
f ver-
e and
ire-
rac-

that
that it
dur-
el-
Sun

soft-
con-

JP
pack-
rma-
tem
man-
ing
n.

Eighth International Symposium on System Configuration Management (SCM-8), July 20-21, 1998
Coordinated Editing of Versioned Packages
in the JP Programming Environment

Michael L. Van De Vanter

Sun Microsystems Laboratories
901 San Antonio Road

Palo Alto, CA 94303 USA
Michael.VanDeVanter@Eng.Sun.COM

Abstract. As part of an investigation of scalable development techniques for
systems written in the Java™ programming language, the Forest Project is build-
ing JP, a prototype distributed programming environment. For extensibility and
usability, a mechanism is required to coordinate the activity of multiple editor
programs (each specializing in particular source types) with the JP versioning
system. The JP architecture makes it possible, using a very simple framework, to
coordinate loosely coupled Java-implemented editors that share no data repre-
sentations with one another or with the versioning system. This framework also
supports a streamlined user model for editing that keeps users’ version aware-
ness to an absolute minimum during routine development tasks. This architec-
ture relies on two key technologies: orthogonally persistent object storage, and
orthogonal versioning of hierarchical, immutable, source objects.

1 Introduction

Constructing and maintaining large software systems demands aggressive use o
sioning and configuration management for source artifacts such as program cod
documentation. This requirement conflicts in practice with another important requ
ment, namely that developers can view, modify, and build sources with as little dist
tion and delay as possible. The difficulty increases when the requirement is added
source objects be edited and versioned as hierarchical aggregations of parts, and
be possible for new types of sources (along with appropriate editors) to be added
ing the lifetime of a development environment. A new coordination framework, dev
oped as part of the JP programming environment by the Forest Project at
Microsystems Laboratories, addresses all of these requirements.

The JP programming environment specifically addresses problems of scale in
ware development: large systems are constructed from parts, usually in multiple
figurations, developed by teams, possibly at diverse locations. Central to the
approach is the notion of a uniquely named, reusable, independently versioned
age. Each package contains, along with a hierarchical aggregation of sources, info
tion describing how to build it. JP packages unify important aspects of large sys
development: system structure, storage management, building, and configuration
agement. Tools exploit this unity to simplify the developer’s task, even while provid
stronger guarantees of reliable and repeatable system builds than is now commo
1

rs to
and

new
izes
ade

; and

cular
ugh
en-
Sec-
and

ental
tems
writ-
e that

te the

lop-
e
four

nfigu-
eter-
ils of
sin-

s the

ack-
the

urce
the
The first and most important set of tools includes those which permit develope
view and modify sources and to create new source versions to be built. Editing
versioning are coordinated with a framework that is simple, easily extended to
type-specific editor types, and supportive of a streamlined user model that minim
the need for version awareness by developers. Simplicity in the framework is m
possible in large part by orthogonality in the JP architecture:

− orthogonal object persistence removes storage concerns from the framework
− a versioning model is orthogonal to version content.

Section 2 of this paper introduces the JP environment and points out the parti
problem that is solved by the editor coordination framework. Section 3 walks thro
this framework, discussing the implication of each part at the level of editor implem
tation and visible user model. Section 4 compares this approach with other work.
tion 5 summarizes current project status, followed by acknowledgments
conclusions based on the work so far.

2 JP Overview

JP is an integrated development environment being developed to explore fundam
solutions to the problems of scale that plague development of large software sys
[10]. Although the JP approach is general, the current prototype targets systems
ten in the Java™ programming language [9] and encourages a development styl
will result in simpler and more reliable construction of large Java systems [11].

This section reviews the JP approach and describes requirements that motiva
framework for coordinated editing presented in Section 3.

2.1 Package-Centric Development

Central to JP’s design is replacement of one of the weakest links in current deve
ment environments: themake[8] program for system building. JP’s adaptation of th
Vesta approach [14], a fundamentally more sound and scalable technology, unifies
roles, described below, more commonly supported by disconnected services.

The JP approach is based on independentlyversioned Java packages: collections of
classes (as well as other resources) that exist in stable, immutable, versioned co
rations. Each version includes a build script: a system model that is also a param
ized program for building the package. The JP environment abstracts away deta
package location, contents, and construction, affording developers the luxury of a
gle package naming scheme in most situations. The following overview describe
four roles played by JP packages.

System Structure.Packages play the role of softwaremodules: the developer assem-
bles large systems by constructing packages whose build scripts import other p
ages. Each import specifies a particular version of an imported package, and
builder’s import mechanism abstracts away conventional distinctions between so
(uncompiled) and binary (compiled) reuse. Build script imports do not affect
semantics of the Java language (in particular the Javaimport statement).
2

ith the
rage
and
and

uild
rsive
cuta-
he

pack-
cript
bling
s of
in the

n the
er.

es
gu-
arbi-

an
ision
ncur-

esign
nique

ther-
[9].

rface.
nta-
, and

sms

k link
om-
for
s so

e of
Storage.The developer manages sources in terms of the package namespace, w
addition of package-level versioning; tools abstract away details of underlying sto
and distribution. The build system invisibly manages derived objects (class files
other objects created by invoking build scripts), thereby reducing name clutter
eliminating confusion among objects derived in alternate variants.

