
ssues
ant

ngi-
e can

ineer-
tware
itten
with
eris-
point-

te for
pro-
sys-

S86]
ar

lems
sign
ue are
use,
ight

SML 94-0290
Practical Language-Based Editing
For Software Engineers

Michael L. Van De Vanter

Sun Microsystems Laboratories
2550 Garcia Avenue, MTV29-112
Mountain View, CA 94043-1100

Michael.VanDeVanter@Eng.Sun.COM

Abstract. Language-based editing systems have the potential to become a prac-
tical, central, and powerful part of every software engineer’s toolkit, but progress
has been limited by inattention to user-centered design issues. Major usability
requirements for such systems include familiar, unrestricted text editing; coher-
ent user interaction with software; rich, dynamic information display; multiple
alternative views; uninterrupted service in the presence of ill-formedness,
incompleteness, and inconsistency; description-driven support for multiple lan-
guages; and extensibility and customizability. Solutions require better under-
standing of software engineers and their tasks, appropriate design metaphors,
new architectural organizations, and design for adaptation and extension.

1 Introduction

Software engineers increasingly understand that human-computer interaction i
are essential to good software design. Like the proverbial cobbler’s children who w
for shoes, however, our own tools receive far too little of that attention. Software e
neers are human and they interact with computers; they deserve the best tools w
build.

Language-based editing systems represent an important advance in software eng
ing technology. These tools enable engineers to create, browse, and modify sof
documents in terms of the formal languages and notations in which they are wr
(for example in terms of “statements,” “integer expressions,” and “assignments
deprecated type conversions”) not just in terms of their superficial textual charact
tics. However a lack of widespread acceptance has proven something of a disap
ment to those who envision the potential contribution of these systems.

Part of the problem has been a lack of language-based technology appropria
interactive use, in contrast to the much better understood world of batch-oriented
gram compilation. Several generations of experimental language-based editing
tems have made significant progress with interactive language technology [B
[BCD+88] [DHK+84] [Not85] [RT84], and practical systems of this kind now appe
within reach.

Experience with these almost-practical systems suggests that usability prob
remain, problems that go far beyond the superficial graphical user interface de
issues such as the arrangement of menus and the appearance of buttons. At iss
questions about how software engineers work, what tools they already know and
how they understand the notation, and what (human) performance bottlenecks m
Appears in Software Engineering and Human-Computer Interaction: ICSE
‘94 Workshop on SE-HCI: Joint Research Issues, Sorrento, Italy, May 1994,
Proceedings, Lecture Notes in Computer Science vol. 896, Richard N. Taylor
and Joelle Coutaz (editors), Springer Verlag, Berlin, 1995, 251-267

d new

ered
n the

s, dis-
ction
ions 5
nder-
sum-

stand-
ntial
uch
his
rob-
cult)
erly-

users
rn a

rors
other

h the
en in
profitably be addressed by language-based editing systems. Solutions deman
design thinking on both user-visible behavior and underlying architecture.

Recent work carried out as part of thePanproject at the University of California Ber-
keley [BGV92] [VGB92] revisited the design of these systems by posing user-cent
rather than technology-centered questions, with results that have implications o
following issues [Van92]:

• internal software architecture;

• services offered to users;

• configuration mechanisms;

• styles of interaction;

• integration with other tools in the working environment; and

• the suitability of current language-based technology for the challenge.

These user-centered questions begin with the intended context for such system
cussed in Section 2, followed by a more specific discussion of requirements in Se
3. Section 4 introduces the research prototype developed during the project. Sect
and 6 describe design solutions, first with respect to how users are expected to u
stand the system, and second with respect to its internal organization. Section 7
marizes and mentions open issues.

2 Context

Language-based editing systems must move far beyond the general-purpose,
alone text editors now widely used for programming. Figure 1 suggests their pote
role for software engineering: as front ends to databases of design information, m
like the Computer Aided Design (CAD) systems of other engineering disciplines. T
presents two design challenges for user interaction. The conventional (difficult) p
lem is to build a user interface that makes the system usable. The larger (more diffi
challenge is to build an effective interface between software engineers and the und
ing software documents. In this much more important sense,the entire system is the
crucial user interface for software engineers.

The skills and expectations of software engineers are key considerations. These
can be presumed fluent with one or more conventional text editors (loathe to lea
new editor), fluent with one or more primary languages (checking for syntax er
does not add much value except when learning new languages), and fluent with
tools that deal with software documents (compilers, debuggers, and the like).

3 Requirements for Usability

Design requirements for language-based editing systems must address bot
demands of the software engineering task milieu and the usability problems se
past systems.

ill be
t text;
ited,
rein-

tural

r can
ees, a
om-
, for

prise
the
an

s the

roic

tree

n-
3.1 Familiar, unrestricted text editing

Language-based editing systems of an earlier generation were based on what w
called here the “the structural hypothesis,” best expressed as “Programs are no
they are hierarchical compositions of computational structures and should be ed
executed, and debugged in an environment that consistently acknowledges and
forces this viewpoint. The Cornell Program Synthesizerdemandsa structural perspec-
tive at all states of program development” [TR81] (emphasis added). The struc
hypothesis is flawed in principle and has not been confirmed in practice.

