in the Java HotSpot VM. This latter effort was the starting point for the
Graal project (see Section 5), an improved optimizing compiler.

4. PERFORMANCE EVALUATION

While approachability is the first goal for the Maxine VM, performance is important as
well. Research based on Maxine will only be considered valid when the performance is
within a reasonable margin of highly optimized production-quality VMs. We compare
the Maxine VM to the Java HotSpot VM in both the client and server configurations.
In detail, we compare the following configurations:

—the 64-bit Java HotSpot server VM of the JDK 7 update 6;
—the 64-bit Java HotSpot client VM. Oracle does not ship this version of the VM,

therefore we compiled it ourselves from the OpenJDK source code. We ensured that
it is the exact same revision of the source code used by Oracle for the server VM;

—the Maxine VM, using the tip version of Maxine from September 8, 2012. It uses the
same JDK 7 class library as the other configurations, and is also a 64-bit VM.

All benchmarks were executed on a two socket, dual core AMD Opteron 2214 with 2.2
GHz, a total number of 4 cores, and 4GByte main memory. The OS is Oracle Enterprise
Linux, version 2.6.18. All reported numbers are the average of 10 executions.

We do not use special configuration or tuning options for both HotSpot VM config-
urations, other than specifying the heap size. The GC of the Java HotSpot VM uses
generational collection, with a young generation composed of a large eden and two
comparatively small semi-space survivor spaces. These occupy an insignificant per-
centage of total heap size; the biggest part of the heap is used for the old generation
that is collected by a mark-and-compact algorithm. With a heap size of 4GByte or less,
the significant bits of all object pointers fit into 32 bits. In such a configuration, the
HotSpot VM compresses pointers to 32-bit values. The Maxine VM does not have this
optimization implemented, so it uses full 64-bit object pointers. In addition, Maxine’s
current semi-space GC can use only half of the memory at a time. For the benchmark
results shown in Figure 9, we fix the heap size to 2GByte for all three VM configura-
tions. The HotSpot VM can fit more than twice as many objects into this heap size,
requiring fewer garbage collections.

Figure 9(a) shows performance results for the DaCapo-9.12-bach benchmarks
[Blackburn et al. 2006], a collection of medium to large sized Java applications. We
run each application 4 times in the same VM and report the peak performance, i.e.,
the last run where all frequently executed methods have been compiled. On average,
Maxine reaches 67% of the HotSpot client VM performance, and 57% of the HotSpot
server VM performance. No benchmark shows exceptionally bad performance. We
consider this a reasonable margin for research use.

The startup performance of the Maxine VM is reasonable as well. For the first run
of the DaCapo benchmarks, which includes class loading and compilation, Maxine
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reaches 62% of the HotSpot client VM performance, and 82% of the HotSpot server
VM performance. Note that the server VM is slower than the client VM during startup
since its compilation speed is an order of magnitude slower.

Figure 9(b) shows performance results for the SPECjvm2008 benchmarks [SPEC
2008], a collection of small to medium sized Java applications. The results are similar
to the DaCapo benchmarks: On average, the Maxine VM reaches 72% of the HotSpot
client VM performance, and 46% of the HotSpot server VM performance. In the Java
HotSpot VM, all subsystems are highly optimized. This is not possible in the context of
a research project. For example, the benchmark where the Maxine VM performs worst,
serial, performs solely object serialization and deserialization, which we have not yet
optimized. Since Maxine uses an unmodified JDK, we have not encountered bench-
marks or applications that cannot be executed because of class library incompatibilities.

Figure 10 shows benchmark results across a range of heap sizes for the Maxine VM
and the Java HotSpot client VM. We start with a heap size of 64MByte and double
it until we reach 2GByte. Not all benchmarks run with small heap sizes; a missing
bar means that the benchmark throws an OutOfMemoryError with this heap size. The
Maxine VM requires a larger minimum heap size than the Java HotSpot VM. This is
expected, since the Java HotSpot VM manages class metadata in the native memory
heap and the permanent generation (a special garbage-collected area for metadata that
is not included in the specified heap size). Studies show that the required amount of
such non-Java memory is high [Ogata et al. 2010].

Some of the benchmarks, for example avrora, run well with small heap sizes. Neither
the Maxine VM nor the Java HotSpot VM show much difference between a heap size
of 64MByte and 2GByte. However, most of the benchmarks run faster when increasing
the heap size, both for the Maxine VM and the Java HotSpot VM.

5. FUTURE WORK

The short-term plans for the Maxine VM focus on improving performance. We are
working on a generational GC, which will reduce long GC pause times that currently
occur with large heap sizes. Simultaneously, we are working on an improved optimiz-
ing compiler, which will work both in the Java HotSpot VM and the Maxine VM. It
is developed in a separate OpenJDK project called Graal [Oracle 2012g]. The Graal
Compiler-Runtime-Interface (CRI) is an improved version of the Maxine CRI, so the
integration of Graal into Maxine will be straightforward. Finally, we will keep Max-
ine up to date with respect to improvements of the Java VM specification. We plan
to implement method handles and the invokedynamic bytecode that were introduced
for Java 7. Currently Maxine can work with a JDK 7 class library, but cannot execute
applications needing VM features introduced for Java 7.

