
ial

c
is

an

a
m-
ol

s,

g)

it
no
dd
te
t

g
e
ifi-
of
but
ge,
m-
al

f

Preserving the Documentary Structure of Source Code

in Language-based Transformation Tools

SML 2001-0392

IEEE International Workshop on Source Code Analysis and Manipulation, November 2001

Michael L. Van De Vanter
Sun Microsystems Laboratories

901 San Antonio Road, UMTV29-112
Palo Alto, CA 94303 USA

Michael.VanDeVanter@Sun.COM
Abstract
Language-based tools necessarily translate textual source
code into grammar-based representations. During transla-
tion, tools such as compilers and analyzers are generally
free to discard comments and white space, which have no
impact on the code’s formal meaning. Tools that produce
transformed source code for human consumption enjoy no
such freedom. Comments and white space are crucial to the
comprehensibility and maintainability of source code and
thus to its ultimate value. However, it is not always practi-
cal or desirable for transformation tools to replicate com-
ments and white space in their entirety. An analysis of the
documentary(as opposed to linguistic) structure of source
code leads to a practical strategy for preserving its com-
prehensibility when processed by such tools.

1. Introduction

Many language-based tools for dealing with source code
follow the design of compilers (the original language-based
tools). Such tools typically:
1. read textual source code from files;
2. create a data structure that represents the formal lin-

guistic1 meaning of the code, based on some kind of
syntax tree;

3. analyze and/or transform this data structure;
4. produce a result; and
5. exit, discarding the data structure.

This works well for a large class of tools but is funda-
mentally inadequate in tools that produce transformed code
for ongoing development. Such tools include language
translators [1], prettyprinters, automatic restructurers [5],
and interactive tools for object-oriented refactoring [7].

The compiler approach fails because it discards a cruc
aspect of source code (which we call itsdocumentary
structure) that is largely orthogonal to its formal linguisti
structure. A significant portion of documentary structure
expressed via comments and white space,2 and in many
cases preempts linguistic structure in the eyes of hum
readers.

Designing useful code transformation tools requires
fundamental change of perspective, away from the co
piler view of source code. In this alternate perspective, to
builders must acknowledge that:
• text containing source code is adocumentin the human

sense of the word;
• a code document is written for both humans and tool

but the human audience is the more important;
• the documentary structure of code (its human meanin

is grounded in information thatcannot be derived from
its linguistic structure, and in factcannot even be
understood in those terms.
The documentary structure of source code makes

comprehensible to people; incomprehensible code has
long-term value. Source code tools are designed to a
value, but if they lose documentary structure they viola
the tool builder’s equivalent of the physician’s oath to “firs
do no harm.”

Although builders of language-based tools have lon
struggled with comments and white spac
[1,2,5,11,12,17,23], for decades there has been no sign
cant progress in the way they are managed. Variations
language syntax and editing tools have been proposed,
without apparent success. There are small signs of chan
for example the somewhat more structured JavaDoc co
ments [8], but the focus of this paper is on convention

1. In this paperlinguistic refers exclusively to programming languages.
2. Other parts of the documentary structure include naming and use o
programming idiom, both beyond the scope of this paper.
© 2001 Sun Microsystems, Inc., © 2001 IEEE

nd
al
an-
ce
s-

a
or-
y-
ate

2
ed
-
pri-
ern
en-
of
 it.

-
s
-

,

comments and white space in code written in languages
such as C, C++, and the Java™ programming language.

The challenge for the class of tools identified here is to
construct, along with modified code, a new documentary
structure that conveys the same meaning to the human
reader as did the original. This reflects a significantly dif-
ferent focus than the approaches taken by other tools.

This paper argues for this new perspective and describes
a strategy for implementing such tools. Section 2 begins
with background on white space and comments and on how
tools have in the past attempted to deal with them. The
expedients adopted by those tools, which never seem to
work quite right, are shown in Section 3 to be fundamen-
tally flawed by their neglect of documentary structure. Sec-
tion 4 describes the relevant characteristics of documentary
structure, and Section 5 presents an architectural strategy
for preserving it. The proposed strategy is as conceptually
as simple as the documentary characteristics identified in
Section 4, although it is challenging to implement in con-
ventional language-based frameworks. Section 6 reviews
other approaches that have been taken in dealing with the
“comment problem” and argues that they are not likely to
eliminate current comment mechanisms any time soon.
Section 7 concludes with observations, implementation sta-
tus, and open questions.

2. Background

This section describes in more detail the context of the
problem: the nature of white space and comments, the
design of structure-based transformation tools, and the fun-
damental mismatch between them.

2.1 Programming languages

The documentary structure of source code is dominated
by the spatial arrangement of program elements and com-
ments as they appear to a reader on a printed or virtual
page. Programmers create this structure using white space
and comments, the only tools at hand, but it is not formally
part of the program.

The C++ and Java programming languages are typical,
with nearly identical treatment of white space and com-
ments. In both cases the presumption is that source code is
stored in text files.White space(space characters, tabs and
line breaks) is defined to include those characters that do
not comprise tokens; tokens are the lexical elements of a
program, so white space is by definitionnot part of a pro-
gram. Commentsare equivalent to white space and can take
two forms (block commentsand line comments), as shown
in Figure 1. The entire topic is covered in 2 of the 500

pages inThe Java Language Specification [10].

One can’t help but note the weakness of comments a
white space, especially when compared to the rich form
structure of programming languages. There have been l
guages offering slightly more structure in their white spa
and comments, but the pre-lexical (i.e. linguistically tran
parent) approach now dominates.