Demanding a structural perspective fails because the editing model (what the use
do, based on an internal tree) clashes with the presentation model (what the user s
field of text). It imposes on the user the cognitive overhead of understanding a c
plex, unseen relationship. Consequences of this failure appear in many forms
example:

• A manual warns about a sequence of operations whose result is likely to sur
users, a result only comprehensible through a subtle line of reasoning involving
structure cursor’s placement in the (invisible) internal tree [RT87, page 91]. It is
equally subtle problem to discover the sequence of operations that produce
intended results.

• Apparently sensible cut and paste operations can fail in ways that require he
efforts to explain or repair [GL88] [Ler92].

• Moving between two structures adjacent on the screen may require a complex
traversal, as these structures might be only be distantly related [CMP91].

• “... it is particularly inconvenient for editing text/program fragments that are no
structured (strings, comments) or poorly structured (expressions)” [Lan86].

Users Other
Tools

Analysis

Execution

Modification

Understand

Manipulate

Editing System
System ServicesEditing Interface

Active
Document

Store

Update

Retrieve

Figure 1: Editing system in relation to the programming environment

ents
ob-
ter-

will
are

tions
hat

ssible
the

tom
et of
ugh
, and

ctice
like)

actic
lated
e is
uses
nts.

the

d of
c-

else

d pre-
eers
than

lan-
grams
the

lay
ack-
• “It is not possible to insert or change text at an arbitrary point...” [BS92].

Many system designers retreated into hybrid approaches in which structural fragm
may be edited textually in limited circumstances. Minör’s attempt to correct the pr
lem without abandoning the structural hypothesis led away from a text-oriented in
face entirely for the SbyS program editor [Min90].

Other evidence, in addition to lack of commercial success, confirms that people
not accept restrictions to familiar text-oriented interaction [Nea87]. Much of softw
engineering notation is textual, and people are simply accustomed to it.

3.2 Coherent user interaction with software

Although text-oriented interaction must not be sacrificed, structure-oriented opera
are crucial to exploiting the potential power of language-based systems. But w
structure will make those operations coherent?

Earlier generations of language-based editing systems failed by driving user-acce
interaction directly from syntax trees, data structures that have more to do with
underlying technology than they do with how software engineers work. One symp
is that a syntax tree representation for a language is not unique; it reflects a s
implementation choices based only loosely on a formal language definition. Altho
the tree representations used by some editors are more “abstract” than others
therefore allegedly more “natural” for users, tree representations are in pra
designed to meet the needs of tool implementations (parsers, analyzers, and the
and not those of coherent interaction with people.

Even if there were a canonical structural representation, it would not suffice. Synt
structure is a useful “backbone,” but software engineers manage language-re
information that goes beyond the purely syntactic. The true structure of softwar
complex, multifaceted, and non-local. Different users and tasks require different
of structure and different forms of access to the information within docume
Although the information must be broad in subject domain, it need not be deep (in
sense that programplans [LS86] [SE84] andclichés [RW88] are deep) to be useful.

Structural interaction with users must be flexible, able to accommodate any kin
“structure” for which sufficient information is available: lexical, syntactic, stati
semantic, data-flow analysis, stylistic analysis, performance results, and anything
that software engineers need.

3.3 Rich, dynamic information display

Many language-based editing systems were designed to conserve keystrokes an
vent syntax errors, but the productivity bottleneck lies elsewhere. Software engin
spend far more time trying to understand, modify, and adapt software documents
they do creating them in the first place [Gol87] [Win79].

High-quality visual design and typography enhances comprehension of natural
guage documents, and recent studies suggest the same potential benefits for pro
displayed on paper [BM90] [OC90]. This approach helps, but it must be adapted to
perceptual characteristics of CRT displays and to the dynamics of interaction.

Additional information (meta-information) must be added to the textual disp
dynamically as needed, using typographical variations such as type, color, and b

re is a
ader
ly by
g on
t of
oc-
ac-
83].
s of
em

le;
les of
ation.
riety
per-
sed

rade
on,
ocu-

ly to
t can

an
sys-
This

irs
ate

nts

sim-

ds
ased
rst
ar in
, but
ground, as well as elision and annotation. Evidence suggests that reading softwa
cognitively active process and has a fine-grained task structure [KR91]. The re
repeatedly forms hypotheses, which are then confirmed or denied opportunistical
further reading, using a variety of information and reasoning strategies, dependin
the information available [Let86]. Even when writing, programmers spend mos
their time reading what they’ve just written. Writing software is a creative design pr
ess, and like many kinds of design it is done iteratively, with cycles of explicit inter
tion and feedback from what has been committed to notation so far [Joh85] [Sch
Software engineers constantly ask “Where am I now?” “What are the implication
what I’ve done so far?” and “What’s left to do?” A language-based editing syst
must be ready with the right information at the right time.

