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Abstract

As part of a project to develop scalable development tech-
niques for systems written in the Java programming lan-
guage, we are investigating the suitability of the package
construct in Java as a system structuring mechanism.
Although the Java package is incomplete in this regard, it
represents a good foundation when combined with an
advanced programming environment inspired by Vesta. The
few ways in which the Java package is unsuitable appear to
be correctable with careful programming conventions and
support from the environment.

At the center of the proposed approach is the notion of a
hierarchical namespace based on Internet Domain Names
populated by reusable, independently versioned packages,
each of which encapsulates a parameterized build script.
This concept unifies several important aspects of software
development and permits the design of tools that simplify
the development process. A laboratory prototype environ-
ment, based on persistent Java objects, is being con-
structed and now supports its own development.

1. Introduction

The Java programming language [7], widely thought to
be designed for portable mini-applications (browser
applets), is in fact broadly applicable in traditional
domains. The development environment, initially popu-
lated with a small set of class libraries (the Java Develop-
ment Kit or JDK), is rapidly accumulating third-party
libraries for a variety of application areas. Little attention
has yet been paid to how programming in Java will scale to
large systems, but this will change with growing pressure
for sophisticated applets and traditional applications writ-
ten in Java.

An experimental programming environment for Java

being developed at Sun Microsystems Laboratori
addresses problems of scale, some of which are famil
and some of which become especially difficult in th
decentralized approach to development that is emerging
the Java community. Compatibility is an explicit goal: w
wish to avoid language changes and to conform to curre
Java programming practice. A key part of our strategy is
support the language with an aggregation mechanism t
enables system construction by modular composition. F
this to succeed, problems related to naming, storage, c
figuration management, and location-independent buildi
must be solved.

Rather than introduce an entirely new mechanism, w
augment an existing one. The Java package mechan
represents a good start toward modular system buildin
but it is too weak to scale suitably. We supply the missin
properties with an advanced software development en
ronment (described more completely elsewhere [9]) th
strengthens the package concept and helps developers c
with a few characteristics of packages that are problema
We also mention small language changes that would ha
great benefit in this area.

The key idea (an adaptation and extension of th
approach taken in Vesta [10]) is the notion of a unique
named, reusable independentlyversioned package, each
version of which contains abuild script: a parameterized
program for building it. This approach uses packages
unify important aspects of large system development: sy
tem structure, storage management, building, and config
ration management. Tools exploit this unity to simplify th
developer’s task, even while providing stronger guarante
of reliable and repeatable system builds than is now co
mon.

A prototype is under construction and has been suppo
ing its own development for some time. It is written usin
an experimental implementation of persistent Java obje
[3].

Section 2 of this paper discusses challenges faci
1
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developers of large Java systems, pointing out how the Java
package mechanism helps with a few of them. Section 3
describes how the Vesta approach offers promise for some
others. Section 4 presents our proposed approach to scal-
able development in Java, and Section 5 summarizes the
implementation strategy for our prototype. Section 6 dis-
cusses related work, and Section 7 concludes with a discus-
sion of our experience to date.

2. Challenges for large scale Java development

Developers of large Java systems face many technical
obstacles, both old and new. A common theme is the need
to reliably assemble, build, and deploy systems that are
composed out of parts, with the process crossing organiza-
tional and geographical boundaries. The tools we have now
are unreliable, non-portable, excessively complex, and ulti-
mately don’t permit development at this scale to be done
effectively.

2.1. System structure and naming

Large systems must be assembled from modules or sub-
systems that are to some degree independently developed.
At the center of all mechanisms for doing this is the matter
of naming, and the disarray of our current development
tools in this regard accounts for a great deal of the com-
plexity a developer faces.

Even reduced to its simplest terms, software develop-
ment involves four naming disciplines that are usually
independent because of the separate evolution of tools:
1. A programming language supports naming of variables,

classes, methods, etc.;
2. A storage system provides naming of files and directo-

ries;
3. A build system names the subsystems that are to be

assembled; and
4. A versioning system affects how many of these names

get bound.
Developers depend on ad hoc relationships among these

naming schemes, for example aligning subsystems with file
system directories. This has two costs as systems scale up:
manual maintenance of many such relationships, and a lack
of abstraction and portability.