In contrast, theuseof white space and comments has
long and colorful history, perhaps the more so because f
mal structure is lacking. They can occur just about an
where, so programmers feel free to create elabor
conventions for their use. For example, the code in Figure
(excerpted from a large program written by experienc
C++ programmers1) nicely demonstrates how program
mers make code easy to read. The combination of appro
ately terse comments, blank lines, and a repeating patt
(all three are necessary) gives the human reader a trem
dous advantage in understanding both the overall point
the code, as well as the individual clauses that comprise

Since reading code is the principal activity of program
ming, even while writing it [9], documentary structure ha
significant impact on programmer productivity. Program
mers know this. For example:

1. All code examples in this paper are excerpted from production code
with some renaming and reformatting for compactness.

/* the text of a block comment may
contain line breaks. */

// a line comment ends at a line break

Figure 1. Conventional text comments

Figure 2. C++ code with white space and comments

// completely before
if (delend < start) {

e->start_index += inserted - removed;

// overlap start
} else if (pos <=start && delend < end) {

e->notify(0, delend - start, 0);
e->start_index = pos + inserted;

// completely overlaps
} else if (pos <= start && delend >= end) {

delete e;
iter.remove_entry();

... <some clauses omitted>

// completely after
} else {

// do nothing
}

n

y
-
s,

r-

ts
ut
in

is
of
w
y

tch
nd
at-

c-

ed
l-
ch
h
ls
of

e.
re
n

on
to
m-
w

-

r-

ly
t

• they demand auto-indenters, which only manage white
space; and

• they argue passionately about the (linguistically insig-
nificant) ordering of braces and line breaks.

Laboratory experiments have shown that improved visual
presentation of source code (largely involving documentary
structure) increases reading comprehension [3,16,21].

For the purpose of this paper, documentary structure
consists of these elements:
• Indentation: spaces that separate code or comments

from the left margin of the page.
• Inter-token spaces: spaces between adjacent tokens on a

line.
• Line break: a special character that causes the following

character to begin a new line.
• Comments: as shown in Figure 1.

2.2 Language-based transformation tools

Language-based tools such as compilers and language-
based editors operate on the formal linguistic structure of
programs. The conventional data structure for representing
programs is asyntax tree, derived from source code by con-
text-freeparsing;some syntactic details may be elided, and
additional annotations on tree nodes capture such context-
sensitive information as data types.

The tools under consideration in this paper modify pro-
grams represented in such an internal representation and
then produce a result byunparsing: generating textual
source code from the internal representation. For example,
language translation systems read programs written in one
language and write equivalent programs in another lan-
guage (or a newer version of the same language). Restruc-
turing tools change programs for a variety of reasons, for
example the handling of Y2K dates. Tools are currently
being explored to support the Extreme Programming [4]
practice of ongoing code improvement via object-oriented
refactoring: rearrangements that do not change the behav-
ior of the program, but which increase the maintainability,
and thus the quality of the code [7].

2.3 The structural mismatch

The defining characteristic of such tools is that they
must generate transformed source code suitable for further
use by people, to whom documentary structure is essential.
But white space and comments are not formally part of
programs, so they have no well-defined representation in
these conventional data structures. This leaves tool design-
ers with ad hoc strategies for attaching comments to syntax
trees, with generally unsatisfactory results:
• A COBOL restructuring system was observed to pro-

duce “dangerous” and “misleading” comments [5].

• JavaML, a proposed standard structural representatio
for programs written in the Java programming lan-
guage, stores comments (which are called “especiall
troublesome”) as attributes on “certain ‘important’ ele
ments [tree nodes] (including class, anonymous-clas
interface, method, field, block, loop). ... Determining
which comments to attach to which elements is chal-
lenging; the current implementation simply queues up
comments and includes all that appear since the last
‘important’ element in the comment attribute of the cu
rent such element” [2].

• A Pascal-to-Ada translation system retained commen
by attaching them to tree nodes using simple rules, b
the authors admitted that comments wouldn’t end up
the same place [1].
In all these cases the documentary structure of code

mostly lost. This might be acceptable in the context
infrequently performed tasks, during which humans revie
and correct all the results, but it fails completely in an
environment where transformations occur frequently.

Damage occurs because of the structural misma
between the documentary and linguistic structures, a
because of the belief that attaching comments to their “n
ural” locations in a syntax tree is sufficient. The following
section shows why this strategy, often adopted instin
tively, is doomed.

3. Documentary structure is not linguistic

Addressing the “comment problem” in language-bas
tools is often an afterthought and usually follows an il
considered strategy of the sort mentioned above: atta
each comment to the “right” place in the tree. Althoug
intuitively appealing to language technologists, this fai
for a fundamental reason. The documentary structure
source code is largely orthogonal to its linguistic structur
Projecting documentary structure onto linguistic structu
loses crucial information, without which no unparser ca
produce intelligible source code.

In practice, unsatisfactory results are often blamed
not getting the rules right: rules for attaching comments
tree nodes, and rules for unparsing them. This section de
onstrates why such rules will never be right, no matter ho
much language technology is applied. For example:
• The meaning of textual comments often depends on

white space and other comments in ways that defy lin
guistic analysis;

• Some white space, in particular line breaks, is as impo
tant as comments; and

• The structural referent of a comment cannot be reliab
inferred, may not be explicitly represented, and migh
not even exist at all.

e-
ies

ne
e,

n.
of

s.
ti-
at

he

gin-

en
re

re
od

as
ely

by
s.
re-
he
3.1 An instructive example

Referring back to Figure 2, consider the meaning of the
second comment: “overlap start ”. The C++ program-
mer quickly ascertains, even before deciphering the text,
that it identifies the second in a list of cases being handled
separately. Indentation and blank lines encourage under-
standing the code as a list of cases with responses, rather
than the deeply nested conditional statement which actu-
ally implements it.

Once this relationship among line groupings is under-
stood, the text of the comment can then be read in the con-
text of its sibling comments (“completely before ”,
“completely overlaps ”, etc.). At this point, possibly
with a glance at the boolean conditionals, it becomes clear
that the clauses pertain to possible ordering relationships.

