
The documentary structure of source code

Michael L. Van De Vanter

Sun Microsystems Laboratories, 4150 Network Circle, UMTV29-112, Santa Clara, CA 95054 USA

Abstract

Many tools designed to help programmers view and manipulate source code exploit the formal structure of the programming language.

Language-based tools use information derived via linguistic analysis to offer services that are impractical for purely text-based tools. In order

to be effective, however, language-based tools must be designed to account properly for the documentary structure of source code: a structure

that is largely orthogonal to the linguistic but no less important. Documentary structure includes, in addition to the language text, all extra-

lingual information added by programmers for the sole purpose of aiding the human reader: comments, white space, and choice of names.

Largely ignored in the research literature, documentary structure occupies a central role in the practice of programming. An examination of

the documentary structure of programs leads to a better understanding of requirements for tool architectures. q 2002 Sun Microsystems Inc.

Published by Elsevier Science B.V. All rights reserved.

Keywords: Source code; Linguistic structure; Programming; Comments

1. Introduction

The designers of tools intended to assist programmers

often embrace the following reasoning, sometimes

implicitly:

† source code has a formal structure defined by the

programming language in which it is written;

† in order to be helpful, tools must also understand source

code; therefore

† tools should be designed around the formal structure of

programming languages.

This reasoning naturally leads designers toward archi-

tectures that mimic compilers, the original language-based

tools.

Compiler-oriented architectures are inadequate, how-

ever, for many kinds of tools, in particular tools that produce

transformed source code for ongoing development. These

include language translators [1], prettyprinters, automatic

restructurers [6], editor auto-indenters, interactive tools for

object-oriented refactoring [10], and a broad class of tools

for software reengineering. Powerful integrated develop-

ment environments increasingly support such functionality,

sometimes embedded in a source code editor.

A compiler-oriented approach for such tools typically:

1. reads textual source code from files;

2. creates a data structure that represents the formal

linguistic meaning of the code, based on some kind of

syntax tree;

3. analyzes and/or transforms this data structure;

4. produces a result; and

5. exits, discarding the data structure.

This approach fails for the class of tools mentioned above

because it is based too narrowly on formal linguistic1

structure, and consequently discards nearly all traces of

another aspect of code: its documentary structure.

Unlike the textual representation of linguistic structure,

which includes keywords, identifiers, operators, and punc-

tuation, documentary structure consists of those textual

aspects explicitly defined to be not part of the language:

white space (new lines, spaces, tabs), comments, and choice

of names.

Viewed differently, documentary structure is what

programmers add to source code for the sole purpose of

aiding the human reader. This is of enormous importance

because of the central role of reading during software

development [14]. Programmers clearly understand this:

they arrange code carefully, complain about inadequate

comments, and argue passionately about the exact place-

ment of braces in code (purely a matter of white space in

most languages).

It is almost tautological that documentary structure is

outside the formal language. It is a much more subtle fact

that documentary structure is mostly orthogonal to language

0950-5849/02/$ - see front matter q 2002 Sun Microsystems Inc. Published by Elsevier Science B.V. All rights reserved.

PII: S0 95 0 -5 84 9 (0 2) 00 1 03 -9

Information and Software Technology 44 (2002) 767–782

www.elsevier.com/locate/infsof

E-mail address: michael.vandevanter@sun.com (M.L. Van De Vanter).
1 In this paper, linguistic refers exclusively to programming languages.

http://www.elsevier.com/locate/infsof


structure. An important consequence is that compiler-

oriented tools do not represent documentary structure

adequately. Compilers discard this information freely

because it is not needed: humans seldom read compiler

output. For other language-based tools, however, losing

documentary structure violates the tool builder’s equivalent

of the physician’s oath to ‘first do no harm.’

Designers of successful code transformation tools must

recognize the following realities:

† text containing source code is a document in the human

sense of the word;

† a code document is written for both humans and tools,

with the human audience being the more important; and

† the documentary structure of code is grounded in

information that cannot be derived from its linguistic

structure, and in fact cannot even be understood in

those terms.

Builders of language-based tools have long struggled

with comments and white space [1,2,6,19,20,29,38].

Variations of language syntax and editing tools have

been proposed, but with little success. More recently,

JavaDoc comments have some very useful linguistic

structure (and a batch-oriented tool set to match [11]),

but do not eliminate the need for conventional comments

and use of white space. Legasys, a successful reengineer-

ing system, honors documentary structure by implement-

ing all code changes as local, carefully computed text

changes to the original text [7,24].

The first two realities mentioned above have been

recognized: source code is a document whose human

legibility is paramount. This paper emphasizes the third

with an examination of documentary structure and its

consequences for the design of language-based tools.

Section 2 begins with background on documentary structure

and on how simplistic tools attempt to deal with it. The

expedients adopted by such tools, which never seem to work

quite right, fail for reasons described in more detail in

Section 3: the orthogonality of documentary and linguistic

structure. Section 4 describes relevant characteristics of

documentary structure and discusses its relationship to

frameworks for program understanding, in which it has

largely been ignored. Section 5 discusses architectural

strategies for preserving documentary structure: and

describes why it is so difficult to apply compiler-oriented

approaches effectively. Section 6 reviews other approaches

that have been taken in dealing with the ‘comment problem’

and argues that they are not likely to eliminate current

mechanisms any time soon. Section 7 concludes with

observations, implementation status, and open questions.

2. Background

This section describes in more detail the context of the

issue: language definitions, simplistic structure-based trans-

formation tools, the fundamental mismatch, and the

apparent technology bias that makes the disconnect so

hard to see.

2.1. Programming languages

The documentary structure of source code is dominated

by the spatial arrangement of program elements and

comments as they appear to a reader on a printed or virtual

page. Programmers create this structure using white space

and comments, the only tools at hand.

The Cþþ and Javae programming languages are

typical, with nearly identical treatment of white space and

comments. Source code is presumed to be stored in files

containing text characters. White space is defined to include

those characters that are permitted but which do not

comprise tokens: space characters, tabs, and line breaks.

Tokens are the lexical elements of a program, so by

definition white space is not part of a program. Further-

more, comments are equivalent to white space; they take two

forms, block comments and line comments, as shown in Fig.

1. A complete treatment of the topic occupies two of the 500

pages in The Java Language Specification [15].

A slightly different aspect of documentary structure is the

programmer’s choice of names for computational entities

such as classes, methods, and variables. Although an

identifier that represents a name is part of the language,

and there are some restrictions on which characters can be

used, the natural language connotation (i.e., the choice of

name) is not; it is properly part of the documentary

structure, and is no less important than white space and

comments.2

For the purpose of this paper, then, the documentary

structure of text-based programs consists of these elements:

† Indentation: spaces that separate code or comments from

the left margin of the page.