System Building. The developer builds a package by evaluating its associated b
script using a special interpreter; imported packages are incorporated by recu
script invocation. The developer gains access to derived objects (for example exe
bles) by invoking tools that abstract away the complexity of the script’s result. T
developer can supply parameters that cause variants to be built (even of imported
ages, possibly remotely located) without perturbing package sources. Build s
results contain extensive information that is both precise and complete, ena
straightforward access by tools that extract, analyze, and display particular kind
information to developers. Build results are guaranteed repeatable, as discussed
Vesta literature [14], enabling derived information to be managed as a cache withi
build interpreter; further discussion of build scripts is beyond the scope of this pap

Configuration Management. The developer creates configurations as packag
whose role is to import particular versions of other packages, including other confi
rations. Each version of such a package specifies transitively and immutably an
trarily large, buildable aggregation of packages comprising some version of
application, applet, library of classes, or other deliverable. Completeness and prec
are crucial to the repeatable build guarantee. A configuration manager permits co
rent non-interfering work by multiple developers.

2.2 Strong Object-Oriented Abstractions

The JP architecture achieves simplicity and robustness through object-oriented d
as well as a strong separation of concerns among subsystems. An important tech
for decoupling subsystems in JP is reliance on Javainterfaces. A Java interface defines
a new reference type without implementation, but which can be implemented by o
wise unrelated classes that provide implementations for the interface’s methods
The editor coordination framework described in Section 3 is based on a Java inte

Interfaces isolate implementation choices, and even permit multiple impleme
tion choices to coexist. JP subsystems such as the builder, the versioning system
source viewing and editing are quite independent. Multiple versioning mechani
could coexist in a single JP store.

2.3 Orthogonal Persistence

Crucial to the independence of subsystems is JP’s replacement of a second wea
in current development environments: reliance on simple file systems to store c
plex, long-lived application data. An implementation of orthogonal persistence
Java [3] permits all JP objects to live as long as needed. Most importantly, it doe
nearly transparently, without degrading JP subsystem boundaries.

Objects persist by reachability from a privileged named root, for example a tabl
3

ndent
dded
spe-
ay,
bjects

repre-
been
cond

senta-
mple
ing

iron-
le. It
and

JP
ckages

radi
ron-

ce
new

at-
s

r who

begin-

er-
versioned packages that reside in a particular store. Object persistence is indepe
of object type and independent of how objects are created [2]. New object types, a
after construction of a programming environment, can persist as well, without any
cial modifications. This makes all JP objects potentially persistent in a uniform w
much as Java’s automatic memory management reclaims storage from unused o
in a uniform, transparent way.

As a consequence, the objects that populate a JP store (for example those
senting Java sources) have not been complicated (nor have their interfaces
twisted) by the need to store them as anything other than the objects they are. A se
consequence of making objects first class (and not some external file-based repre
tion of them) is that tools such as editors normally run as Java programs on a si
objects-in, objects-out basis. A third consequence is the difficulty inherent in revis
the code that implements an installed JP store; this is an instance of theschema evolu-
tion problem, whose discussion is beyond the scope of this paper.

2.4 Simple Versioning and Configuration Management

Although versioning and configuration management are at the heart of the JP env
ment, as described in Section 2.1, the JP versioning/CM system is relatively simp
can be thought of as a monotonically growing map that permanently binds names
immutable content.

Uniform Versioning. All versioning takes place at the granularity of packages.
configurations, which aggregate package versions, are themselves versioned pa
and can recursively represent systems of any size with precision.

Orthogonal Content. JP versioning is orthogonal to content, as suggested by Con
and Westfechtel [6]. Objects of new types, added after original programming envi
ment construction, can be versioned as well.

Immutable Content. Objects to be versioned must implement a special interfa
(Mutability) that permits the versioning system to ensure, before creating a
version, that the transitive closure of its proposed content is immutable.

Version Accretion. A developer commits changes (prerequisite to building) by cre
ing new versions. JP’s versioning model1 permits versions to be added subject to rule
based on named branches with numbered entries. For example, a develope
wishes to work on version3 of package namedcom.sun.pkg must first invoke a
Checkoutoperation on versioncom.sun.pkg.3 . Unlike conventional systems,
which treat checked out data as mutable, JP creates a new branch, for example
ning with version com.sun.pkg.3.checkout-mlvdv.0 (whose content is
identical to that ofsun.pkg.3). The developer may add successively numbered v
sions, typically one for each attempted build,2 with anAdvanceoperation. This work

1. This duplicates the Vesta model, although other models could be added.
2. The justification for this apparently profligate storage policy is beyond the scope of this

paper, but experience with both Vesta and JP support it.
4

ing

rging

cts,
und

to be

ng
tion

nly

new
test

ons.
new
d by

clud-
ake
ct
arts,
rsions.

this
ds to
s of a
ates
, but
rong

arts

o an
nd
might conclude with versioncom.sun.pkg.3.checkout-mlvdv.14 , at which
the developer would invoke aCheckin operation to createcom.sun.pkg.4 . JP
also supports aBranch operation; this could be used to create a branch beginn
with versioncom.sun.pkg.4.mytest.0 . Experiments might be performed on
this branch by a series of Checkout, Advance, and Checkin operations, and a me
tool would help migrate changes back to a main branch.

