
HPC Needs a Tool Strategy
Michael L. Van De Vanter

Sun Microsystems, Inc.
16 Network Circle UMPMK16-304

Menlo Park, CA 94025
1-650-786-8864

michael.vandevanter@sun.com

D.E. Post
Los Alamos National Laboratory

P.O. Box 1663, MS E526
Los Alamos, NM 87544

1-505-665-7680
post@ieee.org

Mary E. Zosel
Lawrence Livermore National

Laboratory
P.O. Box 808

Livermore, CA 94551
1-925-422-4002

mzosel@llnl.gov

ABSTRACT
The High Productivity Computing Systems (HPCS) program
seeks a tenfold productivity increase in High Performance
Computing (HPC). A change of this magnitude in software
development and maintenance demands a transformation similar
to other great leaps in industrial productivity. By analogy, this
requires a dramatic change to the “infrastructure” and to the way
software developers use it. Software tools such as compilers,
libraries, debuggers and analyzers constitute an essential part of
the HPC infrastructure, without which codes cannot be efficiently
developed nor production runs accomplished.

The underappreciated “HPC software infrastructure” is not up to
the task and is becoming less so in the face of increasing scale,
complexity, and mission importance. Infrastructure dependencies
are seen as significant risks to success, and significant
productivity gains remain unrealized. Support models for this
infrastructure are not aligned with its strategic value.

To achieve the potential of the software infrastructure, both for
stability and for productivity breakthroughs, a dedicated, long-
term, client-focused support structure must be established. Goals
for tools in the infrastructure would include ubiquity, portability,
and longevity commensurate with the projects they support,
typically decades. The strategic value of such an infrastructure
necessarily transcends individual projects, laboratories, and
organizations.

Categories and Subject Descriptors
D.2.0 [Software Engineering]. D.1.3 [Programming
Techniques]: Concurrent Programming –parallel programming.

Keywords
High Performance Computing, Software Development Tools,
Software Productivity.

1. INTRODUCTION
The computing power of high performance computing (HPC) has
continued to grow exponentially. A major portion of this growth
has been achieved through massive parallelization with the result
that machine architectures have become highly complex. Memory
access speed has not kept pace with processor speed, and memory
has been fragmented so that much of the memory access is across
complex and slow networks. The difficulty of developing
programs for high performance computers has grown with
computer power. To take full advantage of these more powerful
computers, applications developers are constructing larger and
more complex codes that include increasingly more effects. The
level of difficulty for code developers has thus increased both
because of the scale of the applications and the complexity of the
platforms. The computational milieu is daunting and is becoming
more so.

The result is that the productivity of software developers in the
HPC community has not kept pace with the performance of their
computing systems, nor is it up to the increasing demands being
placed on the HPC community to develop and apply increasingly
powerful applications to problems of strategic importance. This
reduced relative productivity, and the growing necessity for
verification and validation represents a “looming crisis in
computational science” [11].

The sheer scale of current supercomputers, combined with the
extraordinary parallelism needed to exploit them fully, is
outpacing development skills and tools. The lifetime of many
HPC codes, for which extensive optimization is considered
essential, typically spans several decades and many machine
generations [10]. Developing and optimizing applications for a
specific platform is not feasible. Recognizing this problem, the
Defense Advanced Research Projects Agency (DARPA) is
funding the High Productivity Computing Systems (HPCS)
program to “create new generations of high end programming
environments, software tools, architectures, and hardware
components” viewed from the perspective of overall productivity
rather than unrealistic benchmarks [4].

The role of the software infrastructure in this, including
compilers, languages, libraries, debuggers, analyzers and any
other software that supports developers, is often underappreciated.
Every code depends vitally, throughout its lifetime, on some of
this infrastructure. Furthermore, significant increases in
developer productivity will involve fundamental transformations
in this infrastructure.

(c) 2005 Association for Computing Machinery. ACM acknowledges
that this contribution was authored or co-authored by a contractor or
affiliate of the [U.S.] Government. As such, the Government retains a
nonexclusive, royalty-free right to publish or reproduce this
article, or to allow others to do so, for Government purposes only.
SE-HPCS'05, May 15, 2005, St. Louis, Missouri, USA.
Copyright 2005 ACM 1-58113-963-2/05/0005...$5.00.