† Inter-token spacing: spaces between adjacent tokens on a

line.

† Line breaks: special characters that cause the immedi-

ately following character to begin a new line.

† Comments: as shown in Fig. 1.

† The choice of names for language entities.

One cannot help but note the formal weakness of these

elements when compared to the rich structure of program-

ming languages. A few languages have offered slightly

more structure in white space and comments, but the pre-

lexical (i.e., linguistically transparent) approach now

dominates.

2 There are other kinds of structures as well, including the use of the

language: idiom, plans, etc. Those are very important (as surveyed by

Détienne [9]), but are beyond the scope of this paper.

M.L. Van De Vanter / Information and Software Technology 44 (2002) 767–782768



2.2. Programming practice

In contrast to their simple definitions, the use of white

space, comments, and names has a long and colorful history,

perhaps the more so because formal structure is lacking.

Because white space and comments can occur just about

anywhere, programmers feel free to create elaborate

conventions for their use. Naming conventions are likewise

barely restricted.

For example, the code in Fig. 2 (excerpted from a large

program written by experienced Cþþ programmers3)

nicely demonstrates how programmers make code easy to

read. The combination of appropriately terse comments,

blank lines, a repeating pattern of layout and suggestive

variable names (all are necessary) gives the human reader

a tremendous advantage in understanding both the overall

point of the code, and the individual clauses that it

comprises.

Since reading code is the principal activity of program-

ming, even while writing [14], documentary structure has

significant impact on programmer productivity. Program-

mers know this. For example:

† they demand auto-indenters, whose sole function is to

manage white space;

† they argue passionately about the (linguistically insig-

nificant) placement of braces and whether to use them at

all when they are optional;

† they debate naming conventions and complain when

they are not followed.

Laboratory experiments have shown that improved

visual presentation of source code (largely involving

documentary structure) increases reading comprehension

[3,28,34]. In a backhanded way, Roedy Green makes the

same case in his satirical (and well received) essay ‘How to

write unmaintainable code’ [16]. Many of his techniques

pervert documentary structure in order to obfuscate

linguistic structure, clear acknowledgement of the power

of the former over the latter.

2.3. Language-based transformation tools

Language-based tools operate on the formal linguistic

structure of programs. The conventional data structure for

representing programs is a syntax tree, derived from source

code by parsing; some syntactic details may be elided, and

additional annotations on tree nodes capture information

such as data types. This technology was developed for

compilers, the original language-based tools, and we call

such approaches compiler-oriented.

The tools of most interest in this paper modify programs

represented in such an internal representation and then

produce source code as a result. In a compiler-oriented

architecture this is done by unparsing: generating textual

source code from a syntax-based representation. For

example, language translation systems read programs

written in one language and write equivalent programs in

another language or a newer version of the same language.

Restructuring tools change programs for a variety of

reasons, for example the handling of Y2K dates. Tools are

currently being explored to support the Extreme Program-

ming [5] practice of ongoing code improvement via object-

oriented refactoring: reorganizations that do not change the

behavior of the program, but which increase the maintain-

ability, and thus the quality of the code [10].

When such a tool is interactive and visual it is called an

editor. Compiler-oriented editors are called structure

editors, or syntax-directed editors. Because they represent

programs only as syntax trees, they use unparsing to

produce a textual display for humans.

2.4. Structural mismatch

The defining characteristic of such tools is that they

produce source code for use by people, so maintaining

documentary structure is essential. However, because white

space and comments exist outside formal program structure,

they have no well-defined representation in syntax-based data

structures. Consequently, tool designers using compiler-

oriented architectures must invent ad hoc strategies for

attaching comments and formatting information to syntax

trees. The results have generally been unsatisfactory:

Fig. 1. Conventional text comments.

Fig. 2. Cþþ code with white space and comments.

3 All examples are excerpted from professionally written code and have

been adapted slightly for compactness.

M.L. Van De Vanter / Information and Software Technology 44 (2002) 767–782 769



† A COBOL restructuring system was observed to produce

‘dangerous’ and ‘misleading’ comments because the

system was unable to determine which syntactic structures

comments originally described [6].

† Language-based structure editors, such as the Program

Synthesizer [33], permitted comments only in certain

places and gave programmers very little control over their

layout. This, along with other restrictions on text-oriented

editing, contributed to the perceived inflexibility of such

editors, a significant obstacle to their adoption [25].

† JavaML, a proposed standard structural representation

for programs written in the Java programming language,

stores comments (which the author found ‘especially

troublesome’) as attributes on ‘certain important

elements [tree nodes]…’ The author notes further that

“Determining which comments to attach to which

elements is challenging; the current implementation

simply queues up comments and includes all that appear

since the last ‘important’ element in the comment

attribute of the current such element” [2]. This amounts

to no real strategy at all.

† A Pascal-to-Ada translation system retained comments

by attaching them to tree nodes using simple rules, but

the authors admitted that comments would not end up in

the same place [1].

In all such cases documentary structure is lost. The cited

consequences might be acceptable in the context of

infrequently performed tasks, during which there might be

careful human review and correction, but they are otherwise

unacceptable.

Addressing the “comment problem” in systems such as

these is often an afterthought and usually begins with an ill-

considered strategy of the sort mentioned above: attach each

comment to the ‘right’ place in a syntax tree. Unsatisfactory

results are often blamed on not getting the rules right: the

rules for attaching comments to tree nodes, and the rules for

unparsing them.

In fact, the rules will never be right. The syntax-based

strategy, intuitively appealing to language technologists,

fails for a fundamental reason: the documentary structure of

source code is largely orthogonal to its linguistic structure.

Consequently, any naive projection of documentary struc-

ture onto linguistic structure necessarily loses crucial

information, without which no unparser can produce

undamaged source code.

Furthermore, even attaching comments appropriately

would not be enough. A considerable amount of the richness

in documentary structure, as Sections 3 and 4 point out,

derives from white space and its relationship to comments

and language elements.

2.5. Technology bias

A surprising aspect of this observation has been how

difficult it is for many tool builders to accept. Some kind of

bias keeps language technologists from appreciating the

huge gap that separates the way languages are formally

defined from the way they are used in practice. People

understand programs in ways that have relatively little to do

with grammars [9], and ignoring this reality is a failure of

user-centered [26] design.