The binding between comments and cases is made clear
by the juxtaposition of each comment with its associated
code, and by separating the groups with blank lines. Note
the position of the second comment, however: it sitsinside
the code handling the first case and has no syntactic rela-
tionship at all with the code to which it obviously refers.

The first comment is also curious. It precedes the single
nested conditional statement that comprises the entire code
excerpt, and so might be thought to refer syntactically to
the whole thing. The parallel positioning of the nearby
comments, however, combined with parallel language in
their texts, suggests that it applies only to the first “if ”
clause.

The final comment is more curious yet: it apparently
applies to no statements (it is in an empty block) and to no
explicit case (there is no expressed boolean conditional).
Many compilers would not only discard the comments, but
also the entireelse clause and its empty block, even
though they collectively convey crucial information to
human readers.

This discussion is not meant to argue for a particular
style of writing comments; many programmers would have
commented the code in Figure 2 differently. The important
points are:
• the code is intelligible to humans;
• much of the initial information ascertained by the

reader comes from its documentary structure in which
even line breaks participate significantly;

• many elements of documentary structure carry meaning
only in the context of the whole; and

• the relationship between these elements and the formal
linguistic structure of the programs is idiosyncratic at
best.
The remainder of Section 3 discusses these relationships

in more detail, starting with the most basic problem in
managing comments.

3.2 Identifying comment boundaries

Any attempt to capture comments in source code imm
diately encounters the problem that comment boundar
are not well defined.

For example, does the method in Figure 3 contain o
comment or two? To the human reader there is only on

but there are two according to the language definitio
Treating these comments separately amounts to loss
information.

Other common configurations exhibit related problem
The code in Figure 4 contains three comments linguis
cally, but only a single comment to the human reader. Wh
if the second comment were indented differently than t
other two? Alternately, what if thetextof the second com-
ment were indented several extra spaces, as if at the be
ning of a paragraph?

Should an empty comment define a boundary betwe
two adjacent comments, as in Figure 5? What if these we
block comments instead of line comments, or if they we
indented differently? None of these questions have go
answers.

3.3 White space as comments

Although comments are widely understood to act
white space, the converse is seldom appreciated, nam
that white space often acts as a comment.

For example, the statements in Figure 6 are grouped
blank lines to show which comments apply to which line
Even if the comments were retained in a structural rep
sentation, and even if they were unparsed back into t

storage_size
StructRegion::get_region_size() const
{
 if (size==0){ // ARM(p.164): empty classes
 return 1; // have nonzero size.

}
 return size;
}

Figure 3. One comment or two?

// This is an extended comment.
// Comments can be very long and might
// extend for several paragraphs.

Figure 4. Extended comments

// Finished with that.
//
// Now start this.

Figure 5. One, two, or three comments?

u-
.
r-
m-

nt.

a-
to
an-

2
es
0.

c-
to

n
d
nt
-
e

o

ter-
e

e
l
se
ary
same sequence, information would be lost if the blank lines
were not reproduced. For example the first comment might
be thought to refer to the whole block, and the second
might just as well refer backwards.

The documentary strength of blank lines cannot be over-
stated. In Figure 2 blank lines effectively preempt the syn-
tactic structure of the code. Without the preceding blank
line (and the absence of a following blank line) the second
comment in Figure 2 would be seen in the first clause of the
conditional statement rather than the second.

3.4 Finding structural referents

Attaching a comment usefully to a syntax tree is often
assumed to mean finding the “right” node: the one to which
the comment refers. However, this can depend crucially on
documentary structure.

The second comment in Figure 2, for example, refers to
code in a different clause of the conditional statement than
the clause in which it appears; in that case, documentary
structure causes the comment to refer forward: across
braces and across an “else ” keyword.

Documentary references can also point backwards. In
Figure 7 the first comment refers backwards to the argu-

ment “proc_body”, even though a preceding comma makes
the comment linguistically closer to the following argu-
ment “static_link ”. Without the line breaks, the first

comment would be understood to refer forward, as shown
in Figure 8.

The expression in Figure 9 (excerpted from the arg
ment of a return statement) exhibits similar behavior
Three comments contain information crucial to unde
standing bit sequence comparisons. The third sits co
pletely outside thereturn statement, to the right of the
terminating “; ”, but it actually refers backward to one of
the most deeply nested nodes in the preceding stateme

It is tempting to consider such cases idiomatic, amen
ble to recognition by heuristic rules. Even that is doomed
fail when the actual reference depends on the natural l
guage content of the comment(s), for example in Figure
(where the parallel language of sibling comments resolv
ambiguity), and in simple sequences such as in Figure 1

3.5 Missing structural referents

The previous section demonstrated how the true stru
tural referent of a comment can be difficult or impossible
infer. In some cases it may not exist at all.

For example, the final comment in Figure 2 refers to a
implicit boolean conditional, which can only be understoo
in the context of all preceding conditionals. The comme
also refers to theabsenceof any statements, although a lan
guage purist might object that it refers to an invisibl
“empty statement list”.

The comment in Figure 11, or more accurately the tw

comments, refer to a method, defined in a separate in
face, that is not explicitly mentioned at all in the immediat
code

The second comment in Figure 6 clearly refers to th
following pair of statements, for which there is no natura
representation in a typical syntax tree. A concrete par
tree might represent sequences as right recursive bin

...< method header> {

// Store the default fields
s.defaultWriteObject();

// Store the arrayTable values:
Object[] keys = getKeys();
int validCount = 0;

<etc.>

Figure 6. Statement groups

push_frame(ic,
frame_size,
proc_body, // frame’s “code”
static_link , // frame’s static link
ic.get_frame(()); // frame’s index

Figure 7. Documentary reference in a sequence

pf(ic, fs, pb, /*1*/ sl, /*2*/ i.g()); /
3/

Figure 8. Figure 7 without line breaks

(a==b ? 0 : // Values are equal
(a<b ? -1 : // (-0.0, 0.0) or (!NaN, NaN)

1)); // (0.0, -0.0) or (NaN, !NaN)

Figure 9. Documentary reference in an expression

statement1;
// comment
statement2;

Figure 10. Which statement is the referent?

public abstract class C implements P {

// Force this to be implemented
// public Object anInheritedMethod()

<etc.>
}

Figure 11. Phantom referent

ke

e
s,

h
e.
e

g
st
ibil-
-
lly

o
ab-
by
r-
P

ra-
a
c-
.

ti-

d
bi-
tors
e
ks
o-

i-
de
ts

el,
is

-
n-

s

trees, where each node refers to a single member and to the
remainder of the sequence; a more abstract syntax tree
might have a single parent for all nodes in the sequence. In
neither case, however, is there a node corresponding pre-
cisely to those two statements.