Naming systems must permit composition of indepen-
dently developed subsystems without fear of conflicting
language names, for example class and procedure names. A
similar problem confronts subsystem naming, especially
where Java developers expect to combine independently
developed libraries and packages.

Java makes progress on these two points with thepack-
age language construct. Figure 1 shows the hierarchical

namespace for the core Java packages; in this diagr
names appear in boldface at nodes where classes (
nodes that are not shown) are present. A fully qualifie
class name, for examplejava.util.Stack, consists of a
class name (Stack) prefixed by its dot-separated hierarch
cal package name (java.util).

Java packages play several useful roles. Packages
vide language-levelaccess controlto class methods and
fields. As aconvention for naming storage objects, pack-
ages help bring some alignment between language a
storage names (more about this in Section 2.2).

As a name control mechanism, packages help ensure
unique identifier names in local contexts because of t
tight mapping between storage names and package nam
you can’t have multiple directories with the same name in
file system. Unfortunately, this doesn’t help when mo
than one storage system is involved. Using the packa
namespace effectively requires widely adopted nami
conventions (some approximation of a “one world” namin
scheme) that make available unique prefixes within t
hierarchy of names. The best current approach, sugges
by Java designers [7] though not widely followed, is t
begin global package names with the Internet Doma
Name of the development organization.

As a system structuring mechanism, packages support
the Javaimport statement, making visible the public
classes from specified other packages. Unfortunately pa
ages are not first-class language entities; this means
packages are not fully represented at run time and can
be named or otherwise manipulated (in contrast wi
classes and variables, for example). As a consequence,
Java package suffers from two weaknesses as a sys
structuring mechanism. First, the relationship between
package name and a true subsystem is not enforced. Un
Modula-3 modules [12] and Ada 95 packages [1], Ja
packages play no part in the dynamic semantics of the la
guage. Initialization order, in particular, is defined in term
of classes not packages. A Java program may thus con

Figure 1. Namespace for core Java packages

java

applet awt io lang net util

image peer
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any collection of classes, independent of package
namespace structure. In fact, because a Java virtual
machine loads classes dynamically on demand, and
because the name of a loaded class might be computed at
run-time, the exact set of classes that a program may load
cannot be determined before it runs. In practice, convention
mandates a relationship between package names and sub-
systems: programs commonly contain complete subtrees of
the namespace, for example all classes injava.lang.

A second weakness is that Java packages cannot be
imported: a Javaimport may specify only a single class or
all classes from a package. Thus the code in Figure 2,

which attempts to use theCOM.sun.labs.jvb package as
a language object that permits shortened names, is illegal
for two reasons: packages can not be imported, and there is
no renaming. This limitation makes the use of long Internet
Domain-based package names awkward.

2.2. Storage

A second issue in the development of large systems is
management of persistent storage, typically in an indepen-
dent namespace, for bothsource (human created) and
derived (machine generated) information. Common prac-
tice is to construct a hierarchical file namespace and to
maintain manually some alignment between this
namespace and the others, for example subsystems with
directories.

Current Java tools strongly encourage certain align-
ments between the storage and language namespaces, for
example using one public class per compilation unit
(source file), with the file name matching the tail of the
class name. Java tools work best when compilation units
are stored in a directory whose name is strongly related to
the package name. For example, the compilation unit for
class Stack in package COM.sun.labs.jvb.util
would be stored in the UNIX file namedsomeprefix/
COM/sun/labs/jvb/util/Stack.java.

This alignment helps, but two distinct namespaces must
still be maintained manually. Furthermore, the Java com-
piler creates considerable confusion by exposing storage
names for derived information (class files) and requiring
manual management of search paths that include both
source and derived storage locations.

2.3. Versions and configurations

Essential to development of large systems is mana
ment of information that developers create: this includ
permitting concurrent, non-interfering development b
multiple individuals and groups, recording history, buildin
variants for different tasks and platforms, and knowin
what to deploy as finished products. Terminology is co
fusing and many tools in everyday use provide little or n
support for the kind of configuration management that
needed.