The genesis of this paper was a 1993 argument over an

experimental tree-based programming environment. Every

objection to the proposed strategy, attaching comments to

syntax tree nodes, was heard as an admission of failure, i.e.,

inability to discover the right rules. A subsequent white

paper that cited examples from the participants’ own code

increased the emotional intensity but failed to modify

already hardened positions.

Numerous conversations since have replayed the sce-

nario, most recently before an audience of experts in

program analysis and reengineering. As always, the first

reaction is to deny that the problem exists—implicitly

assuming that documentary structure (if one cared) could be

mapped satisfactorily onto syntax trees (if one tried hard

enough). Once the case is made, which invariably requires

examples of the sort reported in Section 3, the reaction turns

to irritation (at being bothered with something as unin-

teresting as comments) and anger (at programmers who

write ‘stupid’ comments). Subsequent, more thoughtful

conversation invariably leads to strategies for persuading

programmers to change their ways.

The sole exception in the author’s personal experience

was the successful Legasys system, whose designers

recognized the problem and made solving it a fundamental

requirement [7,24].

3. Documentary vs. linguistic structure

This section demonstrates, largely through examples, the

fundamental orthogonality between documentary and lin-

guistic structure that was identified in Section 2.4. A

consequence is that documentary structure cannot be

expressed or even understood in terms of linguistic

structure. Examples will show the following:

† The notion of a single comment is itself ill-defined.

† Some white space, in particular line breaks, can be as

important as comments.

† The structural referent of a comment cannot be reliably

inferred, might not be explicitly represented, and may not

exist at all.

† The meaning of textual comments often depends on

white space and other comments in ways that defy

linguistic analysis.

3.1. An introductory example

Fig. 2 is instructive. The experienced Cþþ programmer

quickly recognizes a sequence of conditional clauses, nicely

M.L. Van De Vanter / Information and Software Technology 44 (2002) 767–782770



articulated by indentation and intervening blank lines, each

prefaced by a terse comment. A glance at the parallel

prose in the comments (‘completely before’,

‘completely overlaps’, etc.), together with the

variable names appearing in the Boolean conditionals

(‘start’, ‘end’, etc.), make clear that the clauses pertain

to possible ordering relationships. Further examination of

the code confirms that this interpretation is what the author

intended.

Note the location of the second comment, however: it sits

inside the code handling the first case and thus has no

syntactic relationship at all with the code to which it

obviously refers.

The first comment is also curious. It precedes the single

nested conditional statement that comprises the entire code

excerpt, and so might be thought to refer syntactically to the

whole thing. The parallel positioning of the nearby

comments, however, combined with parallel language in

their texts, suggests that it applies only to the first ‘if’

clause.

The final comment is more curious yet: it apparently

applies to no statements at all (it is in an empty block) and to

no explicit case (there is no expressed Boolean conditional).

Many compilers would discard not only the comments, but

also the entire ‘else’ clause and its empty block, even

though they collectively convey crucial information to

human readers.

This discussion is not meant to argue for a particular style

of writing comments; many programmers would have

commented the code in Fig. 2 differently. The important

points are:

† the code is intelligible to humans;

† much of the initial information ascertained by the reader

comes from its documentary structure in which even line

breaks participate significantly;

† many elements of documentary structure carry meaning

only in the context of the whole; and

† the relationship between these elements and the formal

linguistic structure of the programs is idiosyncratic at

best.

The remainder of Section 3 discusses in more detail

these relationships and the disconnect between the

documentary and linguistic structures, starting with the

most basic issue.

3.2. Identifying comment boundaries

Any attempt to treat comments formally encounters the

immediate problem that comment boundaries are not well

defined. This makes it impossible from the outset to think

about comments as elements of linguistic structure.

For example, does the method in Fig. 3 contain one

comment or two? To the human reader there is only one, but

according to the language definition there are two. Treating

these comments separately loses information.

Other common configurations exhibit related problems.

The code in Fig. 4a contains three comments linguistically,

but only a single comment to the human reader. What if the

second and third were indented differently than the first (Fig.

4b)? Alternatively, what if the text of the second comment

were indented several extra spaces, as if at the beginning of

a paragraph (Fig. 4c)?

Should an empty comment define a boundary between

two adjacent comments, as in Fig. 5, or should it be treated

as a paragraph break in a single comment? What if these

were block comments instead of line comments, or if they

were indented differently? None of these questions have

good answers.

3.3. White space as comments

Although comments are widely understood to act as

white space, the converse is seldom appreciated: often white

space acts as a comment. The most common example is the

use of blank lines to group lines of code for the benefit of the

reader, sometimes with adjacent comments. Examples of

grouping include:

† variable declarations (related in the author’s mind);

† groups of statements (likewise related); and

† statements with associated comments.

For example, a programmer grouped statements in Fig. 6

Fig. 3. One comment or two?

Fig. 4. Extended comments.

Fig. 5. One, two, or three comments?

M.L. Van De Vanter / Information and Software Technology 44 (2002) 767–782 771



using blank lines and added a comment applicable to each

group. Even if the comments were retained in a structural

representation, and even if they were unparsed back into the

same sequence, information would be lost if the blank lines

were not reproduced. For example the first comment might

be thought to refer to the whole block, and the second might

just as well refer backwards.

The documentary strength of blank lines cannot be

overstated. Often, blank lines dominate syntax in the mind

of the reader. For example, blank lines in Fig. 2 effectively

preempt syntactic structure. Without the preceding blank

line (and the absence of a following blank line) the second

comment in Fig. 2 would be read as referring to the first

clause of the conditional statement instead of the second.

3.4. Finding structural referents

Attaching a comment usefully to a syntax tree is often

assumed to mean finding the right node: the one to which the

comment refers. Even in cases where a right node exists,

identifying that node requires understanding the documen-

tary structure.

For example, to a human reader the first comment in Fig.

7 clearly refers to the argument ‘proc_body’ because the

two are on the same line. From the linguistic perspective,

however, the comma that separates ‘proc_body’ from the

comment creates a more natural (linguistically closer)

association with the argument ‘static_link’ on the

following line.

Fig. 8 makes these relationships more explicit by

repeating the example of Fig. 7, somewhat abbreviated, in

two forms. The human reader associates the comment

backward in Fig. 8a and forward in Fig. 8b.

The expression in Fig. 9 (excerpted from the argument of

a return statement) exhibits similar behavior. Three

comments contain information crucial to understanding

comparisons of bit sequences. The third comment sits

completely outside the return statement syntactically, to the

right of the terminating ‘;’, but this comment actually refers

backward to one of the most deeply nested nodes in the

syntax of the preceding statement.