Content Hierarchy. Package contents are typically hierarchical aggregates of obje
analogous to folders and text files in simple cases, but possibly more like compo
documents in other cases. Such objects, calledparts in JP, are by definition immutable
and by convention constructed to be independent of context; this permits parts
treated as pure values that can be safely shared among versions.

Lightweight Versions. Version creation, being little more than extension of a nami
data structure, is very light weight. The coordination framework, described in Sec
3, takes care to share parts among versions when possible.

Limitations. This simple but robust approach to versioning omits some commo
supported mechanisms, for example dynamically bound names such as “latest ”.
Such functionality is supplied in JP by tools. For example, a tool might help create
configurations according to higher level intentions, such as “update all imports to la
versions.” Other policy-oriented tools might control visibility and access.

2.5 The Coordinated Editing Problem

A developer makes progress in JP by routinely creating and building new versi
This involves creation of new source objects, based on recent edits, as well as
folder-like containers that represent changed contents. Editing in JP is supporte
Java-implemented editors that specialize in particular types of source objects, in
ing containers. Starting with an initial part, a JP editor allows the developer to m
changes (as in the mutablebufferof a text editor) and eventually to create a new obje
of the same type. The problem is how to coordinate editors working on various p
and how to progress smoothly as the developer advances through successive ve

The coordinated editing framework described in the next section addresses
problem. The intended effect is that developers have the freedom to edit what nee
be edited, to build when desired, and to be able to understand the versioning statu
package on those occasions (preferably few) when it is important. This approxim
the kind of freedom offered by single-user integrated development environments
which is difficult to achieve in a scalable development environment based on st
versioning and configuration management. To summarize, this means that in JP:

− new versions of packages must be created quickly and unobtrusively;
− what’s being edited is a hierarchy of parts, in which parts may contain other p

of possibly different type, requiring services of type-specific editors;
− contained types are generally opaque, whose implementation is known only t

open-ended collection of editors that collaborate through generic interfaces; a
5

rs and

pli-

object
view-

ion is
parts,
f the
n the
is-

-

− developers must be able to ascertain at a glance the relationship among edito
their version-related status.

3 The Coordinated Editing Framework

Coordinated editing in JP is based on the Java interfacePartHandler .1 This section
walks through the interface, describing how coordination works and discussing im
cations for implementations and for developers working in JP.

public interface PartHandler {
// Context and Coordination methods
void initialize(VersionHandler vh);
boolean setPart(Mutability part);
void edit();
PartHandler getPartHandler(Path name);
// Versioning methods
Mutability advance();
void revert();
// Usability methods
void setEditable(boolean isEditable);
void setModified(boolean isModified);
void setVersionName(String name);
void setPartName(String name);

}

3.1 Context and Coordination

A part handler (an object implementing thePartHandler interface) is not an editor
itself, but a coordinator. It collaborates with four types of objects:

− a single version handler,
− a single part within the package version being edited,
− possibly views/editors for that part, and
− possibly part handlers for contained subparts.

Figure 1 shows an example of these relationships; here rectangles represent
instances and arrows represent object references. In the example a developer is
ing and preparing to edit a part namedb.d in version3 of packagecom.sun.pkg .
The leftmost part of this diagram represents a JP versioned store, where mutat
narrowly constrained: versions may be added, but once created never change;
once included in a version, likewise never change. All access to and mutation o
versioned store (in the form of new version creation) is managed by the handlers i
middle part of the diagram. All of the relationships shown in this figure will be d
cussed in this section.

1. The interface presented here has been simplified for exposition; it omits issues of concur
rency, event management, and editor start-up/shutdown.
6

s.

ver-

ver-

hat
irect
opers
ure)
and

ould
y edi-
soci-

and a
Four methods in thePartHandler interface establish contextual relationship
The first creates a permanent relationship with an object of typeVersionHandler :

void initialize(VersionHandler vh);

A version handler plays several, central roles. It:

− is the point of access into the JP versioned store for tools in the environment;
− provides access to itscurrent package version;
− implements command objects, which use the versioning system to create new

sions (e.g. Checkout, Advance);
− reassociates itself with any newly created version, thus tracking successive

sions of the developer’s work; and
− notifies its part handlers of version-related state changes.

These roles will become more clear in the following discussion. It is significant t
versioning operations are not implemented in any part handler or editor. This is a d
consequence of orthogonality in both the versioning and storage systems. Devel
can invoke versioning commands (for example the Checkout command in the fig
from any editor, where they might appear as buttons or menu items, but such comm
objects are opaque to the editors. Although not strictly required (a separate tool c
make versioning commands available), direct access to the commands from ever
tor reduces distraction and eliminates confusion concerning which editors are as
ated with which versions.