Tools such as SCCS support only the simplistic notio
that a logically single object may exist as a family o
related versions. This makes it generally impossible to
reconstruct earlier builds, since the granularity of what
versioned (individual source files) does not match what t
developer actually builds (collections of source files
ClearCase [4] addresses this by versioning directories
addition to files, but of course directories are a storage s
tem concept, not a building concept.

A configurationis some collection of developed object
intended to have utility outside its immediate context, an
configuration managementis the process of specifying
which versions of which objects to include in a such a co
lection. Even when supported by tools, however, configur
tions are typically named and managed as independe
often proprietary, non-linguistic entities. One symptom is
discontinuity at project boundaries. For example, develo
ers often use configuration management and version c
trol systems inside projects, but use ad hoc mechanis
outside projects. The JDK is managed internally by Team
ware [15] and SCCS, but external clients see trees of unv
sioned files in which the identity (and meaning) o
configurations is lost, along with sharing among archite
tural variants and any realistic potential for shared, incr
mental evolution.

2.4. Building

The standard tool for building in Java and most conve
tional environments is currently make [6]. Some wea
nesses of make-based system have already been mentio
for example inability to name the subsystems out of whic
large systems are built. Other problems include the invi
bility of many actual dependencies, failure to recor
enough information about the derivation of objects in ord
to reuse them safely, and extremely poor support for t
composition of makefiles into large systems.

2.5. Reuse of system components

As systems scale up, especially in the emerging Ja
development model, code reuse is crucial to success.

Figure 2. Illegal import/rename of a Java package

import COM.sun.labs.jvb as jvb;

class SpecialStack extends jvb.util.Stack

{ ... }
3
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definereusehere as the ability for asubscriberto include
into a Java application (either applet or stand-alone pro-
gram) one or more collections of Java classes (which we’ll
call componentsfor the moment) developed independently
by publishers,across organizations and via the Internet.

Significant issues, such as techniques for designing
reusable code and motivations for doing do, are beyond the
scope of this work. However, we note in passing that,
unless appropriate use is made of abstract classes and inter-
faces, Java components quite easily become highly inter-
connected, difficult to evolve and very difficult to build
with traditional tools. This is much more problematic in
Java than in languages that enforce abstraction (e.g. Ada
[1] and Modula-3 [12]), or in those that provide at least ad
hoc separation of declaration and definition (e.g. C or C++
[5]).

Many technical obstacles to reuse, however, can be
addressed. The first, discussed in Section 2.1, is the need to
combine separately developed components without name
clashes. Other issues include how access is managed, and
by what abstraction subscribers can use components.

Of the possible approaches to implementing publish and
subscribe,copyingandsharing, only sharing can scale up
effectively. Copying obviously costs system resources and
programmer effort, but the crucial disadvantage is that a
subscriber effectivelyassumes ownershipof copied code.
Copying compounds, for example when one subscriber
makes a copy and publishes code that depends on the copy,
and a second subscriber makes a copy of that and publishes
more code that depends on the second copy, and so on.
Unless it becomes possible to revert to a sharing model at
the time of publishing, scaling problems will defeat
extended reuse.

For sharing to work, however, the advantages of copying
must be supplied by other mechanisms. For example, there
must be version management and access control to ensure
orderly progress. There must be transparent local caching
when performance is an issue. Finally, versions and config-
urations of shared code must not change, that is, they must
bestable.

It is important that the abstraction by which subscribers
use components hides unimportant details but retains nec-
essary degrees of freedom. Neither of the standard
approaches (binary and source reuse) does so.

Binary components can be reused only when compatible
with the subscriber’s environment. Binary compatibility
problems plague environments for languages such as C and
C++, typically implemented with relatively tight bindings.
One symptom is the “fragile superclass problem” in C++.

The situation for Java class files isn’t much better. A
common misperception is that Java’s more dynamic bind-
ing (symbolic binding of the class file format and dynamic
class file loading) inherently solves compatibility prob-

lems. In fact Java’s binary compatibility rules, defined b
the Java virtual machine [11], permit only relatively mino
variations. Further, the binary compatibility rules actual
permit combinations of classes that would fail to compi
together from sources. Finally, there are no guarantees
all concerning the behavior of modified code, since com
patibility is defined only in terms of class signatures.