3.4 Multiple, alternative views

Mark-up with meta-information is only one way to exploit the information availab
in some cases, reorganization and filtering are more appropriate. For example tab
contents and indexes assist document comprehension without adding new inform
Given the multiplicity of structural aspects present in software systems, and the va
of meta-information that can be produced, for example by data-flow analyzers and
formance profilers, the range of potentially helpful views is large. A language-ba
editing system must be able to create such alternative views as needed.

3.5 Uninterrupted service despite “I3”

A persistent and general problem with language-based tools is that they fail to deg
gracefully in the presence of ill-formed, incomplete, or inconsistent informati
described here as the “I3” conditions. In practice these are the natural states for d
ments under development, conditions where the software engineer is most like
need help. A language-based editing system must not fail to deliver what service i
under these circumstances.

I1: Ill-Formedness. Software documents being modified are often at variance with
underlying language definition. Unable to analyze ill-formed documents, many
tems insist that the user correct any newly introduced “errors” before proceeding.
treatment has unpleasant side effects.

• It narrows options available to the user, who may prefer to delay trivial repa
while dealing with more important issues. The “error” may be part of an elabor
textual transformation.

• It implies that derived information is only available and accurate when docume
are well-formed, again constraining the user.

• It implies that the user has done something wrong, when in fact the system is
ply unable to understand what the user is doing [LN86].

I2: Incompleteness.This is an important special case of ill-formedness; it correspon
to natural intermediate states for documents under construction. Language-b
information for software that is generally well-formed but incomplete should be fi
class. Some systems address this with “placeholders,” visible glyphs that appe
places corresponding to unexpanded nonterminals in the internal derivation tree
more flexible versions of this are needed.

r
hen
ived
ing
up-
rvice,

uages,
s for
rnard
f the
r of

uni-
s. It
tural,
r to
.

le in
ong

tion,
loit
nts

vi-

ng
tion 3.
; cur-
and

le
es of
I3: Inconsistency. Any situation where one kind of information (syntax tree, fo
example) is derived from another (text) invites inconsistency between the two w
things change.1 This presents a dilemma for language-based editing systems. Der
information (including diagnostics concerning ill-formedness) produced by analyz
text is only trustworthy immediately after an analysis. On the other hand, not to s
port any language-based services in this state is a needless interruption of se
since most of that information is correct most of the time.

3.6 Description-driven support for multiple languages

Software engineers use many languages: design languages, specification lang
structured-documentation languages, programming languages, small language
scripts, schemas, mail messages, and embedded “little languages” [Ben86]. Be
Lang commented that “Language independence is essential for the adaptability o
environment to different dialects or to the evolution of a language. It is also a facto
uniformity between environments for different languages” [Lan86].

A language-based editing system must support multiple languages smoothly and
formly, even permitting switching among languages during single working session
must be as convenient as possible to add support for new languages using na
declarative, language-description mechanisms, which allow a description write
focus on what is being described rather than on how document analyzers operate

3.7 Extensibility and customizability

An effective language-based editing system must be customizable and extensib
order to accommodate the enormous variations among individual users, am
projects (group behavior), and among sites [Lan86][Sta81].

A language-based editing system must be capable of using a variety of informa
derived by many different tools in the environment. Users opportunistically exp
many forms of information to help them understand and modify complex docume
[Let86]. “Information gathering” is the primary task associated with important acti
ties such as program maintenance [HBS87].

4 ThePan Prototype

Pan I version 4.0 [DV91] is a fully implemented, multilingual, language-based editi
and browsing system that addresses the usability requirements presented in Sec
This prototype continues to support ongoing research at Berkeley and elsewhere
rent topics include advanced software viewing and browsing, code optimization
generation, reverse engineering, and static-semantic analysis. Some ofPan’s technol-
ogy is being carried forward intoPan’s successor at UC Berkeley, theEnsemble
project [GHM92].

Figure 2 shows twoPanviews of a simple program. The larger view displays editab
program text, typeset and marked up with colored highlighters that reveal instanc

1. Inconsistency should not be confused with ill-formedness. Inconsistency means that
the system cannot determine whether a document is well-formed or not.

der
f the
navi-
ign

ch a
prob-
“Language Error,” where “Language Error” is the category of meta-information un
investigation at the moment by the user. The smaller view displays a projection o
same category into an otherwise generic list-oriented view that shares structural
gation with the larger view. The following two sections describe some of the des
solutions embodied by this prototype.

5 Design Metaphors

The requirements of Section 3 demand a system rich in functionality. Making su
system effective for software engineers presents user-centered [Nor86] design
lems:

Figure 2: Two Pan views on a simple program

to

pro-

with

y con-
iting
ell-

ay.
ver-
st

he
cted

ore
ence

g with
iliar,
cally:
f

serv-

n lan-
ble.

vis-
not at
en a
• How to deliver services without overwhelming users with complexity unrelated
their tasks, and

• How to enable users experienced with conventional text editors to transition
ductively.