Finally, referring again back to Fig. 2, the second

comment refers to code in a different clause of the

conditional statement than the one in which it appears. In

this situation, documentary structure (grouping and blank

lines) causes the comment to refer forward across major

syntactic boundaries: past braces, past an ‘else’ keyword,

to a different major code block.

It is tempting to consider such cases idiomatic, amenable

to recognition by heuristic rules. Even that is doomed to fail

when the actual reference depends on the natural language

content of the comment(s). Referring once again back to

Fig. 2, the parallel use of natural language in sibling

comments resolves ambiguity. This problem arises even in

simple sequences such as in Fig. 10.

3.5. Missing structural referents

Section 3.4 demonstrated how the true structural referent

of a comment can be difficult or impossible to infer. In some

cases it may not exist at all.

For example, the final comment in Fig. 2 refers to an

implicit Boolean conditional, which can only be understood

in the context of all preceding conditionals (actually, even

the notion of ‘preceding’ is misleading, since the con-

ditional statements are syntactically nested). The final

comment actually refers to the absence of any statements.

A language purist might object that the final comment in

Fig. 2 actually refers to an invisible ‘empty statement list’.

No such objection is likely in Fig. 11. The comment (or is it

two?) refers to a method, defined in a separate interface that

is not explicitly mentioned at all in the immediate code.

Sometimes the referent is present, but not represented

explicitly in conventional data structures. For example, the

second comment in Fig. 6 clearly refers to the following

pair of statements, for which there is no natural represen-

tation in a typical syntax tree. Many tree representations for

statement sequences are possible, but in none of them would

there be a node corresponding precisely to those two

statements.

Fig. 6. Statement groups.

Fig. 7. Documentary reference in a sequence.

Fig. 8. Fig. 7 abstracted.

Fig. 9. Documentary reference in an expression.

M.L. Van De Vanter / Information and Software Technology 44 (2002) 767–782772



Finally, there are comments in statement sequences that

refer only to the place between successive statements, for

example as in Fig. 5, to note how much progress toward

some goal has been made at this point in the sequence.

3.6. Control flow and stylistic variation

Finally, the interaction between comment placement and

control flow can be extremely nuanced, with human

interpretation influenced by apparently unbounded variation

in the relative placement of comments, line breaks, and

braces. This presents challenges to tools that adjust what

would otherwise be considered stylistic options, for example

the use and placement of optional braces.

For example, Fig. 12 shows four presentations of ‘if’,

the most elemental control statement, along with typical

comment locations. These presentations by no means

exhaust the possibilities permitted by most languages. The

else (Fig. 2), for, and switch constructs introduce their

own complexities.

As discussed previously, some comments may refer to

syntactic elements and some may not. For example ‘c2’ and

‘c10’ may refer to the Boolean condition, the action, or

neither. ‘c5’ might also refer to the condition, although it is

syntactically distant because of the intervening brace.

Multiple comments, possibly with different referents, are

often syntactically indistinguishable. For example, ‘c2’ and

‘c3’ are in the same place from a linguistic perspective, as

are ‘c7’ and ‘c8’. Indentation plays a significant role in

these relationships. For example, comments ‘c5’, ‘c6’ (if

present) and ‘c7’ might be related and might even be parts

of the same documentary comment (as in Fig. 3).

A code transformation tool that attempts to convert the

style of an ‘if’ statement from one of the presentations in

Fig. 12 to another must make difficult decisions in the

presence of comments.

4. The documentary structure of code

Section 3 demonstrated that the documentary structure of

source code is not related to the linguistic structure in any

tractable way. In order to avoid damaging source code, then,

language-based tools of the sort under consideration in this

paper must be designed in ways that go beyond simple

compiler-oriented approaches. This section discusses the

evidence concerning documentary structure, evidence that

is necessary for understanding architectural goals and

trade-offs.

Section 4.1 reviews the research literature on the topic, of

which there is surprisingly little, perhaps for reasons similar

to those mentioned in Section 2.5. Programming practice,

however, is rich in this area, and it informs the taxonomy

and analysis of Section 4.2. The remainder of the section

describes characteristics of documentary structure that have

important implications for tool design:

† it is primarily visual;

† it uses natural language;

† relationships matter; and

† it is robust when compared with linguistic structure.

4.1. Documentary structure in the literature

As crucial as documentary structure is to the human

reader, it has been surprisingly neglected in the research

literature on programmer psychology. Détienne’s compre-

hensive survey Software Design—Cognitive Aspects

includes two chapters on ‘software understanding’ that

barely mention it [9]. For example, a proposed two-level

cognitive model for program understanding rests on a

‘microstructure’ whose definition mentions only formal

syntactic elements.

In contrast, studies have shown that high-quality, fine-

grained typography (which is certainly more ‘micro’ than

syntactic elements) can contribute significantly to the ability

of programmers to understand programs on paper [3,28].

Détienne cites an experiment that asked readers to infer

statement grouping as a test of comprehension, but nowhere

Fig. 10. Which statement is the referent?

Fig. 11. Phantom referent.

Fig. 12. Comment positions for ‘if’ statements.

M.L. Van De Vanter / Information and Software Technology 44 (2002) 767–782 773



is it mentioned that an author might use blank lines to

communicate this information directly. Détienne frames

program understanding in terms of multiple ‘schemas’,

chunks of knowledge in various frames of reference (e.g.,

elementary, algorithmic, and implementation), but with no

mention of authorship. Détienne does recognize that there

are ‘other’ types of schema, and documentary structure is

certainly one of them. However, documentary structure

differs from others by virtue of its explicit construction by

programmers.

The most relevant body of cognitive research comes

from Green, who has explored many of the implications of

program notation. Green’s ‘cognitive dimensions’ frame-

work addresses how people understand technical artifacts

[17]. Among the dozen or so dimensions is ‘secondary

notation’, of which documentary structure is an example.

Green and Petre note that this dimension has been ‘little

studied’ for programming, even though it is considered

‘indispensable’ in other domains, and they see the absence

of sufficient secondary notation mechanisms as defects in

other design environments [18].

One finds information related to documentary structure

mainly in the literature on programming practice and tools.

For example, published ‘coding conventions’ and ‘style

guides’ offer sometimes quite detailed recommendations

about the appropriate and uniform use of documentary

structure [12,32]. Recommendations even appear in language

reference manuals, for example a five-page discussion of

naming conventions in The Java Language Specification

[15]. Popular text editors such as Xemacs include customiz-

able editing support for particular styles [39].