Reusing source components preserves useful degree
freedom, for example permitting the subscriber to bui
multiple variants with respect to compilation options suc
as debugging flags, or even choice of compiler. The tra
tional cost is the overhead of integrating sources into t
subscriber’s environment and the management of the s
ware in multiple forms.

A more appropriate abstraction mechanism would su
port reuse in more relevant terms, for example permitting
subscriber to specify “version5 of package
COM.sun.labs.jvb.util for platform SPARC/
Solaris-2 with debugging code included.”

3. Vesta

The Vesta configuration management system was dev
oped at the Digital Equipment Corporation’s System
Research Center (SRC) to address the needs of organ
tions developing and releasing large, complex softwa
systems [10]. Weaknesses in current UNIX tools led to t
basic requirements for Vesta:
• The amount of developer effort needed to propagate 

change are commensurate with the conceptual size o
the change, not the amount of affected code.

• System-building descriptions are concise and scale w
the size and complexity of the code under developmen
not with the size of the entire system.

• System-building descriptions are complete and self-
contained, so that any built object can be reconstruct
reliably when needed.
Vesta uses an integrated storage system (repository)

system builder in which the unit of versioning is the sam
as the unit of building, addressing one of the problem
mentioned in Section 2.3. Many of the problems mention
in Section 2.4 are addressed by the Vesta build syste
which is based on composable, parameterized evaluation
functional programs (instead of pattern-based rule invoc
tion) and on generation of detailed information about th
result of each build.

The approach was validated by using Vesta to mana
“about 4400 modules comprising 1.4 million lines o
source code, mostly written in Modula-2+ [14], but with
some C and assembly language. The code included m
different kinds of subsystems, such as a micro-kernel op
ating system, a comprehensive set of user libraries, so
4
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ware development tools, and a substantial collection of
application programs. New versions of these components
were being produced frequently by the 25 full-time devel-
opers, and changes in the interfaces between major compo-
nents occurred often, necessitating frequent integration.
The development tools (e.g., compilers) were evolving
concurrently with the software that was built with them.
Nearly every component was targeted to run on multiple
operating systems and machine architectures.” The authors
concluded that their goals had been met [10].

4. A scalable approach to Java development

We propose an approach to developing large systems in
Java that addresses problems of scale discussed in Section
2. We start with the Vesta approach, which unifies version-
ing, configuration management, and building at the granu-
larity of what Vesta calls “packages.” We apply this notion
to the Java language by identifying packages in the devel-
opment environment (the reusable “components” of Sec-
tion 2.5) with packages in the Java namespace, working out
a number of name-related issues that this raises. Finally, we
design an integrated environment that fills in the missing
pieces and exploits the simplicity made possible by this
approach.

Central to the proposed development model are inde-
pendentlyversioned Java packages: collections of classes
(as well as other resources) that exist in stable (immutable),
versioned configurations. Each version contains a build
script: a parameterized program for building the package.
The environment abstracts away details of package loca-
tion, contents, and construction, affording developers the
luxury of a single package naming scheme in most situa-
tions. The following overview describes the roles played by
packages in this approach.
• System Structure. The developer assembles large appli-

cations by constructing packages whose build scripts
import other packages. Each import specifies a particu-
lar version of the imported package, and the builder’s
import mechanism abstracts away conventional distinc-
tions between source (uncompiled) and binary (com-
piled) reuse.

• Storage. The developer manages sources in terms of the
package namespace, with package-level versioning
added, using tools that abstract away details of underly-
ing storage and distribution. The build system invisibly
manages derived objects (class files and other objects
created by invoking build scripts), thereby reducing
name clutter and eliminating confusion among objects
derived in alternate variants.

• System Building. The developer builds a package by
invoking its associated build script (called itssystem

modelin Vesta), which incorporates imported package
by recursive invocation of their scripts. The developer
gains access to derived objects (for example an exec
able) by invoking tools that abstract away the comple
ity of the script’s result. The developer can supply
parameters that cause variants to be built (even of
imported packages, possibly located in distant, read-
only locations) without perturbing package sources.
Build script results contain extensive information that i
both precise and complete, enabling straightforward
integration of tools that extract, analyze, and display
particular kinds of information to developers.