This material is based upon work supported by DARPA under Contract No. NBCH3039002 and will be presented at the Second
International Workshop on Software Engineering for High Performance Computing System Applications, St. Louis, May 15, 2005

The current outlook for tools meeting the challenge is bleak.
Although there are brilliant and highly productive exceptions,
“the low state of the art in software tool development has been
effected by the lack of cross platform tools, by the understandable
self-interests of hardware manufacturers, and the lack of a broad
enough market to attract and sustain independent developers who
can keep pace with changes in technology” [6].

Meeting the emerging HPC challenge, to sustain as well as
dramatically improve productivity, demands a more effective
software infrastructure than is present today. Building that
infrastructure requires a new paradigm for its funding,
development, and support.

Section 2 of this paper shows how productivity depends on
software infrastructure much more than is appreciated, and that
significant productivity increases must be found here. Section 3
contrasts this observation with the current state of affairs in the
HPC community, where some of the trends are negative, and tools
are all too often seen more as a risk than as a lever. A vision for
what software might make the difference is presented in Section
4. Section 5 reviews the discouraging prospects of such software
arising out of the current funding and support models in HPC.
Section 6 discusses prospects for a new model, and Section 7
follows with a discussion of the impact this would have.

2. TOOLS AND PRODUCTIVITY
This section looks at the central role tools play in the productivity
of software development.

Tools are the infrastructure. For the purpose of this paper,
“tools” means any software that supports software developers.
This includes tools in standard development environments:
languages and compilers, libraries, linkers, loaders, editors,
debuggers, test frameworks, code repositories, configuration
management tools, and more. HPC environments are
characterized by tools dedicated to performance and parallelism,
including parallelized versions of the above, as well as:
• Problem set-up tools;

• Tools and libraries to support massive parallel data storage
and retrieval;

• Compilers and parallel programming models;
• Domain- and task-specific languages and frameworks;
• Libraries for mathematics, I/O, and visualization;

• Parallel debuggers, performance and memory analyzers and
profilers;

• Tools for resource management and runtime scheduling;

• Tools for visualization, data mining, data analysis and
comparison (V&V), test coverage analysis; and

• Tools for production run scheduling and runtime
configuration and logs.

Tools are vital. A software project depends on the software
infrastructure, without which code development and production
runs cease to be viable. The platforms are more complex and the
applications are more ambitious than in the past. The long term
support, evolution, and porting of a code necessarily requires the
support, evolution, and porting of the tools as well.

Tools are the pathway to productivity. It is not merely
important for tools in the HPC community to get better; it is

essential. There is fundamentally no other way to achieve the
huge productivity improvement that is the mission of the HPCS
program. We can come at this observation from two directions.

In the first commonsense approach we can say that a huge
increase in developer productivity only happens by eliminating
some of their work. Developers are already highly skilled, and
the fundamental nature of the job is unlikely to change.
Eliminating work means automating some things they do now,
and for that we look to tools.
The same observation can be viewed through economics.
Productivity comes from the division of labor (Adam Smith); in a
more modern view it comes from the division of knowledge
(across time and space). In this perspective, the essential
mechanism for any kind of increased productivity is the transfer
of human skills and knowledge into the “capital infrastructure,”
which in HPC corresponds to the tools described above. Each
embodies knowledge that was originally developed by human
practitioners. When knowledge is embedded in a tool, it frees the
practitioner from the need to master that particular knowledge, it
changes the skills needed, and it opens the way for development
of new knowledge. This transfer of knowledge is the engine of
productivity growth [2].

3. TOOLS IN HPC TODAY
Although the field of HPC can claim credit for many outstanding
achievements, the community sees tools as a “problem”
[1][6][14]. The tools aren’t keeping up with the challenges posed
by the growth in the complexity of platform architectures and the
complexity and scale of the applications. There is common
agreement that tools are important and that it is important that
they get better. Some tools improve, but by many assessments the
overall picture is not improving and may be getting worse.
Software developers aren’t as productive as they know they could
be, and there appears to be no substantial change on the horizon.
The “tools problem” has many facets.