A useful strategy is to articulatedesign metaphorsthat summarize how users are
expected to understand the resulting system. For example, every aspect ofPan’s
design, implementation, and configuration supports the following five metaphors,
the explicit goal that users will understand them without being told.

5.1 Augmented Text Editor

The system is a text editor whose text-based services are always available in ever
text. All other services increase user options: some may be used to guide text ed
but they never interfere with it. A useful analogy for the other services would be sp
ing checkers in document processing systems.

5.2 Heads-Up Display

Many services show informationaboutdocuments as enhancements to the text displ
This approach is analogous to “heads-up” display in which data are displayed by o
lay onto pilots’ primary visual field, allowing them to attend continuously to the mo
important part of their job: looking and flying. The primary visual field here is t
mostly textual display of software documents from which the user should be distra
as little as possible.

5.3 Imperfect World

Although the system exploits knowledge of underlying languages, it operates no m
differently in the presence of “language errors” than does a text editor in the pres
of spelling errors.

5.4 Smart versus Dumb Services

Many language-based services appear to users not as distinct mechanisms (alon
the confusion of extended command sets), but as optional generalization of fam
text-based services. A generalized service typically changes character dynami
dumbwhen operating textually,smartwhen operating with the additional advantage o
language-based information. Unobtrusive visual cues reveal whether a particular
ice is smart or dumb at any moment.

5.5 Strict versus Gracious Services

Many language-based services can operate during periods of inconsistency, whe
guage-based information derived from text is out of date and therefore unrelia
These gracious services are characterized by shifts betweenexactand approximate
modes of operation, with little apparent change in behavior, but with unobtrusive
ual cues that reveal the current mode. Strict services, on the other hand, operate
all during periods of inconsistency: a strict service may simply become dumb wh
document becomes inconsistent, or it may trigger analysis in order to proceed.

the
sepa-
-
n of

, but
ion.

s; in

antic
epre-

ithout
. An

hich
ent and

ew
6 Architectural Solutions

The implementation of a system both flexible and powerful enough to support
requirements of Section 3 and the design metaphors of Section 5 requires careful
ration of concerns. For example,Pan’s design framework exploits the architectural lay
ering shown in Figure 3 and permits reuse of many components for constructio
additional services.

6.1 Infrastructure: Isolation of Language-Based Technology

It is tempting think of language-based editing systems as interactive compilers
technology developed for compilers ports badly into the domain of user interact
The lowest layer of this architecture isolates language-based analysis mechanism
Pan, for example, this layer includes theLadle [But89] andColander[Bal89] subsys-
tems for description-driven generation of incremental syntactic and static-sem
analyzers respectively. Among the goals for these two subsystems is the useful r
sentation of ill-formed programs.

The rest of the system accommodates flexible, user-centered design choices w
excessive coupling to the batch-oriented, compiler model of software structure
experimental static-semantic analyzer was substituted forColanderat one point with-
out serious difficulty.

6.2 Kernel: Basic Abstractions

The second layer of this architecture implements essential abstractions upon w
user interaction rests. These abstractions are designed to be language-independ
flexible.

For examplePan’s operand class mechanism permits convenient definition (by vi

 Infrastructure
Description processors
Incremental analyzers
Database
Visual presentation

Operand classes
Structural navigation
Database query
Scoped configuration
View frameworks

Cursor
Highlighters
Panel flags
Alternate views

Language descriptions
Interaction model
Visual configuration
Additional services

Kernel

Basic Services

View Styles
User Interaction
Design

Elements of
User Interaction

Mechanisms for
User Interaction

Enabling
Technology

Figure 3. Architectural Design Layers

puted
fined
n in
erates
sers,
d
lass
e of
d per-
view

ture,

igure

ear
rand

o

l,”
the

The
the
tural

as
r-
to
iga-
all

ture
for-
el of

by
ar
tyle:

may
style designers, see below) of arbitrary sets of structural elements that are com
dynamically as the representation changes. An operand class definition may be de
intentionally as a predicate on nodes of the internal tree, drawing on any informatio
the database, or extensionally by reference to some outside agent that enum
membership as needed. An operand class has a “title” for communication with u
for example “Statement,” “Language Error,” “Integer Expression,” or “Disallowe
Coercion.” Together with the services it can be configured to drive, an operand c
dynamically creates a new concept in the user’s model of interaction with structur
software. The operand class solves several problems in user interface design an
mits services to be adapted for uniform operation across multiple language-based
styles.

6.3 Basic Services: Reusable Elements

Services that the user sees are constructed in the third layer of this architec
designed to be as simple and flexible as possible. Most ofPan’s Basic Services are
designed to be configured by operand class definitions, for example as shown in F
2:

• A Panel Flag with the appearance of an exclamation point is configured to app
in the upper right hand corner of the window whenever any instances of ope
class “Language Error” are present.

• A Highlighter is configured to display with red ink all text corresponding t
instances of “Language Error.”