Finally, there are comments in statement sequences that
refer only to theplacebetween successive statements, for
example as in Figure 5, to note how much progress toward
some goal has been made at this point in the sequence.

4. The documentary structure of code

Section 3 showed how the documentary structure of
source code is not related to linguistic structure in any trac-
table way. This section describes documentary structure on
its own terms. The good news is that, unlike the complex
ways in which the documentary structure of code isnot
related to its formal linguistic structure, the fundamental
nature of documentary structure is easily described and has
a great deal in common with other kinds of document lay-
out. The examples of Section 3 demonstrated most of it,
and this section summarizes its essential characteristics: it
is visual, it has several elements, and it mainly depends on
spatial relationships and comments.

4.1 Documentary structure is visual

White space and comments are artifacts of thevisual
aspect of source code: its appearance on the two dimen-
sional page (real or virtual) on which humans read it.

The appearance and arrangement of information on a
page profoundly influences how people read it. That’s why
typography and graphic design are applied to the produc-
tion of human documents: the more difficult the subject
matter, the more important they become.

Even theshapeof code is important. The examples in
Figures 2, 7, and 9 demonstrate that the human reader, pre-
sented with conflicting information about the relationship
between comments and code, will favor the visual over the
syntactic. In fact, there is evidence that programmers sel-
dom think much at all about programs in terms of their for-
mal linguistic structure [19].

This notion of document shape appears in many related
contexts. For example, a study of hardcopy forms used by
physicians showed that the important aspect of the forms’
visual design is not their regularity or logical structure, but
whether their visual appearance makes the important things
immediately obvious [15].

This perspective casts new light on the job of program-
ming. In addition to other responsibilities, programmers act
as graphical designers and take responsibility for the
human legibility of their source code. They use the limited

means available to them, documentary structure, to ma
important things obvious.

4.2 The elements of documentary structure

Each aspect of documentary structure, following th
taxonomy presented in Section 2.1 has its own custom
folklore, and tool support. They differ also in how muc
information about documentary structure they carry, i.
information that can not otherwise be computed from th
linguistic structure.

Indentation provides essential feedback on nestin
structure, which is otherwise difficult to see. It is the be
supported, and programmers usually delegate respons
ity completely to tools, which compute it from the linguis
tic structure. As a consequence, indention by itself usua
carries little additional documentary information.

Inter-token spaces, on the other hand, are usually left t
programmer preference, since there are few widely est
lished customs. Graphical program designs developed
Baecker and Marcus exploit fine grained control over inte
token spacing to aid visual comprehension [3], and the C
source code editor demonstrates that this level of typog
phy can be computed from style rules in real time while
programmer types [22]. This means that inter-token spa
ing also carries little additional documentary information
A significant exception is the use of extra spacing for ver
cal alignments of the sort appearing in Figure 12

Line breaksaffect the shape of code the most an
thereby attract the most controversy, especially in com
nation with braces and parentheses. Source code edi
usually defer to programmers in the placement of lin
breaks [24]. Examples in Section 3 show how line brea
carry a great deal of documentary information, both in is
lation and in relationship to other elements.

Comments, which by definition carry only documentary
information, often receive rudimentary support from ed
tors, for example paragraph filling. The CP source co
editor carries this support much further. It treats commen
as subdocuments: following a compound editing mod
and it instantiates for each comment a sub-editor that
specialized for natural language content [22].

4.3 Relationships matter

Documentary structure emerges from what program
mers do with these four elements and in the rich relatio
ships among them.

For example, indentation of a single line by itself mean

int i = 0;
int increment = 1;

Figure 12. Inter-token spacing for vertical alignment

ig-

e
nd
t

hat

g a
se
l
e-
a

-
as
of
ary
on
nd
t it
is
.

e
li-
s
ac-

s
c-
n

e
of

d
y
d
n
e

little, but the indentation of a comment relative to nearby
lines can have a great impact on the meaning of the com-
ment. Likewise, extra spaces within a line often have mean-
ing only in relationship to adjacent lines, as shown in
Figure 12.

Numerous examples in Section 3 showed how the mean-
ing of comments is heavily influenced by page layout
(indentation and line breaks) and by other comments
whose relationships may be both visual (spatial alignment)
and textual (parallel prose).

The documentary structure one sees in source code is
often well considered and elaborate. Programmers’ docu-
mentary techniques can be viewed as crude versions of the
ones used by Baecker and Marcus in their advanced paper
presentations of programs [3]. Those techniques, all of
which deal with relationships among the parts, include
page headers, horizontal rules, vertical alignment of col-
umns, and marginalia.

4.4 Documentary structure is robust

It is worth noting in passing that documentary structure
is alsorobust relative to thefragile linguistic structure of
source code. During ordinary textual editing, source code is
only occasionally compliant with a formal grammar. Con-
sequently, linguistic structure isundefinedmost of the time,
a severe disadvantage for language-based tools in any edit-
ing environment.

Documentary structure, on the other hand, persists and
changes only in proportion (and in direct response to) the
programmer’s actions. This adds even more weight to the
argument for primacy of documentary structure, which
programmers see and manipulate directly, over the linguis-
tic structure, which is invisible, not of primary concern,
and often broken.