A magnificent example from the practical literature is

Roedy Green’s popular satirical essay, mentioned earlier, on

writing ‘unmaintainable code.’ The essay has evolved into a

growing on-line collection of ‘techniques’ for thwarting the

human reader [16], clearly motivated by painful experience

with incomprehensible code. The discussions accompany-

ing Green’s techniques implicitly testify to the importance

of documentary structure and will be cited throughout this

section.

4.2. The elements of documentary structure

Programmers create documentary structure using the

elements listed in Section 2.1. Although not part of any

formal framework, each element has its own customs,

folklore, and tool support. This section revisits those

elements from the perspective of tool design. Questions to

be asked about each element include:

† How much documentary information does the element

carry?

† How much of the documentary information is redundant,

i.e., can be reconstructed from other information (as

opposed to irrecoverable information dealing with the

author’s intent)?

† What level of collaboration between programmers

and their tools (typically editors) is customary for

managing the elements?

The answers vary significantly, with important impli-

cations for the design of language-based tools.

4.2.1. Indentation

No program editor is considered complete without

automatic indentation, and the degree to which program-

mers rely upon it is revealing. By nearly universal

agreement, indentation follows syntactic structure, but to

the human reader it works the other way: syntactic structure

is inferred from indentation, without which programs are

incomprehensible.

Although indentation is theoretically redundant, since it

can easily be computed from syntax, there are two serious

problems with this view.

The first problem is that programs being edited are

seldom syntactically perfect. From a formal linguistic point

of view, ill-formed programs have no defined syntactic

structure at all, meaning that a syntactically driven

indentation engine would almost never be of any use. To

a programmer, of course, this point of view is preposterous:

a syntax error is really just a temporary anomaly [35], and

the problem is that syntactically driven tools seldom

understand what the programmer is doing. Practical

indentation engines are rather more complex:

† they only analyze a tiny subset of language structure (a

sort of ‘fuzzy parsing’), so that the vast majority of

syntactic imperfections are not seen;

† they operate locally in many situations, for example

indenting a single line relative to the previous line; and

† they rely heavily on history, leaving most indentation

unchanged most of the time, so the programmer can

judge when to attempt global reindentation.

In other words, practical indentation in editors relies on

syntax as little as possible.

The second serious problem is that indentation is as

important to comments as it is to language elements,

perhaps more so, but comments have no syntactic structure

from which to derive indentation. There are conventional

locations for many comments, sometimes discussed in style

guides, but many of the examples in Section 3 show

comments for which indentation carries crucial documen-

tary information that cannot be computed from anything

else.

Indentation is thus redundant, but only for language

elements and only when programs are syntactically perfect.

The rest of the time, indentation carries important, non-

recoverable documentary information.

Programmers are accustomed to delegating responsibil-

ity for indentation completely to tools, although they have

conflicting opinions about what those rules should be.

M.L. Van De Vanter / Information and Software Technology 44 (2002) 767–782774



Contention arises when programmers wish to view code

using a personal choice of indentation rules (among others),

which interacts badly with excessively literal change control

systems.

4.2.2. Inter-token spaces

On the other hand, what to put between adjacent

language tokens within each line is often left to programmer

preference. Although it is understood to be important, there

are only a few widely established customs such as ‘a blank

space should appear after commas in argument lists’ [32]

and ‘spaces may not be used between procedure names and

their argument list’ [12]. Other rules ensure that keywords

and parentheses are separated with spaces, as for example in

‘while (true) {’, precisely to distinguish them from

procedure calls in which the space is discouraged.

Programmers sometimes fight over other details of inter-

token spacing, but more as a matter of legibility than any

recording of programmer intent. A significant problem is

that the space character is too coarse-grained for all

situations.

Graphical program designs developed by Baecker and

Marcus exploit fine grained control over inter-token spacing

to aid visual comprehension [3]. The CP source code editor,

a research prototype, demonstrates that this level of

typography can be computed from style rules in real time

while a programmer types [37]. This technology allows

programmers to delegate inter-token spacing completely to

their tools, as with indentation now.

Ordinary inter-token spacing thus carries only a moder-

ate amount of documentary information but is largely

redundant. A significant exception is the use of extra

spacing for alignment across multiple lines. For example,

the author of the code in Fig. 13 uses space characters to do

manually what tabs do automatically in word processors,

automation that is sadly lacking in code editors. Over and

above the tedium of manual tabbing, the need to do so

discourages the use of proportional fonts, which are in many

respects easier to read. This use of inter-token spacing

carries a fair bit of documentary information, but can be

considered at least partially redundant. Stereotypical uses

such as this could be largely implemented by syntax-driven

rules, as long as the programmer is given appropriate

control.

4.2.3. Line breaks

Lines breaks affect the shape of code more than any other

elements and thus carry a huge amount of documentary

information. In practice, the majority are redundant: they

appear in conventional places, for example between

statements and declarations, and could thus be created

from the syntax using rules.

The exceptions matter, however. Even without comments,

the method call in Fig. 7 reads very differently than it would

without line breaks in the parameter list. Line breaking attracts

controversy in combination with braces and parentheses, as

suggested by the ‘if’ statement examples in Fig. 12. These

choices are often considered a matter of style, but they can

affect the interpretation of comments.

Even more significant are blank lines. Some rec-

ommended usages are largely redundant, for example

between class declarations, but others are not, for example

separating declarations and statements into groups reflecting

the programmer’s intent.

Given the consequences, as well as the ever present

controversies, source code editors often defer to program-

mers in the placement of line breaks [39].

4.2.4. Comments

Ordinary comments carry two kinds of documentary

information: content and placement. As examples in Section

3 showed, both affect how the reader understands code.

Placement is managed using white space: line breaks and

spaces playing the role of tabs, as mentioned above. Some

editors provide support for placing comments in conven-

tional positions, but none of this is recoverable from any

other information. Multi-line comments, as discussed in

Section 3.2, are especially difficult to recognize when

composed of many ‘line comments.’

Content is by definition irrecoverable, and there is

typically very little support from editors, seldom more than

simple paragraph filling. An important characteristic of

comments is that the linguistic structure of their content is

entirely disjoint from that of the surrounding program,

suggesting that perhaps different editing support would be

appropriate as well. The CP prototype source code editor

demonstrates that this kind of specialized support is possible

by treating comments as if they were embedded documents,

written in a different language using a different editor, but

viewed seamlessly in place [37].

Two exceptional kinds of comments are worth mention-

ing, as they have rather different properties than those

mentioned above:

† Quasi-syntactic comments are much more constrained.