Tools are hard to learn. The complexity of software tools
specialized for HPC is a natural consequence of the complexity of
the job. This essential fact is exacerbated by the nature of the
tools market, in which many tools originate as research products
or the results of Open Source projects staffed by donated time.
The maturity that is characteristic of tools in the larger
commercial market is seldom present. Proficiency with such tools
demands a significant investment in time and effort. Indeed, just
getting them to work at all is often challenging.

Tools don’t scale. Implementation techniques for tools often fail
when systems grow into clusters of thousands of processors.
Operations taking a fraction of a second expand to minutes or
hours, memory requirements expand, and visual layouts fail. On
some systems, lightweight kernels successfully minimize the
overhead from the OS software, but the reduced system
functionality often removes features needed by the runtime tools.
Tools differ across platforms. Tool, especially those provided by
hardware vendors, often differ dramatically from one another.
Otherwise portable codes are often confounded by nonessential
differences in libraries, configurations, and job management
environments; such differences contribute significantly to the cost
of migrating codes and people across platforms.

Tools are slow to appear on new platforms. A traditional engine
of progress in HPC has been the advancement of fundamental

technologies, combined with new, often experimental
architectures designed to exploit the technologies. In practice,
however, effective tools—other than compilers—often lag the
arrival of a new machine by several years, a circumstance that
significantly diminishes the value of both.

Tool support is inadequate. In a field driven by innovation it is
not surprising that some of the best HPC tools appear at the
bleeding edge of research, precisely where support is unlikely to
meet the standards required for mission critical software. Even
platform vendors sometimes curtail support for tools on previous
generations of machines.

Tools are hard to test. Access to at-scale target platforms is
often inadequate for tool development, testing, and training, even
for platform vendors, who lose access when systems are installed
into secure sites.

Tool availability is uncertain. Research-based tools disappear
due to events beyond the control of clients, for example funding
interruptions and graduations. Tools produced by independent
software vendors are vulnerable to business failure or acquisition
by companies with different goals. Such disruptions can have
large, unplanned impacts on the schedule and costs of projects
that depend on them. In general, the HPC community has—except
possibly for the DOE ASCI program—been reluctant to devote
significant resources to develop and support these tools.

Tools are often too expensive for universities. Given the
relatively small market for HPC tools, vendors must charge
significant licensing fees to stay in business. These fees are often
too large for widespread use in universities, so the new generation
of HPC application developers often has no chance to become
skilled in the use or to contribute to the development of tools.
Tools are seen as a risk to project success. The unfortunate
consequence of these issues is that project planners, faced with
crucial dependence on software tools as well as long project
lifetimes, often see tools more as a risk to project success than as
an essential advantage. This is a hidden cost that impacts budgets
and mission success prospects. For an application that has a
twenty-year life cycle, application developers are reluctant to
invest in the use of tools that will likely have a much shorter
lifetime than the code or in tools that will be viable for just a few
platforms.

4. A PRODUCTIVITY INFRASTRUCTURE
What kind of software infrastructure would make the difference in
HPC, not only sustaining current development models but also
creating a pathway for extraordinary productivity improvement?
A common tool set. What’s missing is a common set of tools
built with the intention of supporting the kind of scalable, stable,
highly parallel programming required in the HPC community.
Functionally complete. The tools must include those now
considered standard in the general programming community, for
example compilers, debuggers, code editors, application
frameworks, source code repositories, refactoring, testing
frameworks, code coverage, etc. It must also include extensions
and adaptations of the standard tools that address scalability and
massive parallelism. Finally, it must include those tools,
traditionally developed within the HPC community, that are
specialized for the domain, for example specialized libraries,
solvers, parallel tracing, visualization, and performance analysis
tools.

Multiplatform. The tools must run on every platform of interest
and must appear and function as uniformly as possible.

Specialized. The tool set must be designed around the need to
“plug in” pieces specialized for particular platforms. Ideally these
would be adapters that make standard functionality available, but
some might be uniquely specialized for a single platform.