• Structural Navigationmoves the cursor to the next instance of the current “Leve
which the user may select from a panel menu or by keystroke accelerators. In
example the cursor has just moved to an instance of class “Language Error.”
structure cursor is on the text “N 1” as a result, but it might have landed at
same place had the user requested a move to the next “Expression.” A struc
element can be in many classes simultaneously.

• Alternative Viewspresent information organized in different ways, for example
does the view named “[Language Error]” in Figure 2. The generic “list view” se
vice is configured to display (or “project”) instances of “Language Error,” and
display a diagnostic in place of the usual text. This view supports shared nav
tion: selection of a diagnostic from the list causes coordinated navigation in
other views.

As suggested by this example, the notion of “error” does not exist in this architec
at either the Kernel or Basic Services layers; it is merely one of many kinds of in
mation available in the Infrastructure. Errors, like other concepts in the user’s mod
software structure, are managed in this layer by configuration.

6.4 View Styles: Configuration by Design

Adaptation to working contexts is captured in the fourth layer of this architecture
the notion of multipleview stylesfor user interaction, each specialized for a particul
combination of user population, language being used, and task at hand. A view s

• includes traditional syntax and static-semantic language descriptions, but
extend to extra-lingual analysis such as stylistic and usage guidelines;

of
tyle
sses)
o the
ven

spe-
am-

ate
aran-
xam-
tions

c-
ated

gura-
They
tem
.

cial-
asic
para-

g its

e.

ows

ec-
• specifies services to be provided and specializes generic services;

• defines a visual context, including typography and use of color; and

• configures details of interaction, including keystroke and menu-bindings.

A human “view style designer” necessarily creates view styles, from which much
the richness and effectiveness of this framework derive. Part of the view s
designer’s task is to define a conceptual vocabulary (in the form of operand cla
describing program structure that is appropriate to the language being used, t
intended user population (different kinds of users will want different view styles, e
for the same language), and to different tasks (some users may want view styles
cialized for particular tasks, design recovery vs. exploratory programming for ex
ple).

A working system includes a suite of view styles that collectively offers appropri
services and uniform user interaction across all styles. This framework cannot gu
tee good design by view style designers, but it provides tools, guidelines, and e
ples, among which are solutions to usability problems that plague earlier genera
of systems.

6.5 Applications

Finally, this architecture isopen. To realize the full power of language-based intera
tion, the editor must function as an interface through which many language-rel
services can be delivered to software engineers. Known asapplicationsin this frame-
work, these additional services can be added using an extension language, confi
tion mechanisms for reuse of Basic Services, and an extensible data repository.
can also be delivered by integration with other tools, for example allowing the sys
to serve as a user interface for compilers, profilers, debuggers, and code auditors

A number of these applications have been prototyped, none of which require spe
ized support in the Infrastructure layer . All are constructed using the Kernel and B
Abstraction layers; they are language-independent and use familiar interaction
digms for uniformity.

• Semantically sensitive variable renaming.

• Semantics-based query, for example highlighting all uses of a name or showin
type.

• Semantics-based navigation, for example jumping to the declaration of a nam

• Variable cross reference view.

• Module table of contents view.

• Syntax-directed editing, as supported by many structure editors. Figure 4 sh
Pan as a user is about to expand a placeholder in a toy language.

• Style checking, for example type-sensitive naming conventions.

• Textual annotations on structural elements.

• Debugger integration [BFG92].

Many more applications would be straightforward to implement within this archit

vid-

s, for

-por-

am-
ture:

• Operand classes for members of particular libraries, with a slight extension pro
ing hyper-links to documentation.

• Extended type checking for library calls that take complex argument sequence
example “printf” in C and window system libraries such as Xview [Hel90].

• Operand classes for software reengineering, for example uses of “goto” or non
table types, along with appropriate summary views.

• Operand classes for information imported from tools in the environment, for ex
ple profile information, dead code analysis, and test coverage.

Figure 4: A syntax-directed editing application inPan

hter.

e-
tion

s for
de”

s as

nta-

d for

3
ork

sers
trates

ng
s the

en-
one

more
ener-

he
ss

. The
(as it
his
tech-

n
re not
• An operand class for recently created structure, along with appropriate highlig

The following, more speculative applications would exploit this basic design fram
work even further, but would require additional mechanisms and further integra
with other tools.

• Graphical cues, for example small glyphs as suggested by Baecker and Marcu
categories such as “Warning/Sensitive,” “Fragile Code,” and “Unreachable Co
[BM90].

• Redundant notation to aid comprehension, for example control scope marking
suggested for certain maintenance tasks [SGG77].

• Transformed notation to aid comprehension, for example alternative represe
tions of deeply nested conditionals [PND87], especially when placedin situ in the
display so that continuity with surrounding context is not disturbed.

• Displayed program “slices” [Wei84].

• Specialized debugger interface, for example a multiple view debugger designe
optimized code [BHS92].