For example JavaDoc comments are restricted to well-

defined syntactic positions, and their internal structure is

partially subject to formal definition [11].

† Graphical comments are composed for their appearance

rather than their content, for example rows of asterisks.

These often play the role of graphical elements such as

lines and boxes.

4.2.5. Names

Although expressed in the linguistic structure of the

language, names are chosen solely for documentary value.Fig. 13. Inter-token spacing for alignment.

M.L. Van De Vanter / Information and Software Technology 44 (2002) 767–782 775



A reliable sign of a mature and disciplined programming

organization is adherence to rigid naming conventions that

help make code readable. The vocabulary of such naming

conventions typically has a strong natural language

component, for example how and when to use verbs,

nouns, and adjectives.

Tool support for the choice of names is rare, with the

exception of some code auditors that can be programmed to

check names against conventions. An interesting exception

is Baker’s system for translating Common Lisp programs

into Ada; names are formed rather differently in the two

languages, and considerable effort, ingenuity, and judgment

was required to preserve as much of the documentary value

of names as possible [4].

4.3. Documentary structure is primarily visual

White space and comments are artifacts of the visual

aspect of source code: its appearance on a two-dimensional

page, either real or virtual. Programmers take great care

with this, working as visual designers in addition to their

other design responsibilities.

The arrangement of information on a page profoundly

influences how people read it. That is why typography and

graphic design are applied to the production of human

documents: the more difficult the subject matter, the more

important they become.

Even the shape of code is important. The examples in

Figs. 2, 7, and 9 demonstrate that the human reader,

presented with conflicting information about the relation-

ship between comments and code, will favor the visual over

the syntactic. In fact, there is evidence that programmers

seldom think much at all about programs in terms of their

formal linguistic structure [31].

This notion of document shape appears in many related

contexts. For example, a study of paper forms used by

physicians showed that the important aspect of the forms’

visual design is not their regularity or logical structure, but

whether their visual appearance makes the important things

immediately obvious [27].

Détienne cites numerous studies of program comprehen-

sion showing that readers scan for beacons: features that

enable experienced programmers to make reliable assump-

tions [9]. Although not mentioned explicitly in those

studies, visual presentation is clearly important in making

beacons easy to locate.

Conversely, as Roedy Green points out, visual layout can

equally produce unmaintainable code [16]. His example

‘pack as much as possible into a single line’ suggests that

too few line breaks make code hard to read. ‘Take advantage

of the complex tokenising rules in C and Java by removing

all spaces’ likewise suggests that too few inter-token spaces

makes code less comprehensible. ‘Nest as deeply as you

can,’ and write ‘code that masquerades as comments and

vice versa’ suggest that creating misleading shapes on the

page also makes code hard to read.

4.4. Documentary structure uses natural language

Textual comments are primarily written in natural

language, of course, and many of the examples shown in

Section 3 can only be related to the code and to one another

by understanding prose. For example, the two comments in

Fig. 3 are actually one, whereas similarly arranged

comments in Fig. 7 refer to distinct parts of the expression.

The comment in Fig. 11 uses natural language to describe a

syntactic element that is not present.

The most powerful role played by comments is to record

aspects of the programmer’s intent that cannot be expressed

directly in the code. All of Green’s suggestions for using

comments to produce unmaintainable code amount to lying

about that intent [16].

Natural language also plays an enormous role in the

selection of names for programming language elements.

The power of names to elucidate (or obfuscate) is nowhere

more clear than in Green’s essay: 32 techniques are listed

for confusing the reader through names, but a significant

number of techniques in other categories use names as well.

Examples include ‘use single letter variable names,’

‘misspell them,’ use ‘misleading names,’ capitalize idio-

syncratically, use ‘abstract names,’ reuse names, and use

‘similar-sounding similar-looking’ names [16].

4.5. Relationships matter

Documentary structure is evident, not only in the

individual elements, but in rich relationships among the

elements.

For example, indentation of a single line by itself means

little, but the indentation of a comment relative to nearby

lines can have a great impact on the reader. Likewise, extra

spaces within a line often have meaning only in relationship

to adjacent lines, as shown in Fig. 13.

It is possible, as mentioned earlier, to think of a comment

as a miniature natural language document embedded in

code, but there is more to it than that. In Fig. 2 it is the

carefully related placement and content of multiple com-

ments that communicate the designer’s intent.

An essential role in program naming conventions is to

establish and use a vocabulary of concepts relevant to a

particular system, concepts that are explained in natural

language comments.

The documentary structure one sees in source code is

often well considered and elaborate. Programmers’ docu-

mentary techniques are related to the ones used by Baecker

and Marcus in their advanced paper presentations of

programs [3], but relatively crude because of the limited

tools available. Those techniques, all of which deal with

relationships among the parts, include page headers,

horizontal rules, alignment of columns, and marginalia.

M.L. Van De Vanter / Information and Software Technology 44 (2002) 767–782776



4.6. Documentary structure is robust

A final observation about documentary structure, one

with enormous implications for the design of language-

based tools, is that it is robust, whereas linguistic structure is

fragile.

The discussion of indentation in Section 4.2 noted that

source code under development is seldom grammatically

correct, meaning that its linguistic structure is undefined

most of the time. This is a severe handicap to any language-

based tool using a compiler-oriented architecture in the

sense described in Section 2. The failure of language-based

structure editors, which sought to preserve linguistic

structure at the expense of flexible editing, can be ascribed

to architectures incapable of properly accounting for the

relationship between formal language and textual represen-

tation as seen by users [35,36].

Transformation tools of the kind discussed in this paper

face the same problem. Their ultimate acceptance may

depend on the flexibility they offer in the presence of

imperfect code.

Documentary structure, on the other hand, persists and

changes only in proportion (and in direct response to) the

programmer’s actions when using ordinary editors. This

adds even more weight to the argument for primacy of

documentary structure, which programmers see and

manipulate directly, over linguistic structure, which is

invisible, seldom of primary concern, and often broken.

5. Architectures for documentary structure

The goal set forth in the introduction is to find effective

ways for language-based tools to modify source code

intended for human consumption. The issues described here

apply equally to batch tools, for example, reengineering

systems, and to interactive tools, for example refactoring

editors.

The challenge is to preserve documentary structure,

insofar as possible, given the task at hand. Success must be

judged in user-centric terms: whether programmers find that

the benefits of a particular language-based tool are worth the

cost of damage to documentary structure.