5. Preserving documentary structure

The challenge set forth in the introduction is to find a
way for language-based tools to capture and reconstruct
through unparsing enough of the documentary structure of
source code that the result is not perceived as unacceptably
damaged. This section discusses what this means in prac-
tice, mentions some approaches that don’t work, and pro-
poses a framework that will.

5.1 When documentary structure matters

The first part of a solution is to determine when the doc-
umentary structure matters, and when it does not. Consider
the following three cases:
1. If a particular piece of source code hasn’t been changed

at all by the tool, then no recording of documentary
structure is necessary; a simple pointer back to the or
inal source file suffices.

2. On the other hand, dramatic code modifications leav
any captured documentary structure highly suspect a
in need of repair by a programmer anyway. Just abou
any method for keeping comments available will be
good enough in this situation.

3. In between are the cases where it matters, where the
code has been changed somewhat, but not so much t
a programmer would accept the need to repair it.
The third case therefore should be the focus: unparsin

somewhat modified piece of code into something “clo
enough” to the original that a programmer will not fee
compelled to review every aspect of the result. This crit
rion for success is somewhat subjective, which calls for
flexible and general strategy.

5.2 Map comments onto syntax

Attempting to attach comments meaningfully to a syn
tax tree is the naive approach taken by many tools, such
those mentioned in Section 2.3. From the perspective
this paper, that approach discards too much document
structure. As demonstrated in Section 3, this is informati
crucial to understanding the meaning of comments a
code, and no amount of unparsing technology can pu
back. More information must be recorded when text
translated into a language-based internal representation

5.3 Keep everything

At the opposite extreme, a tool might record all of th
white space found in the original source text, and by imp
cation all of the lexical tokens of the program [23]. Thi
approach has two shortcomings. First, it may impose un
ceptable storage requirements for large bodies of code.

More seriously, this strategy is insufficient; it record
only the elements of documentary structure, not the stru
ture itself. It records none of the relationships that a
unparser mustreinterpret when the modified code is
unparsed.

For example, the two comments in Figure 3, which th
human reader understands as one (following the cue
their vertical alignment) will no longer be aligned shoul
the variable “size ” be renamed to something substantiall
longer. The literal white space that originally appeare
between the “; ” and the second comment is of no use to a
unparser trying to put this right; the important fact, that th
two comments were alignedbefore the change, is easily
lost.

u-
ce
e
is

be
er-

sap-
ted
y
d
ing
ts
e
ata

nd
at-
nd

us
e-

r-
in
d,
ec-
n

he
For

e
n-
g;

be
n-

-

ary
re
5.4 The right information

The important goal is to preserve theright information,
not just all the details. What is right depends on the user
and the task. There is some precedent for this in standard
compilers. They capture variable names and statement line
numbers, not because they are part of the linguistic struc-
ture (which in general they are not), but because they are
needed for intelligible presentations to humans during
debugging.

For the class of tools discussed in this paper, the right
information allows an unparser toreconstructa document
structure around a somewhat modified piece of code that
means the same thing to a human reader as did the original.
This implies that more information must be extracted from
the original text than has been done in the past.

5.5 Capture abstract documentary structure

Clues to determining the right information are best sum-
marized by the title of Section 4.3: “Relationships matter.”
The content of comments is important, but only useful
when positioned at a particular place in the code at a partic-
ular place on the page with a particular arrangement of line
breaks around it. If a comment is aligned horizontally with
other nearby comments, then that is important too. Here are
specific examples of the information that must be captured:
• Where each comment occurred in the original token

stream, even if some of the tokens are not explicitly
represented in the structure (e.g. commas in argument
lists).

• The layout of each comment: its horizontal position rel-
ative to adjacent code and comments, the number of
line breaks preceding it, and the number of line breaks
following it.

• The ordering of adjacent comments (between the same
two tokens); in these cases intervening line breaks are
counted for both comments.

• The relationship between vertically aligned “//” com-
ments: those that appear on successive lines at the same
horizontal position.

• Blank lines (two or more line breaks without interven-
ing tokens or comments).

• Any other “unusual” line breaks not associated with
comments.

• Any other “unusual” white space in lines, along with
discovered alignments of the sort appearing in Figure
12.

• “Extra” syntax, for example redundant parentheses and
empty blocks of the sort appearing in Figure 2, espe-
cially when associated with comments.

5.6 Extend unparsing rules

Unparsing rules must be amended to account for doc
mentary structure, which must naturally take preceden
over linguistic structure. For example, blank lines must b
restored, assuming that their surrounding context
unscathed. To first approximation, comments must
placed between the same adjacent tokens (with the und
standing that braces and parentheses may appear, di
pear, and shift around), and additional line breaks inser
to restore original visual relationships. Indentation ma
vary considerably, but the vertical alignment of relate
comments and code must be restored. Special unpars
rules can be applied to array initializers, aligning elemen
into columns for example, as long as the original lin
breaks were retained so that the overall shape of the d
remains approximately the same.

5.7 Implementation challenges

Documentary structure, as summarized in Section 4 a
captured according to Section 5.5, appears simple and n
ural, precisely because it is how we, as people, understa
documents.

Implementing this strategy, however, presents serio
challenges precisely because the compiler-oriented fram
works, in which such tools are built, treat code so diffe
ently. For example, the recording of line numbers
compilers is usually implemented by a narrowly define
special mechanism that lies outside the standard archit
tural model of compilers; such mechanisms don’t ofte
generalize gracefully.