• Configuration Management. The developer creates con
figurations as packages whose role is to import partic
lar versions of other packages, including other
configurations. Each version of such a package spec
fies transitively and immutably an arbitrarily large,
buildable aggregation of packages comprising some
version of an application, applet, library of classes or
other deliverable. A configuration manager permits
concurrent non-interfering work by multiple develop-
ers.
We intend that this approach be simple to use and imp

ment, as exemplified by our prototype environmen
described in more detail elsewhere [9]. The remainder
this paper will focus on the use of Java packages in the p
posed approach.

4.1. Packages and system structure

We use Java packages as the building blocks for lar
systems. However, as mentioned in Section 2.1, there is
enforced notion of subsystem (or module) behind the Ja
package namespace. We add this notion in the developm
environment, following Vesta, by making the package th
unit of storage, the unit of versioning and configuration
and the unit of building. We thus promote the package
the basic unit of code sharing and evolution (more abo
this in Section 4.3). We ensure that package versions can
named independently of location, thus making them t
unit of sharing and replication across multiple sites (Se
tion 4.2).

This alignment extends to build scripts, where Jav
developers specify what to compile and assemble into
system. When a package depends on other packages
build script must explicitlyimport the desired versions of
each. The import statement in build scripts (Section 4.
thus serves as the glue for assembling large systems.

A second weakness of the Java package construct c
cerns naming inside programs. Global name managem
requires inconveniently long names, for which the be
solution would be a language extension that legitimizes t
code fragment shown in Figure 2. Meanwhile, we advoca
5
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a programming style in which unqualified class names
appear in code, accompanied by explicit per-class Java
import statements; long global names will then be needed
only to resolve name clashes, which are readily detected by
the compiler in the presence of explicit imports. The envi-
ronment adds some support by providing a mechanism for
mapping between class names within the language and
longer, globally-unique storage names that have additional
package prefixes.

4.2. Packages in the storage system

Package naming independent of storage location is cru-
cial, both locally and when distributed development
requires federated storage.

The environment extends the alignment between the
language and storage namespaces beyond what is encour-
aged by current Java tools, to the point where developers
seldom need to distinguish between them at all (following
Vesta, derived objects are managed in a persistent cache
and do not appear in the namespace at all.). The name
COM.sun.labs.jvb can mean both the set of classes
declared with a “package COM.sun.labs.jvb” state-
ment, and the set of stored compilation units that imple-
ments the classes. Tools for locating and browsing Java
code elide information related to local context, for example
allowing access to sources for classStack purely via its
language nameCOM.sun.labs.jvb.util.Stack. Other
source objects, such as related HTML documents, can be
named analogously and can reside in storage system pack-
ages.

One aspect of the language confounds this approach.
Classes have privileged access to certain fields and meth-
ods of other classes declared in the same package. New
classes might declare themselves to be “in” an existing
package developed by a different organization, violating
the proposed namespace alignment. We discourage the
practice, but when necessary we recommended that the
storage system apply a prefix to the Java package name, as
mentioned in the previous section. Even if the names do
not match exactly, some benefit will accrue from sharing a
structural similarity.

We propose to abstract over existing mechanisms for
managing storage distribution (for example network file
systems, http, and distributed databases), both for portabil-
ity and to provide a uniform and simple model for develop-
ers. This requires adoption of the Java global naming
discipline [7] that derives package name prefixes from
reversed internet domain names, for example the package
prefix COM.sun.labs from the domain name
labs.sun.COM. Even when code uses shorter names inter-
nally, such asjvb.util, we encourage globally unique
names such asCOM.sun.labs.jvb.util in storage sys-

tem packages.
Projectsare storage units that occupy distinct subtre

of the global namespace. Storage is ultimately located b
URL such asfile://projects/jvb, but user-interac-
tion takes place purely in terms of package names. F
projects located by the http protocol, we expect but do n
require that the server component of the URL be related
the project’s package namespace, for examplehttp://
labs.sun.COM.