This section discusses specific behaviors that are needed

in practice and describes why traditional compiler technol-

ogy does not help. Three architectural approaches are then

described, each with advantages and disadvantages.

5.1. When documentary structure matters

The first part of any solution is to determine when careful

handling of documentary structure matters and when it does

not. Consider three cases.

1. If a particular file has not been affected, then the original

source should be simply be reused. This guards against

damage to documentary structure that would seem

unreasonable and disproportionate to many users.

2. On the other hand, large changes, for example those

involving code movement, leave documentary structure

highly suspect and thus in need of human repair. Just

about any method for keeping comments available will

suffice in this situation; the emphasis should be on

interactive editing tools that manage documentary

structure well, for example, permitting convenient

repositioning of comments.

3. In between are the challenging cases: where code is

changed, but where a programmer would perceive as

onerous any need to inspect and repair every instance.

The third case therefore should be the focus for

transformation tools: making small modifications well

enough that programmers will generally trust the result.

The criterion, necessarily subjective, is that programmers

not feel unreasonably burdened dealing with unwanted

consequences.

5.2. Why compilers do not help

Documentary structure appears simple and natural to

people, but compiler-oriented architectures are fundamen-

tally unsuited to manage this structure, having been well

engineered for entirely different purposes. For example:

† Comments and white space are typically discarded in the

earliest state of a compiler’s data flow: between the text

stream and the lexical token stream, well before enough

context is available to examine them usefully.

† Even if comments and white space are passed into the

token stream, this feeds into a parser that is based on a

grammar in which they have no meaning.

† There is no place in this simple pipeline model where

alignments between adjacent lines (Fig. 13) can easily be

discovered, especially when they involve syntactic

constructs.

† Although much of the documentary structure concerns

relationships between white space and tokens, concrete

tokens are often discarded from syntax trees, leaving

no coherent place to record such relationships.

Consider the basic notion of a line. Although funda-

mental to the human reader, lines have no natural presence

in this architecture. However, compilers need to know

something about lines for error reporting, precisely so that

they can communicate effectively with humans. This

requirement is usually met with special mechanisms that

lie outside the standard architectural model. Such mechan-

isms do not generalize well and often do not behave

particularly well either.

Consequently, any language-based tool that effectively

manages documentary structure will be much more than a

lightly modified compiler:

M.L. Van De Vanter / Information and Software Technology 44 (2002) 767–782 777



† more analysis must be done during code input, so that the

right information is captured;

† a more general data structure must represent both the

linguistic and documentary structures; and

† code transformations must preserve as much documen-

tary structure as makes sense in the eyes of the user.

5.3. Three architectural approaches

5.3.1. Approach 1: handcrafted text patching

The most conservative approach to implementing

language-based code modification requires a handcrafted

implementation of each operation, typically along the

following lines:

† derive linguistic structure from program text;

† use the linguistic structure to determine what needs to be

changed, specialized for the particular semantics of the

operation;

† also specialized for the particular operation, translate

linguistic changes into textual changes;

† apply the textual changes and adjust any affected

documentary structure as little as possible.

The auto-indentation mechanisms in many source code

editors are simple examples of this approach.

This is also the approach being taken by an emerging

generation of interactive refactoring tools. These tend to

follow recipes proposed by Martin Fowler. A popular

example is Extract Method, whose description reads: “You

have a code fragment that can be grouped together. Turn the

fragment into a method whose name explains the purpose of

the method” [10].

In simple cases this operation proceeds as follows:

1. The programmer selects lines of code to be extracted and

requests the transformation.

2. Using language-based analysis, the tool determines

which local variables are used by code in the selection

and proposes them as arguments to the new method.

3. The user is given an opportunity to name the new method

and possibly modify its signature.

4. The tool textually cuts the selected code and pastes it into

a space between methods, along with any selected white

space and comments.

5. The tool surrounds the pasted code with two newly

inserted lines: a leading signature and a closing brace.

6. The tool adjusts indentation of the pasted code as a block,

disrupting its original documentary structure as little as

possible.

7. The tool synthesizes a new method call, inserts it in

place of the extracted code, and reindents locally with

no disruption to the surrounding code.

This approach is minimally disruptive to documentary

structure by virtue of the tool designer’s careful attention. It

requires no specialized linguistic infrastructure, again by

virtue of the designers’ handcrafting of each operation’s

semantics.

On the other hand, this approach does not generalize

well. The set of available operations is small, and the cost of

adding them is high. Programmers are likely to have no

opportunity to create or adapt transformations for their own

purposes, and there appears to be no generalized analysis

and transformation engine for use by other tools. Finally,

code formatting capability is no greater than what is

otherwise offered in the environment.

5.3.2. Approach 2: automated text patching

This approach is epitomized by Legasys LS/2000, a

language-based, design-recovery and transformation system.

LS/200 was used successfully to remediate Y2K problems in

billions of lines of source code [7]. This batch-oriented system

operates in several phases, with humans in the loop in the

important places: guiding the system toward correct identifi-

cation of trouble spots (using rules and naming conventions,

for example), and reviewing the final results of the

transformations.

Nearly every phase of the rather complex LS/2000 process

is implemented using TXL: a powerful, description-driven

pattern matching and transformation engine for tree-based

data. A notable exception to the use of TXL is the version

integration phase, during which code changes computed

during earlier phases of the process are carried out.

In order to avoid loss of documentary structure, all

derived information and proposed changes in LS/2000 are

expressed relative to the original source [24]. Changes are

made to the original source by merging (also referred to as

‘backpatching’) a newly transformed version (produced by

analysis and transformation) back into the original on a

minimal line-by-line basis. Even ‘one character of needless

difference’ is considered unacceptable. For small changes of

the sort characteristic of Y2K remediation, standard

differencing algorithms operating over token streams were

found sufficient for computing minimal changes between

before and after tokens.

Although highly successful for its intended application, it

is unclear how far LS/2000 architecture generalizes from the

perspective of documentary structure. Token-based differ-

encing reportedly did not work well for larger changes or

those requiring code movement, pushing the burden for

computing differences back onto a customized implemen-

tation of each transformation, as in the refactoring tools

mentioned earlier. Furthermore, the cited examples are in

COBOL, a language with documentary characteristics much

different from newer languages.

5.3.3. Approach 3: automated unparsing

A more aggressive approach abandons backpatching and

produces transformed code entirely, via unparsing or

prettyprinting, starting from a language-based represen-

tation. This approach, embodied in a prototype under

M.L. Van De Vanter / Information and Software Technology 44 (2002) 767–782778



development at Sun Microsystems Laboratories,4 risks greater

disruption of documentary structure, but with greater potential

benefits for interactive analysis and transformation.