Widely available. There must be no significant barriers to the
use of the tools everywhere in the community, including
educational institutions.

Enduring. Planners must be able to rely on tools for the lifetime
of projects lasting decades, which means that the tools must
evolve along with applications in the face of ongoing change:
new systems, new system software releases, new programming
models, higher scale, new customer requirements, and new
customer usage patterns. Programmers, particularly students,
must have confidence that skills will remain valuable.

Inviting of research. The tools must encourage research in tool
technologies with an open architecture, a wealth of common
functionality, and a community of interested users.

Financially viable. Tool development must be financially
sustainable. It must be recognized as part of the cost of using HPC
to address problems of strategic importance. It has the same
importance as platforms and applications code development and
production. “A chain is only as strong as its weakest link” [15].
Yet, as noted above, the tools must be widely available.

5. WHO WILL BUILD IT?
The HPC community has many participants with some stake in
tools, and yet no sustainable and successful productivity
infrastructure has arisen. This section looks at how existing
motivations and business models make such an outcome
extremely unlikely.

Hardware vendors focus on bleeding edge hardware
technologies and architectures. They often provide platform-
specific tools, especially those needed to exploit unique
architectures, but they seldom see it in their interests to produce
cross platform tools. Indeed, they often see exotic tools as
“differentiators” that offer competitive advantage. Furthermore,
their business models don’t always include a commitment to their
platforms for the very long haul.
SMP Platforms are increasingly being constructed from
commodity components by local institutions (e.g. Beowulf
clusters). They consist of commodity processors and memory
linked together with commodity networks. The operating system
is typically open source LINUX that is locally modified and
maintained. Compilers, debuggers, etc. are either locally
developed or obtained from third party systems. No one outside
the local institution (and sometimes inside the institution) is
committed to support the platform and its software infrastructure.
The result is often that no one is responsible for ensuring that the
machine and the software infrastructure work smoothly. Conflicts
between different sub-systems often lead to “finger-pointing” and
long delays in getting hardware and software infrastructure
problems resolved. This produces a less expensive machine, but
with hidden costs. It places increased burdens on the applications
developers, and overall productivity can be substantially reduced
compared to a well-supported machine and software
infrastructure.

Researchers innovate, build prototypes, and share them freely.
Some of the best HPC software has come from universities, but
researchers have little motivation to extend support for these tools
over time and to any platforms not locally in use. Research
funding for such activities is not available. Furthermore the
increasing size and complexity of HPC programming raises the
bar for effective research contributions under the best of
circumstances. All too often, this research does not lead to a well-
supported, long-lived product that can be used by others with
confidence.

Independent tool companies start up, exploit research, aim for
cross-platform support, and struggle for financial survival in the
face of customers who often don’t wish (or aren’t funded) to
purchase industrial strength tools. When companies fail, their
technology can disappear through legal concerns and lack of
support. When companies succeed, their technology can
disappear through acquisition and lack of support. A recent
example is the demise of the popular KAI C++ compiler.

Customers, especially those with long life cycle codes (10 to 30
years), consider developing their own tools to mitigate risk. This
lowers productivity by diverting resources away from applications
development, and risks the reinvention of wheels in place of
ongoing innovation.

Voluntary collaborations are sometimes formed to create
standards, initiate and coordinate efforts (typically Open Source),
and support cooperation and sharing. These can be quite
important and effective, but it is difficult to create or maintain
critical mass when support and funding is essentially being
diverted from customer projects. For example the influential
Parallel Tools Consortium [8] ceased to function in 2003.
Heroes are individuals or small groups who provide service to the
community that rises above and beyond the job and mission in
which they are nominally engaged. Heroes can often be found
behind important resources in the HPC community, but this is not
a scalable model, especially when planning horizons span
decades.

None of these stakeholders have the primary mission, resources,
or longevity to produce what’s needed: to create a complete
productivity infrastructure for the HPC community.