This standard architectural model supports none of t
techniques needed to capture documentary structure.
example:
• Comments and white space are typically discarded in

the lowest level of a compiler’s data flow: between the
text stream and the lexical token stream, and well
before enough context is available to examine them
usefully;

• Even if comments and white space are passed into th
token stream, this feeds into a parser automatically ge
erated from a grammar in which they have no meanin

• There is no place in this simple pipeline model where
vertical alignments between adjacent lines can easily
discovered, especially when they involve syntactic co
structs; and

• Much of the documentary structure concerns relation
ships between white space and tokens, but concrete
tokens are discarded from syntax trees, leaving no
coherent place to record such relationships.
Thus, any tool that successfully preserves document

structure in the manner described here, will be much mo

n-
in

ni-
al

-
an
].

n-
m-

s,
the

ng
t
re

hat
s

ion
a

ry
out

in
ed
,
to
d-
m-
of
n
-
ts.

p-

an
ers
he
s

es
c-
le,

pre-
en
no-
than a lightly modified compiler plus unparser:
• More analysis must be done during code input, so that

the right information is captured;
• A more general data structure must represent both the

linguistic and documentary structures during the opera-
tion of the tools; and

• A more general approach to unparsing must blend
unparsing rules of the standard sort with a reconstruc-
tion of the original documentary structure.

6. Other directions

Although little has changed in this area for years, com-
ments have long been seen as problematic. They are awk-
ward for both people and tools, and they have never
reached the degree of utility that we intuitively believe pos-
sible.

This section reviews other schools of thought on how
this might be changed. All have merit, but none are likely
to make the strategy proposed in this paper unnecessary in
the near future.

6.1 Literate Programming

The most ambitious and successful attempt to rethink
the relationship between documentary structure and source
code is based on Knuth’s Literate Programming [14].
Knuth also begins with the premise that code is primarily a
document for humans, and he takes the radical step of mak-
ing this aspect paramount. Programmers decomposes code
into fragments and embed them in a rich document where
prose dominates. Batch tools produce nicely formatted
documents (prose with code embedded) for human con-
sumption as well as source code (generally unformatted)
for compiler consumption. Knuth and others argue that
writing in this style produces better code in the first place
[14,18].

Despite a loyal following, Literate Programming has
never been widely adopted, and the reasons are unclear.
Perhaps the extra layer of tools was perceived as onerous
by programmers (or managers). Perhaps it isn’t easily
adapted to object oriented programming, a different para-
digm for factoring code into small pieces.

Literate Programming is fundamentally incompatible
with the class of tools under discussion in this paper. Lin-
guistic structure is available only via batch derivation from
a document, so a Literate Program is not easily amenable to
language-based code transformations. This leads back to
the question of how languages are designed in the first
place.

6.2 Fix the languages

Another school of thought sees the problem as a la
guage design defect. Source code should still be stored
text files containing textual comments, but language defi
tions should be extended to bring comments into the form
linguistic structure.

Kaelbling, noting the difficulty of understanding the ref
erents of simple textual comments, observes that this c
be fixed either by language extension or convention [12
Acknowledging the practical obstacles to changing la
guage grammars, Kaelbling suggests instead that progra
mers add explicit “scope markers” to text of comment
and that analyzers could deduce from these markers
structural referents of the comments.

Grogono starts with much the same objections, noti
that “software tools can do very little with comments tha
are equivalent to white space.” [11] He suggests that futu
languages include a more general syntactic framework t
would include other information, for example assertion
and pragmas, as well as comments.

These suggestions have two drawbacks. First, adopt
of new languages, or even commenting conventions, is
rare event. Second, much of the important documenta
structure of code, as shown in Sections 2 and 3, is not ab
syntactic structure at all.

The first widely accepted structural comments appear
the Java programming language [10]. Although enforc
only by convention (and, more importantly, by a tool)
“JavaDoc” comments are specially tagged and intended
appear only in specific code locations: immediately prece
ing public class and member declarations. JavaDoc co
ments are intended to facilitate automatic extraction
interface documentation for hyperlinked publication i
HTML [8], but do not apply to the many other uses of doc
umentary structure represented in the conventional forma

6.3 Fix the programming environments

Yet another school of thought proposes better tool su
port for programming language comments.

For example, Robillard refutes Kaelbling with the
claims that syntactic extensions to existing languages c
be used, as long as tools hide the complexity from the us
[17]. He proposes that an extended text editor track t
syntactic scope (“referent” in the terminology of thi
paper), but without convincing detail.

Another class of programming environments replac
the textual representation of source code with purely stru
tural storage that permits greater richness. For examp
structure editors such as the Synthesizer Generator re
sent programs only as annotated syntax trees [20]. Ev
here, however, comments are seen as little more than an

da-

n-
be
the
an-

ple-
o-
hed
a-
at
for

un
fi-
nd

lso

eg-
ed

a,”
-

tations on nodes; this has the effect of reducing program-
mer control over documentary structure without offering
anything new in its place.

An even more provocative approach ishyperprogram-
ming: representing programs as fully typed persistent lan-
guage objects that can be manipulated by specialized
editors [13]. There have been proposals to extend the
hyperprogramming model with fine-grained hyperlinks to
documentation such as requirements, but there is surpris-
ingly little discussion of how to document the code itself
[6]. Such systems require very different languages and pro-
gramming infrastructures than are widely available today.

6.4 Make comments unnecessary

A more current trend leads to highly factored object-ori-
ented code, where fine-grained structure, combined with
intelligent naming of the parts, reduces the need for inter-
spersed comments. Fowler puts it this way: “How do you
identify the clumps of code to extract? A good technique is
to look for comments. They often signal this kind of
semantic distance. A block of code with a comment that
tells you what it is doing can be replaced by a method
whose name is based on the comment. Even a single line is
worth extracting if it needs explanation.”[7]

It is an open question how much documentary structure
can be made unnecessary by this approach. It certainly
doesn’t change the need for intelligent white space layout,
nor is it likely to replace the kind of general commentary
(explanation, background, and motivation) many readers
like to find.