Although the package namespace provides the illusi
of a one-world model, individual projects are necessaril
separately administered, forming afederateddatabase. In
particular, it is not practical to guarantee eternal referent
integrity for inter-project references in a WAN. This con
cession to practicality permits individual projects to be ga
bage collected independently. Inter-project references c
only be created under the control of the system, thus allo
ing inter-project negotiation over link stability.

4.3. Packages and configuration management

Packages also serve as configurations, which develop
assemble using two mechanisms:
• Direct Inclusion: placing sources into a package ver-

sion, thereby assuring that any use of the package ve
sion will include them.

• Importation: placing into a package’s build script an
import statement that references a specific version o
another package.
These form a simple and powerful discipline for assem

bling arbitrarily large Java systems in the context of th
Java package namespace. It is also possible to desc
inter-version construction (systems that contain or u
more than one version of a package); this generality
essential to describe systems that host their own evoluti
Our prototype environment is an example of such aself-
evolving system.

The proposed discipline leads to three stereotypic
source organizations of Java sources that reflect differ
intentions about how they will be built and reused: ve
sioned packages, nested packages, and umbrella packa

A versioned packageis a collection of sources (and pos
sibly nested packages) that exists in stable, named versi
(for exampleCOM.sun.labs.jvb.util.7), even as the
package evolves. It may import other versioned packag
although this may not be externally visible. It can be bu
in isolation, producing derived objects (typically a set o
class files and possibly an applet or program) that are s
to be the result of the build. Versioned packages are t
reusable modules of scalable Java development.

A nested packageis a collection of sources that reside
in the namespace below a versioned package (for exam
COM.sun.labs.jvb.util.test), and which is both
6
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included in and versioned together with the versioned
package. A nested package cannot be built in isolation, but
rather depends on its enclosing context. Nested packages
typically implement architectural variants or break up a
large package (but cf. umbrella packages, below). For max-
imum reuse, nested packages should be restricted to cases
where real nested dependencies exist.

An umbrella package(a Vesta term), though technically
a versioned package, is distinguished by the intention to
aggregate other versioned packages into larger units, doing
so by importation rather than direct containment. Umbrel-
las, as do all versioned packages, exist in versions, and
each version represents a choice of which versions of other
versioned packages to import. An umbrella can import
other umbrellas, enabling stable descriptions of very large
systems at varying levels of detail.

The result of building an umbrella will not in general be
equivalent to an aggregation of separately built results from
its imported packages. Build scripts can override parame-
ters in the build scripts of imported packages, for example
by specifying a different compiler or debugging option.

An important kind of Java umbrella imports immediate
children in the package namespace. For example, if
java.awt.image and java.awt.peer (see Figure 1)
were versioned packages, and if packagejava.awt were
an umbrella, java.awt.1 might import
java.awt.image.5 and java.awt.peer.6 and
java.awt.2 might import java.awt.image.9 and
java.awt.peer.8. The effect is similar to ClearCase
versioned directories [4].

A developer organizes the package namespace by
choosing nodes in the hierarchy where versioning appears,
and thus where the transition between versioned package
names and nested package names appears. For example,
the name COM.sun.labs.jvb.builder.5.store
denotes version5 of a versioned package named
COM.sun.labs.jvb.builder; the suffixstore denotes
a nested package that has been separated for implementa-
tion convenience, but which the system does not permit to
be built independently. A nested package can always be
promoted to a versioned package at the cost of some
restructuring. An umbrella namedCOM.sun.labs.jvb
would typically group all its versioned packages, such as
builder, into a convenient whole.

The goal of aligning the language and storage system
namespace interacts subtly with the three proposed classifi-
cations for packages. For example, in the core Java pack-
ages there are sources at nodejava.awt, meaning that this
should be a versioned package. How then should sources at
nodesjava.awt.image and java.awt.peer be orga-
nized: as nested packages withinjava.awt or as ver-
sioned packages themselves? The latter choice provides
more flexibility but has the unfortunate potential for a name

clash, for example should a nested package namedimage
be added to some later version ofjava.awt. This is not
particularly easy to check against, and may be harmless
any event. In our current design we do not prevent or wa
about this condition.