On the long term, we envision Maxine as a research platform for multiple languages.
Exploiting the already modular structure and scheme abstractions, we want to make
Maxine a truly modular VM. Benefits and a possible structure of a modular VM based
on the Maxine VM are described in Wimmer et al. [2012].

6. RELATED WORK

The discussion in this section first addresses metacircular VM implementations in
general, followed by metacircular VMs for Java. The last part considers debugging
support for VMs.

6.1. Metacircular VMs

Metacircularity originates from LISP [McCarthy 1978]. Its eval() function requires
a LISP interpreter, which was defined in LISP itself. Also, the first successful LISP
compiler was already developed in LISP.
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Fig. 9. Execution speed of benchmarks with a heap size of 2GByte.
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Fig. 10. Execution speed of benchmarks with a heap size of 64MByte, 128MByte, 256Mbyte, 512MByte,
1GByte, and 2GByte. The six left red bars show the results for the Maxine VM, the six right gray bars show
the result for the Java SE 7u6 HotSpot Client 64-bit VM. The baseline is the same as in Figure 9.
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The idea was then applied to other languages. For example, the programming envi-
ronments and compilers for Oberon [Wirth and Gutknecht 1992] and Cecil [Chambers
1998] were written in the respective language. This leverages the benefits of the
language for the language development itself, and also simplifies reflective access
in the language. Modules could be loaded and unloaded on demand, and the use of
a bootlinker was explored to manage VM images. However, these languages were
statically compiled to machine code and not executed by a VM, so there were no
metacircular runtime environments.

In Smalltalk [Deutsch and Schiffman 1984], large parts of the system were written
in Smalltalk itself. Powerful reflective facilities allowed the access of class, method,
and field metadata objects from within an application. Also, the modular programming
style of Smalltalk could be applied to these reflective system parts. However, the core
bytecode interpreter of most Smalltalk systems was still written in a statically com-
piled language. The “blue book” reference implementation was written in Smalltalk
itself [Goldberg and Robson 1983], but it was intended only for illustrative purposes.

Squeak [Ingalls et al. 1997] is a metacircular Smalltalk VM. It is written in a subset
of Smalltalk: A nonobject-oriented programming style is necessary to allow the inter-
preter to be translated to C code, which is then compiled to machine code. The reduced
language limits the metacircular benefit because VM extensions have to be coded in a
special way before they can be integrated with the VM.

PyPy [Rigo and Pedroni 2006] is a VM for Python, based on a framework useable for
any dynamic language. It is written in RPython, a reduced version of Python where
types can be inferred statically [Ancona et al. 2007]. Runtime optimizations are per-
formed by a trace-based just-in-time (JIT) compiler. During bootstrapping, the VM
code is translated to C code. This requires an additional C compilation step during
bootstrapping.

Self [Chambers et al. 1989] is a language that offers even more dynamic reflective
facilities. Every method dispatch is dynamic and can be changed at runtime. The
original VM was written in C++ and was the incubator for many dynamic and feedback-
directed optimizations available in today’s VMs. The Klein VM [Ungar et al. 2005] is
a metacircular Self VM written entirely in Self. According to its authors, the primary
goal for Klein is to achieve feature parity with the existing Self VM, while reducing
the amount of source code by two thirds. Klein achieves a high degree of reuse by
trading off performance for architectural simplicity and ease of development. It uses
Self ’s mirror-based reflection system for debugging. The normal Self debugger inspects
objects of the running Self VM (the application and IDE run in the same VM). The Klein
debugger extends this system by providing a new kind of mirror that inspects remote
objects in the Klein VM, using the debug interface provided by Klein. The debugger
reuses VM code to interpret the object layout. Our inspector’s tele layer is comparable
and inspired by this approach.

6.2. Metacircular Java VMs

The Jikes Research VM [Alpern et al. 1999, 2000, Rogers and Grove 2009] is a
long-standing research platform well suited for experiments with memory manage-
ment [Blackburn et al. 2004] and JIT compilation [Burke et al. 1999; Arnold et al.
2000]. A number of characteristics set Jikes and Maxine apart. First of all, Jikes
currently binds to third-party Java class libraries such as GNU classpath or Apache
Harmony, which have been discontinued. The Jikes source-code repository contains
an experimental branch that integrates with the OpenJDK class library, but at the
time of this writing this work is unfinished and can execute only some of the DaCapo
benchmarks. Maxine integrates with standard JDK releases.
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Jikes requires a preprocessor to generate source code depending on various config-
urable properties, implying that developers cannot work on a complete version of the
“primordial” source code in an IDE. Instead, several configuration choices are already
wired into the visible code. With Maxine, the entire code base is always editable and
navigable in the IDE, with no code generation steps disrupting approachability in this
sense.

Finally, debugging the Jikes VM requires using low-level tools such as gdb, which
do not know anything about the abstractions at work inside the VM, not even about
Java objects and their memory layout. The Maxine Inspector provides an integrated
high-level view with abstractions for all kinds of entities that exist in a running VM
and application.