The next method establishes the fundamental relationship between a handler
part in the versioned store:

Versions

Parts

Version Handlers

Part Handlers

com.sun.pkg.3

a b

c d

content

b

d

root handler

current part

current part

current part

current

com.sun.pkg.3.b.d

..........

............

.......

.........

............

.............

editor

version
Checkout

...

Editors & Other Tools

Checkout ...

Fig. 1. Example Object Instance Relationships

handler

command
7

er
nly
han-

sents
iting,
rt.
riate
edi-
s is

ple
me-
ibly

f the
art
the
itor
make

art.
soci-
h part
part

ested
sub-
ted by
ured
lies

ssed
sion
t. A
ame

(see
are
boolean setPart(Mutability part);

This returnsfalse if the part is not of the implementation type for which the handl
is specialized (this is a system error). Although this method is normally invoked o
during part handler creation, the part associated with a handler changes during the
dler’s lifetime as new parts are created during Advance operations. The part repre
the version content a developer wants to see when browsing; when the user is ed
the current part represents the most recently versioned instance of the named pa

Each part handler implementation is responsible for creating an editor approp
to the implementation type of its associated part (for simplicity we assume that all
tors appear as top level windows). In a simple realization of the framework, thi
done by a call to a method on the part handler:

void edit();

An editor communicates only with its associated part handler via a comparably sim
interface that can be private to the pair. In the most flexible realization of the fra
work, using the Model-View-Controller approach, the part handler holds the (poss
mutable)data modelfor the associated part, and editors areviews. Other editor imple-
mentations may manage their own mutable buffers, into which the data content o
current part is initially copied. In any case, the division of responsibility between p
handler and editor is private to the two implementation types, hidden by
PartHandler interface. Finally, a part handler is responsible for passing to its ed
the set of command objects associated with its version handler. The editor can
these available to the developer, for example as buttons or menu items.

A fourth relationship is with handlers for parts that are children of the current p
Tools in the environment gain access to parts by first locating a version handler as
ated with the desired package version, and then requesting a part handler for eac
of interest. A version handler supplies part handlers by recursive calls down the
handler hierarchy of the following method, based on the name of the part:

PartHandler getPartHandler(Path name);

Typical implementations create handlers for subparts only when needed, as sugg
in Figure 1 where not all potential handlers appear. The implementation types of
parts need not be known to a container or its part handler. Part handlers are crea
a shared abstract factory object that embodies the desired binding (possibly config
by individual developers) between part types and handler types (which in turn imp
editor types in the simple case).

The net effect of this collaboration is that each version of a package being acce
by tools in the environment is associated with a single version handler; the ver
handler manages a tree of part handlers which partially mirror the version’s conten
developer can conveniently and safely view multiple versions of a package at the s
time,even in situations where a part is contained in multiple versions.Such sharing is
common, since unchanged parts are typically shared by successive versions
below). Each version’s handler group maintains context for viewing parts, which
immutable and independent of the contexts in which they are included.
8

ds a
kout,
pre-

nted
cces-
new

tains
ler:

el. A
devel-
ting a
e inde-

ple
ren

mple
odus
ch,

nta-
and

s of
parts
e actu-
itor-
kage-
sup-
t by

rface
s an
nt.
ert
ive to

ame-
3.2 Versioning

Versioning operations include Checkout, Advance, Checkin, and Branch. Each ad
new version to a JP package according to rules of the versioning model. Chec
Checkin, and Branch operations create new versions with content identical to their
decessors, as in the example of Section 2.4.

A developer’s changes are committed by the Advance command, impleme
within the version handler. This command creates a new version, makes it the su
sor to the current version with a call to the versioning system, and then causes the
version to become version handler’s current version. The Advance command ob
the content for a new version by calling the following method on the root part hand

Mutability advance();

This returns a part that represents the current “value” of the handler’s data mod
newly created part also becomes the handler’s current part. In cases where the
oper has made no changes, then the handler returns its current part, without crea
new one. Parts can be shared safely among versions when they are designed to b
pendent of context.

A handler for a container part must implement this method recursively, for exam
advancing each child handler and creating a new container part if any of its child
have produced new parts. This amounts to a distributed implementation of the si
path-copying approach to versioning large objects, for example as used for Ex
“storage objects” [4]. It is not required that handler/editor pairs follow this approa
but doing so effectively constrains storage consumption.

It is worth noting that all this takes places via interfaces that hide part represe
tions, which are generally considered private to handler/editor implementations
possibly some privileged clients of them. This permits alternate implementation
similar parts. For example, editor implementations are free to represent versioned
as deltas that refer to predecessor parts (whether or not all the predecessors wer
ally versioned directly), either in the name of compact storage or to implement ed
specific history mechanisms. Such history mechanisms are orthogonal to pac
level history maintained in package version histories; history-guided undo can be
ported at both levels, but always by advancing to newly created versions, no
removing versions.