4.4. Packages and building

The environment produces information derived from
package version (for example executables) by invoking
build script. Invocation may involve specification of som
parameters left unbound in a build script, typically thos
associated with platform variants, or it may not when a
such parameters are bound.

Build script invocation produces apackage objectthat
encapsulates its results. Package objects persist and
vide useful reflective information about the package, f
example identifying all sources and resulting derive
objects. It also references package objects for recursiv
built imported packages, thereby representing the compl
build, no matter how large the system. Vesta-style cachi
in the build script interpreter, combined with the repeatab
build guarantee, ensures build avoidance when possible

The build system manages an internal namespace
package objects in alignment with the storage and langua
namespaces. Returning to theCOM.sun.labs.jvb exam-
ple, the nameCOM.sun.labs.jvb can also denote the
compiled collection of classes and related resources. C
struction of applets, along with like-named resources su
as HTML files, can be done with straightforward scriptin
techniques.

5. Implementation strategy

We have argued elsewhere that conventional operat
system facilities for persistent storage (directories a
files) are inadequate and should be replaced by persis
storage of programming language objects [8]. We emulat
this approach with files in an early pre-prototype (writte
in Tcl/Tk [13]) that was inspired and influenced by
m3build [16], the build system for Modula-3. This pre-pro
totype is in regular use, hosting the Java-based implem
tation of its successor.

The prototype now under construction is based on
experimental implementation [3] of orthogonal persisten
[2] for Java. In fact, this environment is highly characteris
tic of thepersistent application systemsfor which orthogo-
nal persistence is intended.

Persistent Java objects model all aspects of the softw
development process, from small objects used in compil
and associated tools, through objects used to repres
packages and versions, to large objects that represent c
7
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plete system builds. Navigation and querying is possible
for all objects, subject to access control constraints. Ver-
sioning is ubiquitous and convenient; editors can be inte-
grated directly with the versioning system and are able to
exploit the system to evolve objects incrementally.

This version of the environment naturally allows inte-
gration with existing Java applications, for example the
HotJava browser or the Java compiler. Amongst other
things, this would enable a more graceful response to ver-
sion mismatch when loading applets, by automatically gen-
erating a new version in the persistent store The properties
of the system support incremental construction for all
objects, including derived objects generated by compilers,
which then enables reliable incremental software upgrades,
at an appropriate level of granularity.

6. Related work

The proposed approach is based heavily on the Vesta
system [10], as discussed throughout, which takes an inno-
vative position on the relationship among configuration
management, building, and storage management. Unlike
Vesta, whose package mechanism was independent of its
target language (which has no packages), we target a lan-
guage with an existing package mechanism. Our goal is
additional leverage, but without undue change to the lan-
guage or current practice.

7. Conclusions

We have presented a model supporting large-scale soft-
ware development in Java that is based on the idea of ver-
sioned packages. Conceptual simplicity is achieved by
exploiting the package concept at the language level, in the
persistent storage system, and in the system build process.
Stability is achieved by requiring that published packages
exists as stable, immutable versions which encapsulate
their dependencies. The versioning model is simple and
familiar and provides for variants as well as serial develop-
ment. Large scale development is supported by establishing
a global package namespace, based on Internet Domain
Names, that is implemented as a collection of loosely con-
nected federated databases.

An extension to the Java import mechanism would sig-
nificantly increase the suitability of Java for large-scale
programming.

We are constructing and using a prototype development
environment that supports this model. Early experiences
have been positive, although somewhat confounded by lack
of adherence to global class naming conventions. Simpli-
fied name management in particular (both the alignment of
names, as well as the non-naming of derived objects) has

proven extraordinarily helpful, and we find ourselve
encountering far fewer errors while working within the
prototype than we do when we must work with the file sy
tem.

On the other hand, it has become clear that addition
tools are needed to help visualize and manage the pack
namespace. A necessary consequence of version stabili
that the package namespace in a particular store beco
cluttered with obsolete package names and outright nam
mistakes that have been corrected by migrating develo
ment into other names. We anticipate a context-based v
mechanism that helps visualize the relevant parts of t
namespace in a store.

We are especially encouraged to see that problems
scale now being discussed by members of the advan
Java programming community are in general tho
addressed by this environment.
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