6. A NEW APPROACH
HPC stakeholders understand that progress depends on
coordinated, collaborative effort, and there have been numerous
attempts made in this regard. The late Parallel Tools Consortium
(pTools) [8] was an important example, as was the National
Compiler Infrastructure (NCI) project [7] and many smaller
collaborations. Some collaborations are voluntary (pTools, for
example), some are encouraged by common funding sources such
as the U.S. Department of Energy (for example Open Speedshop
[13]), and some have been at least partially funded, for example
the Common Component Architecture (CCA) Forum [3]. None of
the past and current efforts, however, even the successful ones,
approach the goals set forth in the previous sections.
A new model is needed, and a new structure to support it must be
put in place. This is not a research problem, but a strategic effort
that must deal with the pragmatic issues: funding, business
models, intellectual property rights, and procurement possibilities.
Existing models, for example the Internet Engineering Task Force
[5], should be reviewed for relevance.

There are two prerequisites. First, there must be wide recognition
that the software infrastructure is as crucial to mission success as
platforms and applications. Second, there must be funding and
direction given from the same level where strategic missions are
defined and funded, a level where the pragmatic issues mentioned
above can be addressed effectively.
It would be premature to describe the necessary support structure
in detail, but it is possible to enumerate its essential
characteristics.
• Mission: dedicated to creating and supporting the Software

Productivity Infrastructure described in earlier sections, in
collaboration with all major stakeholders. This includes
languages, compilers, libraries, solvers, application
frameworks, parallel tools, and any other software that
supports HPC.

• Longevity: constituted and funded for the long haul, i.e. for
a lifetime commensurate with 20 to 30-year strategic
missions and beyond.

• Pragmatism: focused on industrial strength support for
HPC software development, with an emphasis on broadening
the audience through increased usability.

• Research: engaged in research that furthers the integrity and
leverage of the infrastructure, for example by developing
“common ground” architectures that permit “plug-in”
adaptation to specific platforms. Efforts currently under way
in this area, such as Open Speedshop [13], should be
supported and sustainable business models put in place.

• Flexibility: equipped with development and support models
appropriate to the full spectrum of stakeholders. For
example, university research would be coordinated and
supported; open source projects would be hosted;
independent companies would be supported contingent on
code escrow or other arrangements needed to address vital
customer concerns; vendors would be encouraged (via
standardized procurement clauses, perhaps starting with
existing guidelines [9]) to port the common tool set onto new
platforms in a timely manner.

These goals bear an interesting resemblance to the “software
reuse” challenges that have been faced in other areas of
computing, typically at the scale of individual organizations. For
example, Rosenbaum and du Castel report that the most important
factors for success in their environment were [12]:

1. Having a team dedicated to the infrastructure;

2. Extensive interaction between team and “customers;”
and

3. Senior management that fully supports its existence and
promotes its usage.

Factors 1 and 2 appear in the “mission” requirement above. By
analogy, factor 3 reinforces the conclusion that crucial to the
success will come from the agencies that fund the missions in this
community, and that they must be actively engaged in supporting
the new model and uses of its software.

7. IMPACT ON THE HPC COMMUNITY
The product of such an effort would be the eventual creation of a
“capital infrastructure” of software development for HPC, which
in turn would serve as the pathway to the tenfold productivity
improvements chartered by the HPCS program [4]. The impact

would be as dramatic as the Internet and World Wide Web have
been.

Predictability. The software infrastructure would support the
long planning horizons that are uniquely important in a
community where strategically crucial projects span decades and
machine generations. Project planners will be able to depend on
an infrastructure that will (at very least) not diminish during the
lifetime of a project. Which is to say, tools will been seen purely
as a productivity lever, not as a risk.
Ubiquity. A common infrastructure supported on every platform
would eliminate effort now wasted dealing with inessential
differences among platforms, both operationally (programming
and job management becomes simpler) and with respect to
training and skills (which become more portable and thus more
valuable). These would make HPC more widely accessible which
would in turn accrue further benefits [1].

Progress. Stewards of intellectual capital in the HPC domain
(knowledge, skills, codes) would ensure monotonic progress, not
only by preservation of past achievements, but also by providing a
focus (as well as coordination, funding, and access to at-scale
platforms) for ongoing innovation. Equally important is the
emergence of a common infrastructure into which innovative
pieces may be plugged in and evaluated.