This separation of concerns is greatly enhanced by the absence from this inte
of any negotiation for persistent storage: a handler (or its editor) simply create
object, which is then passed to the versioning system where it becomes permane

The handler framework itself supports a crude but familiar kind of undo. A Rev
action recursively instructs a group of part handlers to discard changes made relat
the current version (i.e. since the most recent Advance).

void revert();

3.3 Usability

Only those aspects described above are strictly required for the JP coordination fr
9

be
the
een

en
ause

hould
lls

and
ple, a

ok-
r uses
dlers,
r’s

tent of

ting
as a

s its

The
heck
in
bit

edi-
ver-

hich

cts,
f its
loper
work to function correctly. For it to function effectively, however, attention must
paid to the look and feel of the system in operation. Four methods in
PartHandler interface are used to ensure smooth, unobtrusive interaction betw
editing and versioning.

A common, frustrating usability failure occurs in many environments wh
changes made in one or more edit buffers cannot be conveniently committed bec
of inappropriate versioning state. Each JP editor is made aware whether editing s
be permitted.1 Notification is propagated from version handler to part handlers by ca
on the method:

void setEditable(boolean isEditable);

Editors display this status (ideally using a visual theme shared with other editors)
refuse to make changes when this permission has not been granted. For exam
developer viewing package versioncom.sun.pkg.3 , as shown in Figure 1, would
not be allowed to make changes without first clicking on the Checkout button, inv
ing the Checkout operation in the associated version handler. The version handle
the versioning system to create a checkout branch and then notifies part han
which in turn notify editors that editing is permitted. At this point the version handle
current version changes to the newly created version (3.checkout-mlvdv.0 , for
example). Part handler and editors make no changes, however, because the con
the newly created version is identical to its predecessor.

Confusion arises from misunderstanding the status of uncommitted edi
changes. In keeping with JP’s versioning model, any change to a part is treated
change to the whole version. Each version handler keeps a “dirty” bit and notifie
part handlers when it changes:

void setModified(boolean isModified);

Editors display this status, ideally using a visual theme shared with other editors.
coordination framework requires that any editor about to permit a change must c
the dirty bit; when the dirty bit is off, the editor must notify its part handler, which
turn notifies the version handler, which then notifies all part handlers that the dirty
has come on.

It can be confusing to have parts visible from more than one version, so each
tors is made aware of the name for its current version. This name changes when
sioning actions occur, as in the Checkout example mentioned above, following w
the version handler notifies all part handlers with calls on the method:

void setVersionName(String name);

Editors display this name, for example in the window bar as shown in Figure 1.
Hierarchical naming of parts within a package is natural for source obje

although not strictly required. Each editor is made aware of the current name o
associated part. The name of a part can change, for example when the deve

1. In the current versioning model, permission to edit is defined by whether the current ver-
sion is the latest on a checkout branch.
10

han-

gets

mple

the

ny of
mple
-

rs to

itor,
ow
ple

and
ample

eci-
sion
m a
uild

dler
, since

ht be

are
issue

[14],
an-
renames an enclosing folder, in which case the affected part handlers must notify
dlers for child parts with calls on the method:

void setPartName(String name);

3.4 Coordination in Action: The Edit-Build Loop

An important consequence of this framework is the smoothness with which work
done. Here is a summary of how it appears to a developer.

− A developer opens one or more editors on parts of a package version, for exa
com.sun.pkg.3 . Parts might include both folders and source objects.

− The editors visually indicate that editing is not permitted and, of course, that
contents of the version are not “dirty”.

− Deciding to make changes, the developer presses the Checkout button on a
the associated editors. Every editor shows the new version name (for exa
com.sun.pkg.3.checkout-mlvdv.0), and every editor indicates that edit
ing is now permitted.

− The developer begins to edit. The first change in any editor causes all edito
show that the dirty bit has turned on.

− The developer decides to try a build by pressing a build button on any ed
which automatically invokes an Advance before the actual build. All editors sh
that the dirty bit has gone off and that there is a new version name (for exam
com.sun.pkg.3.checkout-mlvdv.1).

− When finished with the session, the developer presses the Checkin button
enters some version comments. The version name changes yet again (for ex
to com.sun.pkg.4), and editors show that editing is no longer permitted.

It is significant that the developer pays no attention to versioning, other than the d
sion to invoke Checkout and Checkin operations. At the same time, the progres
through versions is visible in every editing context, and the developer benefits fro
complete history of every build performed, along with the JP guarantee that all b
are repeatable.

The developer may ask to view another version, for which a new version han
and associated editors would be created. These editors are managed separately
they have distinct version handlers, even in situations where the same part mig
shared between the two versions in view.

In practice developers often work concurrently on many packages, which in JP
independently versioned. Coordination among version handlers is an important
that lies beyond the scope of this paper.