7 Conclusions and Open Issues

Simplicity and Usability: Naive solutions to the requirements set forth in Section
would drown users in a sea of system-induced complexity. The design framew
developed as part of this research, applied with a judicious mix of attention to u
and tasks, carefully chosen design metaphors, and flexible abstractions, demons
that crucial simplicity and usability can be achieved.

Integration with Other Tools. The services provided by a language-based editi
system alone cannot justify the cost of the technology. This architecture addresse
useful viewing of a wide variety of possibly large-scale information, but the trem
dous leverage this offers can only be realized through integration with other tools
expects to find in a modern computer-aided software engineering environment:
ambitious analyzers (data flow for example), debuggers, profilers, test coverage g
ators, design documentation systems, and persistent storage.

Language-Based Technology.New language technology was developed during t
project specifically to support user interaction [BBG88][Bal89][But89]. Neverthele
limitations caused by its batch-oriented compiler heritage still managed to appear
apparent boundary between editing and compiling should become more blurred
will between editing systems, compilers, and their underlying languages). T
demands aggressive factorization into components, with each component of the
nology being further developed for this new, more general role.

Advanced Visual Presentation.The advantages of high-quality visual presentatio
are clear, but some techniques based on the static book publishing paradigm we
supported by the prototype rendering engine. The reasons are instructive:

ome
amic

ss or

up-

k,
d by

ad-

is
uages.
g to
the

y be
.

for
m-
the

and
ases,
e) for

, from
nt

ark
ded

ojects
nder
ency
16,
an
• Just as batch-oriented compiler technology does not support interaction well, s
design choices made for static publishing are not appropriate in a more dyn
context.

• Limited display screen resolution condemns some techniques to ineffectivene
outright invisibility.

• Implementation was costly, and four generations of toolkits offered no useful s
port for the kind of visual information layering demanded by the application.

User Experience.Although informal user feedback has guided much of this wor
more empirical evidence is needed. This kind of experience can only be gathere
experimenting with a flexible system such asPan in production environments using
production languages.

Annotation: An important part of the software engineer’s task is the creation and re
ing of annotations, typically in the form of textual comments.Pandelivers no support
for this task beyond that provided by an ordinary text editor.

Object-Oriented Programming. Much of the experience and insight that drove th
research predates widespread acceptance of object-oriented design and lang
These languages are still in flux, and only the most tentative results are startin
appear that will cast light on the cognitive processes of programmers working in
new design paradigm. Many of these techniques will apply, but new ones ma
needed to accommodate changing notions of system modularity and connectivity

Language Extension.The static language description and analysis model adopted
the project is not well suited to languages with powerful extension facilities, for exa
ple the macro processing facilities supported by CommonLisp. Closely related is
delivery of services that effectively blur the boundary between language definition
editing system. User interaction techniques described here should apply in most c
but they may need to be adapted (as the language analysis model must chang
these more dynamic contexts.

8 Acknowledgments

Special thanks go to Robert Ballance, Jacob Butcher, and Prof. Susan L. Graham
whose collaboration many ofPan's good ideas emerged and were realized. Importa
contributions also came from Christina Black, Laura Downs, Bruce Forstall, M
Hastings, Darrin Lane, and William Maddox. Yuval Peduel and Jiho Sargent provi
many constructive comments on an earlier draft of this paper.

This research was sponsored in part by the Defense Advanced Research Pr
Agency (DoD), monitored by the Space and Naval Warfare Systems Command u
Contract N00039-88-C-0292, by the Defense Advanced Research Projects Ag
under Grant MDA972-92-J-1028, by IBM under IBM Research Contract No. 5645
by a gift from Apple Computer, Inc., a State of California MICRO Fellowship, and
IBM Fellowship.

for
ing,

age

ased

rac-
f the
en-

sed
ion,

he
g

d V.
-

for-
,
ag,

to
on

n,

ure
on

ser
9 References

[BM90] Ronald M. Baecker and Aaron Marcus, Human Factors and Typography
More Readable Programs, Addison-Wesley Publishing Co. (ACM Press), Read
MA, 1990.

[BS86] Rolf Bahlke and Gregor Snelting, The PSG System: From Formal Langu
Definitions to Interactive Programming Environments,ACM Transactions on Pro-
gramming Languages and Systems 8,4 (October 1986), 547-576.

[BS92] Rolf Bahlke and Gregor Snelting, Design and Structure of a Semantics-B
Programming Environment,International Journal of Man-Machine Studies 37,4
(October 1992), 467-479.

[BBG88] Robert A. Ballance, J. Butcher and Susan L. Graham, Grammatical Abst
tion and Incremental Syntax Analysis in a Language-Based Editor, Proceedings o
ACM-SIGPLAN 1988 Conference on Programming Language Design and Implem
tation 23,7 (June 22-24, 1988), 185-198.

[Bal89] Robert A. Ballance, “Syntactic and Semantic Checking in Language-Ba
Editing Systems”, UCB/CSD-89-548, Ph.D. Dissertation, Computer Science Divis
EECS, University of California, Berkeley, December 1989.