OVM [Palacz et al. 2005] is a VM implementation framework that has largely been
applied in research on real-time Java. From an instruction set specification described in
Java, various VM components can be generated, e.g., an interpreter or a JIT compiler.
The framework is partially written in Java, and partially in C; it employs code transfor-
mation tools from Java to C and C++. Java features such as JNI are not supported. In
a nutshell, OVM explicitly targets real-time systems and does not make an attempt at
gaining wider recognition as an approachable general-purpose VM framework. Maxine
is compatible with standard VM releases and supports running a wide range of Java
applications.

The Moxie VM [Blackburn et al. 2008] set out to provide a “next-generation” JVM
architecture, with a strong emphasis on modularity and components as well as perfor-
mance. It reused some ideas and components from Jikes, such as the MMTk memory
management framework [Blackburn et al. 2004]. Unfortunately, the Moxie source code
is not available for further inspection, but the available technical report suggests that
the project achieved significant improvements on several accounts.

There are several resemblances between Moxie and Maxine. For example, to in-
troduce variability, Moxie employed the abstract factory pattern, the usages of which
were optimized by the JIT compiler so that the indirection did not lead to performance
penalties. Instead of relying on the optimization capabilities of a JIT compiler, Maxine
adopts dedicated annotations that concretely drive code binding decisions, e.g., @FOLD.

As another example, the bootstrap processes of both Moxie and Maxine make use
of different modes the VM code can run in: Moxie’s and Maxine’s hosted and tar-
get modes correspond, respectively. Moxie additionally supports hosted target mode,
which is used to run complex tests that require a running VM environment but not
full stand-alone VM capabilities. To achieve the same, Maxine provides a dedicated
AbstractTestRunScheme.

Jikes, OVM, and Moxie all use a similar framework for low-level memory access,
the org.vmmagic package. Frampton et al. formalize this framework, define require-
ments, and present design alternatives [Frampton et al. 2009]. The framework includes
unboxed types for representing raw pointers and compount data, as well as compiler
intrinsics that operate on this data. Our framework (see Section 3.6), which was defined
concurrently with this work, is similar.

6.3. Debugging Support for Java VMs

A variety of projects aim at making JVM execution more transparent by providing
detailed introspective means. Two projects share important goals with, and in some
ways anticipate, the Maxine Inspector. Jikes contained the jdp tool [Ngo and Barton
2000; Jikes RVM 2002] prior to its 2.2.0 release. The HotSpot Serviceability Agent
(HSSA) [Russell and Bak 2001] accompanies the standard JVM. All three are out-of-
process introspective debuggers implemented in Java that provide design-level access
to important runtime state such as heap objects and stacks, without requiring runtime
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support in the VM. All are closely aligned with their respective target VM implemen-
tations, which comes at the cost of a requirement for co-evolution with the target VM.

Like the HSSA and jdp, the Inspector can attach to running target VM processes,
although platform support for this has so far been put in place only for the Virtual
Edition. The Inspector and jdp are implemented directly atop platform OS primitives,
unlike the HSSA’s dependence on dbx. The Inspector supports a large and expanding
set of interactive views that are closely integrated around both navigation and visu-
alization. Conversely, the HSSA provides only API access upon which tools can be
implemented, and jdp features a command line interface. Finally, Jikes and Maxine
are implemented in Java, unlike the HSSA’s target VM. This affords much more op-
portunity for code reuse, greatly expedites maintaining alignment between the VM
and tool code bases, and enables modeling VM state at much finer granularity than is
possible in the HSSA.

Another tool that builds upon the HSSA [Wright et al. 2006] exceeds the latter’s
capabilities by enabling users to reason about application behavior taking into account
the entire range from processor events like cache misses to Java source code. Unlike
the Maxine Inspector, the tool leaves no footprint in the VM code, but it requires the
observed VM to be run in a hardware simulation environment. The tool is limited in
that it can only observe the top stack frame of any thread. Moreover, it does have a
detailed and complete model of HotSpot internals, but not of the C standard library
used by HotSpot, a nonissue for the Inspector since Maxine uses standard JDK classes.

7. CONCLUSIONS

Maxine is a VM for Java written entirely in Java. The modular structure, high-level
programming in Java, and the co-designed Inspector make it more approachable than
traditional VMs written in C/C++ and simplify development and debugging. The perva-
sive use of modern Java features, e.g., Java annotations, is a key ingredient. The scheme
abstractions, the low-level memory access, or the T1X template compiler would not be
possible without the use of annotations that add systems programing features not
present in the Java language. The Maxine VM shows that the abstractions do not have
an inherent performance penalty. Even without elaborate compiler optimizations and
GC algorithms, the performance is between 103% and 44% of the production-quality
Java HotSpot client VM. We believe that the Maxine VM, and metacircular VMs in
general, can reach the performance of or even outperform the Java HotSpot VM. There
are no inherent limitations that prevent some optimizations or add overhead. With
these ingredients, we envision the Maxine VM to be a platform for productive VM
research.
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