4 Related work

4.1 Vesta

The JP environment is based heavily on design principles from the Vesta project
which takes the position that configuration management, building, and storage m
11

tore
eas it
of a
edi-
the

ning
at can
ontrast

and

an
con-
ioning
; JP
ork

enta-
r-
ngly:
(with

those

ocu-
doc-
to a
om-
ny

ple,
state
isually
inci-
blem
ce on

ora-
the
agement must be aligned for reliability and scalability. Building takes place in the s
in both JP and Vesta; in JP, however, editing also takes place in the store, wher
does not in Vesta. A Vesta Checkout operation copies the hierarchical content
package version into a file system tree where it may be edited with conventional
tors; a Vesta build requires creation of a new version by copying files back into
store.

Vesta makes no provision for coordination among file-based editors and versio
system, as there is in JP. Furthermore, Vesta package contents are limited by wh
be represented as files (Vesta stored sources are byte arrays) and directories, in c
to JP’s flexible use of arbitrary objects.

4.2 POEM

The POEM environment [15], developed concurrently with the first JP prototype
with a similar strong influence from Vesta, shares many goals with JP.

Key implementation strategies differ, however. POEM keeps meta-data in
OODB, leaving storage of parts to a conventional file-based versioning system. In
trast, JP represents all data as persistent objects in a simple object-oriented vers
framework. As in most systems, POEM permits editing by creating mutable files
supports editing in the store through direct object interaction in the handler framew
(although integration with separate editors can be supported by particular implem
tions of thePartHandler interface). Building in POEM is encapsulated as an ope
ation within software units, whereas the JP approach separates the two more stro
JP parts are treated as immutable values, and the JP builder is a single interpreter
generic caching behavior) that computes over a space of values that includes
parts as well as derived objects.

4.3 Compound Document Editing

The JP approach to coordinated editing has much in common with compound d
ment frameworks such as OpenDoc [7]. Compound documents can contain other
uments whose types are unknown, the only requirement being adherence
coordination framework by appropriate editors. JP departs most notably from c
pound document frameworks with its support for versioning (without requiring a
version awareness in editor implementations).

Compound document frameworks deal with other issues as well. For exam
parts of their protocols concern GUI-related resources (for example screen real e
and access to a shared menu bar), so that editors for embedded parts can be v
embedded within a containing editor; such support is absent in JP, but could in pr
ple be added. Compound document protocols must also deal with the sticky pro
of storage management, a problem solved transparently in JP through its relian
orthogonally persistent objects.

4.4 COOP/Orm

JP’s editor coordination has the most in common with work on fine-grained collab
tive editing and version control by Magnusson et. al. [16][17]. Both start from
12

, col-
ation

em
rtant

ing
s).
JP

ol-

eas

nd
such
ay. JP
and

n the

tion
this
ader
e is

to be
with
ost
more

e cur-

oto-
position that a software development environment must be focused on concurrent
laborative, and distributed development; both projects place version and configur
management mechanisms at the heart of the respective systems.

Differences between the systems reflect different project emphasis:

− Point of Departure: JP starts with the requirement for reliable, scalable syst
building, whereas COOP/Orm suggests that software development is an impo
special case of collaborative document development.

− Versioning: COOP/Orm emphasizes fine-grained versioning, whereas version
in JP is defined to coincide with the granularity of building (language package

− Editing: COOP/Orm emphasizes fine-grained collaborative editing, whereas
approximates file-granularity editing (finer grained editing is a JP goal) with c
laboration permitted only by concurrent package checkouts.

− Distribution: COOP/Orm emphasizes distributed, collaborative editing, wher
JP emphasizes reliable, distributed building.

− Editor Integration: COOP/Orm editors must be strongly versioning-aware a
participate in a collective representation scheme, where JP editors have no
requirements. JP editors are free to represent the parts they manage in any w
storage is made straightforward by a combination of orthogonal persistence
orthogonally versioned store objects.

None of these differences appear to reflect fundamental incompatibilities betwee
COOP/Orm and JP approaches.

4.5 ClearCase

Although there is no direct counterpart in ClearCase, a commercial Configura
Management product [5], to the editor coordination framework that is the focus of
paper, the case study of ClearCase by Asklund and Magnusson [1] invites a bro
comparison. The dominant distinction is in fundamental technology: ClearCas
designed to work within the semantics of conventional file systems and themake[8]
program for system building.

The JP approach abandons both of these in favor of technologies believed
fundamentally more reliable and scalable: persistent object storage combined
Vesta-style functional programming for building. This shift potentially addresses m
shortcomings mentioned in the case study, by making needed mechanisms either
reliable, easier to implement, or unnecessary. Specific limitations addressed by th
rent, limited prototype of the JP approach include:

− Support for versioned sub-systems;
− “Light-weight” branch types;
− Fine-grained “micro-versions”; and
− A more powerful support for configurations than “labels”.

5 Project Status

The architectural principles behind the JP environment were first explored in a pr
13

oto-
(and
sed

rting
g in

age,
oped
ories
d JP
ditor

that

nted

ects
GUI
tric

the

s, so
ro-

oes
eed
kin is
stant
this
ise
with

ith
usly;

that
ting a

we
type implemented in C++ using an object-oriented database [12][13]; that first pr
type included editor coordination as described here. The architectural complexity
accompanying fragility) added by the OODB, although less severe than in file-ba
implementations, drove us to seek truly orthogonal persistence.