[BGV92] Robert A. Ballance, Susan L. Graham and Michael L. Van De Vanter, T
Pan Language-Based Editing System,ACM Transactions on Software Engineerin
and Methodology 1,1 (January 1992), 95-127.

[Ben86] Jon Bentley, Little Languages,Communications of the ACM29,8 (August
1986), 711-721.

[BCD+88] P. Borras, D. Clemént, Th. Despeyroux, J. Incerpi, G. Kahn, B. Lang an
Pascual, “CENTAUR: the system”,Proceedings ACM SIGSOFT ‘88: Third Sympo
sium on Software Development Environments, November 1988, 14-24.

[BFG92] John Boyland, Charles Farnum and Susan L. Graham, “Attributed Trans
mational Code Generation for Dynamic Compilers”, inCode Generation -- Concepts
Tools, Techniques, Robert Giegerich and Susan L. Graham (editors), Springer Verl
Berlin, 1992

[BHS92] Gary Brooks, Gilbert J. Hansen and Steve Simmons, A New Approach
Debugging Optimized Code,Proceedings of the ACM-SIGPLAN 1992 Conference
Programming Language Design and Implementation 27,7 (June 17-19, 1992), 1-21

[But89] Jacob Butcher, “Ladle”, UCB-CSD-89-519, Computer Science Divisio
EECS, University of California, Berkeley, November 1989. Master's Thesis.

[CMP+90] Ravinder Chandhok, Phillip Miller, John Pane and Glenn Meter, “Struct
Editing: Evolution Towards Appropriate Use”, Presented at the CHI '90 Workshop
Structure Editors, Seattle, Washington, April 1990.

[CMP91] D. D. Cowan, E. W. Mackie and G. M. Pianosi, Rita--an editor and u
interface for manipulating structured documents,Electronic Publishing4,3 (Septem-
ber 1991), 125-150

[DV91] Laura M. Downs and Michael L. Van De Vanter, “PanI Version 4.0: An Intro-

or-

ng,
eri-

.

tics
ults,

eus
re

tal

rate-
Fac-

ed
idar

in,

, in
),

pre-

rsey,

t of
duction for Users”, 91/659, Computer Science Division, EECS, University of Calif
nia, Berkeley, August 1991.

[DHK+84] Véronique Donzeau-Gouge, Gérard Huet, Giles Kahn and Bernard La
“Programming Environments Based on Structured Editors: The MENTOR Exp
ence”, in Interactive Programming Environments, David R. Barstow, Howard E.
Shrobe and Erik Sandewall (editors), McGraw-Hill, New York, NY, 1984, 128-140

[Gol87] Adele Goldberg, Programmer as Reader,IEEE Software4,5 (September
1987), 62-70.

[GL88] Dennis R. Goldenson and Marjorie B. Lewis, Fine Tuning Selection Seman
in a Structure Editor Based Programming Environment: Some Experimental Res
ACM SIGCHI Bulletin 20 (October 1988).

[GHM92] Susan L. Graham, Michael A. Harrison and Ethan V. Munson, “The Prot
Presentation System”,Proceedings ACM SIGSOFT ‘92: Fifth Symposium on Softwa
Development Environments, December 1992, 130-138.

[Hel90] Dan Heller,XView Programming Manual: An OPEN LOOK Toolkit for X11,
O'Reilly & Associates, Inc., Sebastopol, California, 1990.

[HBS87] Robert W. Holt, Deborah A. Boehm-Davis and Alan C. Schultz, “Men
Representations of Programs for Student and Professional Programmers”, inEmpirical
Studies of Programmers: Second Workshop, Gary M. Olson, Sylvia Sheppard and
Elliot Soloway (editors), Ablex Publishing, Norwood, New Jersey, 1987, 33-46.

[Joh85] Vera John-Steiner,Notebooks of the Mind: Explorations of Thinking, Harper
& Row, 1985.

[KR91] Jurgen Koenemann and Scott P. Robertson, “Expert Problem Solving St
gies for Program Comprehension”, Proceedings SIGCHI Conference on Human
tors in Computing Systems, New Orleans, Louisiana, 1991, 125-130.

[Lan86] Bernard Lang, “On the Usefulness of Syntax Directed Editors”, in Advanc
Programming Environments, Lecture Notes in Computer Science vol. 244, Re
Conradi, Tor M. Didriksen and Dag H. Wanvik (editors), Springer Verlag, Berl
1986, 47-51

[Ler92] Barbara Staudt Lerner, Automated Customization of Structure Editors,Inter-
national Journal of Man-Machine Studies 37,4 (October 1992), 529-563

[Let86] Stanley Letovsky, “Cognitive Processes in Program Comprehension”
Empirical Studies of Programmers, Elliot Soloway and Sitharama Iyengar (editors
Ablex Publishing, Norwood, New Jersey, 1986, 58-79.

[LS86] Stanley Letovsky and Elliot Soloway, Delocalized Plans and Program Com
hension,IEEE Software 3,3 (May 1986), 41-49.