Frequent refactoring is a basic tenet of Extreme Pro-
gramming [4], and there is a natural interest in helpful
tools. These are the kind of language-based transformation
tools addressed by this paper, subject to the same require-
ments. If a programmer refactors with a tool, but also has to
investigate and repair comments in every place affected by
rippling changes, then the tool will not add value.

7. Conclusions, status, and outlook

This paper proposes that the documentary structure of
code (including both comments and white space) is far
more important to programmers than one might infer from
its treatment by designers of programming languages and
language-based tools. Advanced programming tools that
perform language-based source code transformations will
not be accepted without attention to this issue.

The analysis presented here, based on concrete exam-
ples from production code, points toward a better under-
standing of documentary structure and of how tools might
account for it properly. A corollary of this analysis is that

conventional architectures for language analysis are fun
mentally unsuited to capturing documentary structure.

Strategies for dealing with documentary structure in la
guage-based transformation tools must ultimately
judged by their success: whether programmers find that
need to repair damage done by tools outweighs their adv
tages.

Some aspects of the strategy presented here were im
mented in 1993 as part of an internal project at Sun Micr
systems Laboratories, but in a system that never reac
fruition and so could not be evaluated. A new implement
tion is currently in progress as part of the Jackpot project
Sun Labs, with the expectation that this strategy can be
fully explored.

8. Acknowledgments

Discussions with members of the Jackpot project at S
Labs, Tom Ball and James Gosling, contributed signi
cantly to this paper, as have many important comments a
suggestions from Yuval Peduel. Anonymous reviewers a
made helpful comments.

9. Trademarks

Sun, Sun Microsystems, and Java are trademarks or r
istered trademarks of Sun Microsystems, Inc. in the Unit
States and other countries.

References

[1] Paul F. Albrecht, Phillip E. Garrison, Susan L. Graham,
Robert H. Hyerle, Patricia Ip and Bernd Krieg-Brückner,
“Source-to-source translation: Ada to Pascal and Pascal to Ad
Proceedings of the ACM-SIGPLAN Symposium on the Ada Pro
gramming Language, Boston, MA, USA; 9-11 Dec. 1980, SIG-
PLAN Notices15,11 (November 1980) 183-193.

[2] Greg J. Badros, “JavaML: A Markup Language for Java
Source Code,” Ninth International World Wide Web Conference
Amsterdam, May 15 - 19, 2000.

[3] Ronald M. Baecker and Aaron Marcus,Human Factors and
Typography for More Readable Programs, Addison-Wesley Pub-
lishing Co. (ACM Press), Reading, MA, 1990.

[4] Kent Beck,Extreme Programming Explained: Embrace
Change, Addison-Wesley 1999.

[5] Frank W. Calliss, “Problems With Automatic Restructur-
ers,”SIGPLAN Notices23,3 (March 1988) 13-21.

[6] Alan Dearle, Chris Marlin, and Philip Dart, “A Hyperlinked
Persistent Software Development Environment,”Proceedings of
Hyper-Oz '92: A Workshop on Hypertext Activities in Australia,
Adelaide, Australia, 1992.

r-

-

[7] Martin Fowler,Refactoring: Improving the Design of Exist-
ing Code,Addison-Wesley, 1999.

[8] Lisa Friendly, “The Design of Distributed Hyperlinked Pro-
gramming Documentation,” Sylvain Fraïssé, Franca Garzotto,
Tomás Isakowitz, Jocelyne Nanard, Marc Nanard (Eds.),Hyper-
media Design, Proceedings of the International Workshop on
Hypermedia Design (IWHD'95) Montpellier, France, 1-2 June
1995, Springer-Verlag (1996)151-173.

[9] Adele Goldberg, “Programmer as Reader,”IEEE Software
4,5 (September 1987), 62-70.

[10] James Gosling, William N. Joy, and Guy L. Steele,The
Java Language Specification, Addison-Wesley, 1996.

[11] Peter Grogono, “Comments, Assertions, and Pragmas,”
SIGPLAN Notices24,3 (March 1989) 9-84.

[12] Michael J. Kaelbling, “Programming Languages Should
NOT Have Comment Statements,”SIGPLAN Notices23,10
(October 1988) 59-60.

[13] A.M. Farkas, A. Dearle, G.N.C. Kirby, Q.I. Cutts, R. Mor-
rison and R.C.H. Connor, “Persistent Program Construction
through Browsing and User Gesture with some Typing,”Proceed-
ings of the 5th International Workshop on Persistent Object Sys-
tems (POS5), San Miniato, Italy, A. Albano, and R. Morrison
(eds.), Springer-Verlag, (1992) 86-106.

[14] Donald E. Knuth, “Literate Programming,”The Computer
Journal, 27,2 (1984), 97-111.

[15] E. Nygren, M. Lind, M. Johnson, and B. Sandblad, “The
Art of the Obvious,”Human Factors in Computing Systems CHI
‘92 Conference Proceedings, Monterey, CA, USA; 3-7 May 1992,
235-239.

[16] Paul Oman and Curtis R. Cook, “Typographic Style is
More than Cosmetic,”Communications of the ACM33,5 (May
1990), 506-520.

[17] Pierre-N. Robillard, “Automating Comments,” SIGPLAN
Notices24,5 (May 1989) 66-70.

[18] Stephen Shum and Curtis Cook, “Using Literate Program-
ming to Teach Good Programming Practices,”Proceedings 25th
SIGCSE Technical Symposium on Computer Science Education,
Phoenix, AZ, February 1994,66-70

[19] Elliot Soloway and Kate Ehrlich, “Empirical Studies of
Programming Knowledge,”IEEE Transactions on Software Engi-
neering10 (September 1984) 595-609.

[20] Tim Teitelbaum and Thomas Reps, “The Cornell Program
Synthesizer: A Syntax-Directed Programming Environment,”
Communications of the ACM24,9 (September 1981), 563-573.