A second, file-based prototype has been in daily use for several years, suppo
both its own development and that of its successor. Editor coordination is missin
this second prototype, and it is sorely missed.

A third prototype is being constructed in Java using PJama [3] for object stor
an implementation of orthogonal persistence [2] for Java. PJama is being devel
through a collaboration between the Forest Project at Sun Microsystems Laborat
and the Persistence and Distribution Group at the University of Glasgow. The thir
prototype is dedicated specifically to building large systems in Java [11], and the e
coordination scheme reported here is at its core.

Our immediate goal is to put into daily use the PJama-based JP prototype. On
platform we intend to push source editing in several directions:

− Finer granularity: decompose Java source objects into smaller language-orie
parts, for example as is done in COOP/Orm [17].

− Higher-level sources: build or import tools that create higher-level source obj
from which Java sources are generated through building. Examples include
builders and OO modeling tools. The main difficulty here is adapting file-cen
applications to the much simpler “objects-in, objects-out” interface.

− Add a layer for software process tracking and management.
− Add a more rich view architecture, for example supporting editing in place in

style of compound documents.
− Language-based editing: make available to editors the results of recent build

that suitably equipped editors can exploit language information to drive high-p
ductivity editing [18].

6 Conclusions and Further Work

Our very limited experience with coordinated editing suggests this approach d
indeed enable a smooth edit-build loop for developers, with absolutely minimal n
for version awareness until such time as a versioning-specific action such as Chec
desired. Lack of editor coordination in the second prototype has been both a con
irritation and reminder of its success in the first prototype. We are confident that
framework will be a key component in our efforts to make convenient an otherw
inconvenient environment that creates a completely new versioned configuration
every build.

Implementation experience so far confirms our intuition that the need to deal w
issues of storage and versioning complicates the construction of editors tremendo
the overhead of creating new editors for particular objects is sufficiently low in JP
it makes sense to construct an editor in this framework for tasks as simple as set
boolean value (the first prototype indeed had such an editor).

We will be able to evaluate and validate this framework more thoroughly as
14

he
e an
rof.

om-
val

f Sun

e in
Pro-
ce,

tent

t for
lica-

on
 of
.

1996)

e &

96)

tion)
pursue the editing-related goals mentioned in the previous section.

7 Acknowledgments

This work benefits greatly from the vision of Mick Jordan, Principal Investigator of t
Forest Project at Sun Microsystems Laboratories. The delightful opportunity to us
increasingly practical, highly orthogonal persistent object system owes much to P
Malcolm Atkinson and his band of persistent researchers in Glasgow. Helpful c
ments on drafts of this paper were contributed by Huw Evans, Tobias Murer, Yu
Peduel, and anonymous reviewers.

8 Trademarks

Sun, Sun Microsystems, and Java are trademarks or registered trademarks o
Microsystems Inc. in the United States and other countries.

References

1. Asklund, U, Magnusson, B.: A Case-Study of Configuration Management with ClearCas
an Industrial Environment. In: Conradi, R. (ed.): Software Configuration Management,
ceedings of the ICSE ‘97 SCM-7 Workshop, Boston. Lecture Notes in Computer Scien
Vol. 1235. Springer-Verlag, Berlin Heidelberg New York (1997) 201-221

2. Atkinson, M., Morrison, R: Orthogonally Persistent Object Systems. VLDB Journal4
(1995)

3. Atkinson, M., Daynès, L., Jordan, M., Printezis, T., Spence, S.: An Orthogonally Persis
Java. In: ACM SIGMOD Record25 (1996) 68-75

4. Carey, M., DeWitt, D., Richardson, J., Shekita, E., Lochovsky, F.: Storage Managemen
Objects in EXODUS. In: Kim, W. (ed.): Object-Oriented Concepts, Databases, and App
tions. Addison Wesley, Reading, Massachusetts (1989) 341-369

5. ClearCase Concepts Manual. Atria Software (1992). See alsohttp://www.ratio-
nal.com/products/clearcase/

6. Conradi, R., Westfechtel, B.: Towards a Uniform Version Model for Software Configurati
Management. In: Conradi, R. (ed.): Software Configuration Management, Proceedings
the ICSE ‘97 SCM-7 Workshop, Boston. Lecture Notes in Computer Science, Vol. 1235
Springer-Verlag, Berlin Heidelberg New York (1997) 1-17

7. Feiler, J., Meadow, A.: Essential OpenDoc. Addison Wesley, Reading, Massachusetts (

8. Feldman, S.: Make -- A Program for Maintaining Computer Programs. Software--Practic
Experience9 (1979) 255-265

9. Gosling, J., Joy, W., Steele, G.: The Java Language Specification. Addison-Wesley (19

10. Jordan, M., Van De Vanter, M.: Large Scale Software Development in Java. (In Prepara
Sun Microsystems Laboratories Technical Report (1998)
15