[LN86] Clayton Lewis and Donald A. Norman, “Designing for Error”, inUser Cen-
tered System Design: New Perspectives on Human-Computer Interaction, D. A. Nor-
man and S. W. Draper (editors), Lawrence Erlbaum Associates, Hillsdale, New Je
1986, 411-432.

[Min90] Sten Minör, On Structure-Oriented Editing, PhD Dissertation, Departmen
Computer Science, Lund University, Sweden, January 1990.

ax-
ting

tic,

ted

ware

n-

: A

n

uter

l-
-

cu-
on

yn-

ys-
CS,

er-

g

[Nea87] Lisa Rubin Neal, “Cognition-Sensitive Design and User Modeling for Synt
Directed Editors”, Proceedings SIGCHI Conference on Human Factors in Compu
Systems, Toronto, Canada, April 1987, 99-102.

[Nor86] Donald A. Norman and Stephen W. Draper (editors),User Centered System
Design: New Perspectives on Human-Computer Interaction, Lawrence Erlbaum Asso-
ciates, Hillsdale, New Jersey, 1986.

[Not85] David Notkin, The GANDALF Project,Journal of Systems and Software5,2
(May 1985), 91-105.

[OC90] Paul Oman and Curtis R. Cook, Typographic Style is More than Cosme
Communications of the ACM 33,5 (May 1990), 506-520.

[PND87] G. R. Perkins, R. W. Norman and S. Danicic, Coping with Deeply Nes
Control Structures,SIGPLAN Notices 22,2 (February 1987), 68-77.

[RT84] Thomas Reps and Tim Teitelbaum, The Synthesizer Generator,Proceedings of
the ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Soft
Development Environments 19,5 (May 1984), 42-48.

[RT87] Thomas Reps and Tim Teitelbaum,The Synthesizer Generator Reference Ma
ual, Department of Computer Science, Cornell University, 1987. Second edition.

[RW88] Charles Rich and Richard C. Waters, The Programmer's Apprentice
Research Overview,Computer 21,11 (November 1988), 11-25.

[Sch83] Donald A. Schoen,The reflective practitioner: how professionals think i
action, Basic Books, New York, 1983

[SGG77] M. E. Sime, T. R. G. Green and D. J. Guest, Scope Marking in Comp
Conditionals -- A Psychological Evaluation,International Journal of Man-Machine
Studies 9 (1977), 107-118.

[SE84] Elliot Soloway and Kate Ehrlich, Empirical Studies of Programming Know
edge,IEEE Transactions on Software EngineeringSE-10,5 (September 1984), 595
609.

[Sta81] Richard M. Stallman, EMACS: The Extensible, Customizable, Self-Do
menting Display Editor, Proceedings of the ACM-SIGPLAN SIGOA Symposium
Text Manipulation,SIGPLAN Notices 16,6 (June 8-10 1981), 147-156.

[TR81] Tim Teitelbaum and Thomas Reps, The Cornell Program Synthesizer: A S
tax-Directed Programming Environment,Communications of the ACM24,9 (Septem-
ber 1981), 563-573.

[Van92] Michael L. Van De Vanter, “User Interaction in Language-Based Editing S
tems”, UCB/CSD-93-726, Ph.D. Dissertation, Computer Science Division, EE
University of California, Berkeley, December 1992.

[VGB92] Michael L. Van De Vanter, Susan L. Graham and Robert A. Ballance, Coh
ent User Interfaces for Language-Based Editing Systems,International Journal of
Man-Machine Studies 37,4 (1992), 431-466.

[Wei84] Mark Weiser, Program Slicing,IEEE Transactions on Software Engineerin
SE-10,4 (July 1984), 352-357.

[Win79] Terry Winograd, Beyond Programming Languages,Communications of the
ACM 22,7 (July 1979), 391-401

	Practical Language-Based Editing For Software Engineers
	Michael L. Van De Vanter
	Sun Microsystems Laboratories 2550 Garcia Avenue, MTV29-112 Mountain View, CA 94043-1100 Michael....
	Abstract. Language-based editing systems have the potential to become a practical, central, and p...
	1 Introduction
	2 Context
	3 Requirements for Usability
	3.1 Familiar, unrestricted text editing
	3.2 Coherent user interaction with software
	3.3 Rich, dynamic information display
	3.4 Multiple, alternative views
	3.5 Uninterrupted service despite “I3”
	3.6 Description-driven support for multiple languages
	3.7 Extensibility and customizability

	4 The Pan Prototype
	5 Design Metaphors
	5.1 Augmented Text Editor
	5.2 Heads-Up Display
	5.3 Imperfect World
	5.4 Smart versus Dumb Services
	5.5 Strict versus Gracious Services

	6 Architectural Solutions
	6.1 Infrastructure: Isolation of Language-Based Technology
	6.2 Kernel: Basic Abstractions
	6.3 Basic Services: Reusable Elements
	6.4 View Styles: Configuration by Design
	6.5 Applications

	7 Conclusions and Open Issues
	8 Acknowledgments
	9 References