[21] Ted Tenny, “Program Readability: Procedures Versus Com-
ments,”IEEE Transactions on Software Engineering, 14, 9,
(1988) 1271-1279.

[22] Michael L. Van De Vanter and Marat Boshernitsan, “Dis-
playing and Editing Source Code in Software Engineering Envi-
ronments,”Second International Symposium on Constructing

Software Engineering Tools (CoSET’2000), 5 June 2000, Lime
ick Ireland, ICSE 2000 Workshop Proceedings.

[23] Tim A. Wagner, “Modeling User-Provided Whitespace and
Comments,”Practical algorithms for incremental software devel
opment environmentsPh.D. Dissertation, Report No. UCB//CSD-
97-946 University of California Berkeley, 1997.

[24] XEmacs,http://www.xemacs.org

	Abstract
	1 . Introduction
	1. read textual source code from files;
	2. create a data structure that represents the formal linguistic meaning of the code, based on so...
	3. analyze and/or transform this data structure;
	4. produce a result; and
	5. exit, discarding the data structure.

	2 . Background
	2.1 Programming languages
	Figure 1 . Conventional text comments
	Figure 2 . C++ code with white space and comments

	2.2 Language-based transformation tools
	2.3 The structural mismatch

	3 . Documentary structure is not linguistic
	3.1 An instructive example
	3.2 Identifying comment boundaries
	Figure 3 . One comment or two?
	Figure 4 . Extended comments
	Figure 5 . One, two, or three comments?

	3.3 White space as comments
	Figure 6 . Statement groups

	3.4 Finding structural referents
	Figure 7 . Documentary reference in a sequence
	Figure 8 . Figure 7 without line breaks
	Figure 9 . Documentary reference in an expression
	Figure 10 . Which statement is the referent?

	3.5 Missing structural referents
	Figure 11 . Phantom referent

	4 . The documentary structure of code
	4.1 Documentary structure is visual
	4.2 The elements of documentary structure
	Figure 12 . Inter-token spacing for vertical alignment

	4.3 Relationships matter
	4.4 Documentary structure is robust

	5 . Preserving documentary structure
	5.1 When documentary structure matters
	1. If a particular piece of source code hasn’t been changed at all by the tool, then no recording...
	2. On the other hand, dramatic code modifications leave any captured documentary structure highly...
	3. In between are the cases where it matters, where the code has been changed somewhat, but not s...

	5.2 Map comments onto syntax
	5.3 Keep everything
	5.4 The right information
	5.5 Capture abstract documentary structure
	5.6 Extend unparsing rules
	5.7 Implementation challenges

	6 . Other directions
	6.1 Literate Programming
	6.2 Fix the languages
	6.3 Fix the programming environments
	6.4 Make comments unnecessary

	7 . Conclusions, status, and outlook
	8 . Acknowledgments
	9 . Trademarks
	References
	[1] Paul F. Albrecht, Phillip E. Garrison, Susan L. Graham, Robert H. Hyerle, Patricia Ip and Ber...
	[2] Greg J. Badros, “JavaML: A Markup Language for Java Source Code,” Ninth International World W...
	[3] Ronald M. Baecker and Aaron Marcus, Human Factors and Typography for More Readable Programs, ...
	[4] Kent Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley 1999.
	[5] Frank W. Calliss, “Problems With Automatic Restructurers,” SIGPLAN Notices 23,3 (March 1988) ...
	[6] Alan Dearle, Chris Marlin, and Philip Dart, “A Hyperlinked Persistent Software Development En...
	[7] Martin Fowler, Refactoring: Improving the Design of Existing Code, Addison-Wesley, 1999.
	[8] Lisa Friendly, “The Design of Distributed Hyperlinked Programming Documentation,” Sylvain Fra...
	[9] Adele Goldberg, “Programmer as Reader,” IEEE Software 4,5 (September 1987), 62-70.
	[10] James Gosling, William N. Joy, and Guy L. Steele, The Java Language Specification, Addison-W...
	[11] Peter Grogono, “Comments, Assertions, and Pragmas,” SIGPLAN Notices 24,3 (March 1989) 9-84.
	[12] Michael J. Kaelbling, “Programming Languages Should NOT Have Comment Statements,” SIGPLAN No...
	[13] A.M. Farkas, A. Dearle, G.N.C. Kirby, Q.I. Cutts, R. Morrison and R.C.H. Connor, “Persistent...
	[14] Donald E. Knuth, “Literate Programming,” The Computer Journal, 27,2 (1984), 97-111.
	[15] E. Nygren, M. Lind, M. Johnson, and B. Sandblad, “The Art of the Obvious,” Human Factors in ...
	[16] Paul Oman and Curtis R. Cook, “Typographic Style is More than Cosmetic,” Communications of t...
	[17] Pierre-N. Robillard, “Automating Comments,” SIGPLAN Notices 24,5 (May 1989) 66-70.
	[18] Stephen Shum and Curtis Cook, “Using Literate Programming to Teach Good Programming Practice...
	[19] Elliot Soloway and Kate Ehrlich, “Empirical Studies of Programming Knowledge,” IEEE Transact...
	[20] Tim Teitelbaum and Thomas Reps, “The Cornell Program Synthesizer: A Syntax-Directed Programm...
	[21] Ted Tenny, “Program Readability: Procedures Versus Comments,” IEEE Transactions on Software ...
	[22] Michael L. Van De Vanter and Marat Boshernitsan, “Displaying and Editing Source Code in Soft...
	[23] Tim A. Wagner, “Modeling User-Provided Whitespace and Comments,” Practical algorithms for in...
	[24] XEmacs, http://www.xemacs.org

	Preserving the Documentary Structure of Source Code
	in Language-based Transformation Tools
	Michael L. Van De Vanter
	Sun Microsystems Laboratories 901 San Antonio Road, UMTV29-112 Palo Alto, CA 94303 USA
	Michael.VanDeVanter@Sun.COM