, J.,
ents,

ted
rey,

tions

.):

e

oop-

or,

95)
11. Jordan, M., Van De Vanter, M.: Modular System Building With Java Packages. In: Ebert
Lewerentz, C. (eds.): Proceedings 8th Conference on Software Engineering Environm
Cottbus, Germany (1997) 155-163

12. Jordan, M., Van De Vanter, M.: Software Configuration Management in an Object-Orien
Database. In: USENIX Conference on Object-Oriented Technologies (COOTS), Monte
CA, June 26-29 (1995)

13. Lamb, C., Orenstein, J., Weinreb, D.: The ObjectStore Database System. Communica
of the ACM4 (1991) 50-63

14. Levin, R., McJones, P.: The Vesta Approach to Configuration Management. Research
Report 105. Digital Equipment Corporation Systems Research Center (1993)

15. Lin, Y., Reiss, S.: Configuration Management in Terms of Modules. In: Estublier, J. (ed
Software Configuration Management. Lecture Notes in Computer Science, Vol. 1005.
Springer-Verlag, Berlin Heidelberg New York (1995) 101-117

16. Magnusson, B., Asklund, U., Minör, S.: Fine-Grained Revision Control for Collaborativ
Software Development. In: Proceedings of the First ACM SIGSOFT Symposium on the
Foundations of Software Engineering, Los Angeles, California (1993) 33-41

17. Magnusson. B.: Fine-Grained Version Control in COOP/Orm. In: Workshop on Version
Control in CSCW Applications at the European Conference on Computer Supported C
erative Work, Stockholm (1995)

18. Van De Vanter, M.: Practical Language-Based Editing for Software Engineers. In: Tayl
R., Coutaz, J. (Eds.):Software Engineering and Human-Computer Interaction. Lecture
Notes in Computer Science, Vol. 896. Springer-Verlag, Berlin Heidelberg New York (19
16

	Coordinated Editing of Versioned Packages in the JP Programming Environment
	Michael L. Van De Vanter
	Sun Microsystems Laboratories 901 San Antonio Road Palo Alto, CA 94303 USA Michael.VanDeVanter@En...
	Abstract. As part of an investigation of scalable development techniques for systems written in t...
	1 Introduction
	2 JP Overview
	2.1 Package-Centric Development
	2.2 Strong Object-Oriented Abstractions
	2.3 Orthogonal Persistence
	2.4 Simple Versioning and Configuration Management
	2.5 The Coordinated Editing Problem

	3 The Coordinated Editing Framework
	3.1 Context and Coordination
	Fig. 1. ��Example Object Instance Relationships

	3.2 Versioning
	3.3 Usability
	3.4 Coordination in Action: The Edit-Build Loop

	4 Related work
	4.1 Vesta
	4.2 POEM
	4.3 Compound Document Editing
	4.4 COOP/Orm
	4.5 ClearCase

	5 Project Status
	6 Conclusions and Further Work
	7 Acknowledgments
	8 Trademarks
	References
	1. Asklund, U, Magnusson, B.: A Case-Study of Configuration Management with ClearCase in an Indus...
	2. Atkinson, M., Morrison, R: Orthogonally Persistent Object Systems. VLDB Journal 4 (1995)
	3. Atkinson, M., Daynès, L., Jordan, M., Printezis, T., Spence, S.: An Orthogonally Persistent Ja...
	4. Carey, M., DeWitt, D., Richardson, J., Shekita, E., Lochovsky, F.: Storage Management for Obje...
	5. ClearCase Concepts Manual. Atria Software (1992). See also http://www.rational.com/products/cl...
	6. Conradi, R., Westfechtel, B.: Towards a Uniform Version Model for Software Configuration Manag...
	7. Feiler, J., Meadow, A.: Essential OpenDoc. Addison Wesley, Reading, Massachusetts (1996)
	8. Feldman, S.: Make -- A Program for Maintaining Computer Programs. Software--Practice & Experie...
	9. Gosling, J., Joy, W., Steele, G.: The Java Language Specification. Addison-Wesley (1996)
	10. Jordan, M., Van De Vanter, M.: Large Scale Software Development in Java. (In Preparation) Sun...
	11. Jordan, M., Van De Vanter, M.: Modular System Building With Java Packages. In: Ebert, J., Lew...
	12. Jordan, M., Van De Vanter, M.: Software Configuration Management in an Object-Oriented Databa...
	13. Lamb, C., Orenstein, J., Weinreb, D.: The ObjectStore Database System. Communications of the ...
	14. Levin, R., McJones, P.: The Vesta Approach to Configuration Management. Research Report 105. ...
	15. Lin, Y., Reiss, S.: Configuration Management in Terms of Modules. In: Estublier, J. (ed.): So...
	16. Magnusson, B., Asklund, U., Minör, S.: Fine-Grained Revision Control for Collaborative Softwa...
	17. Magnusson. B.: Fine-Grained Version Control in COOP/Orm. In: Workshop on Version Control in C...
	18. Van De Vanter, M.: Practical Language-Based Editing for Software Engineers. In: Taylor, R., C...