8. CONCLUSIONS
The HPC community has undervalued software development
tools, taken here to include languages, libraries, frameworks,
solvers, and many other traditional tools. At the project level,
planning for maintenance and evolution often neglects the crucial
dependency on supporting tools. More broadly, the HPC
community is in great need of a widely available, fully functional,
portable tool set. This would be the “software productivity
infrastructure:” a stabilizing force for the current state of affairs
and the crucial lever for achieving dramatic productivity
improvement.

Although there is some awareness of this, and despite a number of
past efforts, the creation of a common software infrastructure for
HPC programming has not been achieved. Meeting DARPA’s
challenge for a 10x increase in productivity will require that a
structure be put in place that is dedicated to creating such an
infrastructure, is committed for the long haul, and which meets the
other success criteria proposed in this paper.

9. ACKNOWLEDGMENTS
We would like to thank all of our HPCS colleagues at Sun
Microsystems, especially Lawrence Votta, Susan Squires, Rob
Van der Wijngaart, Jan Strachovsky, Eugene Loh, and Michael
Ball. Further, we would like to thank Brett Kettering and the
LANL parallel tools group, Robert Ballance of Sandia National
Labs, and many others in the HPC community for their helpful
discussions and comments.
This material is based upon work supported by DARPA under
Contract No.NBCH3039002. A portion of this work was
performed under the auspices of the U.S. Department of Energy
by by University of California Los Alamos National Laboratory
under contract No. W-7405-ENG-36. LA-UR-05-1592. A portion

of this work was performed under the auspices of the U.S.
Department of Energy by University of California Lawrence
Livermore National Laboratory under contract No. W-7405-Eng-
48. UCRL-CONF-210246.

10. REFERENCES
[1] Ahalt, S. C, and Kelley, K. L., Blue-Collar Computing: HPC

for the Rest of Us. ClusterWorld, 2, 11(Nov. 2004).

[2] Baetjer, H. Jr., Software as Capital: An Economic
Perspective On Software Engineering. IEEE Computer
Society, 1998.

[3] Common Component Architecture (CCA) Forum.
<http://www.cca-forum.org/>

[4] Defense Advanced Research Project Agency (DARPA)
Information Processing Technology Office, High
Productivity Computing Systems (HPCS) Program.
<http://www.darpa.mil/ipto/programs/hpcs/>.

[5] Internet Engineering Task Force (IETF).
<http://www.ietf.org/>.

[6] Levesque, J., Have We Succeeded Because of Complex HPC
Software or In Spite of It? . Times N Systems, Inc., (August
17, 2001).
<http://www.etnus.com/Company/press/press_release.php?fil
e=hpc>.

[7] National Compiler Infrastructure Project (NCI).
<http://suif.stanford.edu/suif/NCI/>.

[8] Parallel Tools Consortium (pTools).
<http://www.ptools.org>.

[9] Pancake, C. M., and McDonald C., eds. Task Force on
Requirements for HPC Software and Tools: Guidelines for
Specifying HPC Software. Northwest Alliance for
Computational Science and Engineering (March 31, 1999)
<http://www.nacse.org/projects/HPCreqts/>.

[10] Post, D. E. Kendall, R. P., and Whitney, E. M., Case Study
of the Falcon Code Project. Submitted to Second
International Workshop on Software Engineering for High
Performance Computing System Applications, 2005.

[11] Post. D. E., and Votta, L. G. Computational Science Requires
a New Paradigm. Physics Today, 58(1): p. 35-41.

[12] Rosenbaum, S, and du Castel, B., Managing Software Reuse
- An Experience Report. Proceedings 1995 International
Conference on Software Engineering, 105-111

[13] Silicon Graphics, Inc. Open Speedshop.
<http://www.sgi.com/company_info/newsroom/press_release
s/2004/october/speedshop.html>.

[14] Squires, S, Tichy, W. G., and Votta, L.G. What Do
Programmers of Parallel Machines Need? A Survey. Second
Workshop on Productivity and Performance in High-End
Computing (P-PHEC), San Francisco (Feb. 13, 2005).

[15] Leslie Stephen in The Cornhill Magazine, 1868.