Such a system must capture, in a language-based

representation, the right information so that an extended

unparser can reconstruct document structure for a somewhat

modified piece of code. This succeeds if the resulting code,

aside from the changes, means the same thing to a human

reader as did the original.

One approach, mentioned in Section 2.4, is to use

heuristics for attaching comments to tree nodes. This

approach fails for all the reasons explained in Section 3.

Too much irrecoverable (i.e., non-redundant) documentary

information is lost, and no amount of rule-driven pretty-

printing can put it back.

Another approach is to record every aspect of documen-

tary structure, including all white space and every lexical

token, as proposed by Wagner [38]. This also fails, but for

different reasons. First, it may impose unacceptable storage

requirements for large bodies of code (compilers use very

abstract trees for just this reason). Second, Wagner’s

technique records only the elements of documentary

structure, not the structure itself. It records none of the

relationships that an unparser must reinterpret for

modified code.

For example, the two comments in Fig. 3, which the

human reader understands as one (following the cue of their

alignment) would no longer be aligned should the variable

‘size’ be renamed to something substantially longer. The

literal white space that originally appeared between the ‘;’

and the second comment is of no use to an unparser trying to

put this right; the important fact, that the two comments

were aligned before the change, is lost.

The approach under consideration is driven by the

analysis of documentary structure presented in Section 4.

Some documentary information is redundant, and can thus

be ignored. Other documentary information is not, and must

be recorded in some form. In many cases, it is the

relationships that must be recorded, for example the relative

alignment of comments on successive lines, rather than the

particular columns. Here are specific examples of the

information that might be captured:

† Where each comment occurred relative to the original

token stream, even if some of the tokens are not

explicitly represented in the structure (e.g., commas in

argument lists).

† The layout of each comment: its horizontal position

relative to adjacent code and comments, the number of

line breaks preceding it, and the number of line breaks

following it.

† The ordering of adjacent comments (between the same

two tokens); in these cases intervening line breaks are

counted for both comments.

† The relationship between aligned ‘//’ comments: those

that appear on successive lines at the same horizontal

position.

† Blank lines (two or more line breaks without intervening

tokens or comments).

† Any other ‘unusual’ line breaks not associated with

comments.

† Any other unusual white space in lines, along with

discovered alignments of the sort appearing in Fig. 13.

† ‘Extra’ syntax, for example redundant parentheses and

empty blocks of the sort appearing in Fig. 2,

especially when associated with comments.

Unparsing rules must be amended to account for

documentary structure, which must naturally take pre-

cedence over linguistic structure. For example, blank lines

must be restored, assuming that their surrounding context is

unscathed. To first approximation, comments must be

placed between the same adjacent tokens (with the

complication that braces and parentheses may appear,

disappear, and shift around), and additional line breaks

inserted to restore original visual relationships. Indentation

may vary considerably, but the alignment of related

comments and code must be restored. Special unparsing

rules can be applied to array initializers, aligning elements

into columns for example, as long as the original line breaks

were retained so that the overall shape of the data remains

approximately the same.

6. Other directions

Although little has changed in this area for years,

formatting and comments have long been seen as proble-

matic. They are awkward for both people and tools, and they

have never reached the degree of utility that we intuitively

believe possible.

This section reviews other schools of thought on how this

might be changed. All have merit, but in the near future

none are likely to make unnecessary the requirements

described in this paper.

6.1. Literate programming

The most ambitious and successful attempt to rethink the

relationship between documentary structure and source

code is Knuth’s Literate Programming [22]. Knuth begins

with the premise that code is primarily a document for

humans, and he makes this aspect paramount. Programmers

write code fragments and embed them in a rich document

dominated by prose. Batch tools produce both nicely

formatted documents (prose with code embedded) for

human consumption and source code (generally unfor-

matted) for compiler consumption. Knuth and others argue

4 Sun, Sun Microsystems, and Java are trademarks or registered

trademarks of Sun Microsystems, Inc. in the United States and other

countries.

M.L. Van De Vanter / Information and Software Technology 44 (2002) 767–782 779



that writing in this style produces better code in the first

place [22,30].

Despite having a loyal following, Literate Programming

has never been widely adopted, and the reasons are unclear.

Perhaps the extra layer of tools was perceived as onerous by

programmers (or managers). Perhaps it is not easily adapted

to object-oriented programming, a different paradigm for

factoring code into small pieces.

Literate Programming is fundamentally incompatible

with the class of tools under discussion in this paper.

Linguistic structure is not available for analysis and

transformation without a separate derivation step from the

original literate source; this is a serious obstacle to

language-based code transformations. This leads back to

the question of how languages are designed in the first place.

6.2. Fix the languages

Another school of thought sees the problem as defective

language design. In this view, source code would still be

stored in text files containing textual comments, but

language definitions should be extended to bring comments

into the formal linguistic structure.

Kaelbling, noting the difficulty of understanding the

referents of simple textual comments, observes that this can

be fixed either by language extension or convention [20].

Acknowledging the practical obstacles to changing

language grammars, Kaelbling suggests instead that pro-

grammers add explicit ‘scope markers’ to text of comments,

and that analyzers could deduce from these markers the

structural referents of the comments.

Grogono starts with much the same objections, noting

that “software tools can do very little with comments that

are equivalent to white space” [19]. He suggests that future

languages include a more general syntactic framework that

would include other information, for example assertions and

pragmas, as well as comments.

The first widely accepted structural comments appear in

the Java programming language [15]. ‘JavaDoc’ comments

are specially tagged and intended to appear only at the

beginning of public class and member declarations.

Standard batch tools extract interface documentation for

hyperlinked publication in HTML [11], but ignore conven-

tional comments placed elsewhere.

A practical difficulty with all these approaches is that

widespread adoption of new languages is relatively rare and

tends not to be driven by comment mechanisms. A more

fundamental difficulty is that merely making comments

structural may not be enough; much of the documentary

information shown in Sections 2 and 3 is not about syntactic

structure at all.

Languages occasionally appear in which white space is

linguistically significant. Python programmers specify

syntactic nesting using indentation, rather than the more

common braces [23]. This changes the way responsibility

for indentation is shared between programmer and tools, but

it has little effect on the role played by indentation for the

human reader.

6.3. Fix the programming environments

Yet another school of thought proposes better tool

support for programming language comments.

For example, Robillard refutes Kaelbling with the claim

that syntactic extensions to existing languages can be used,

as long as tools hide the complexity from the users [29]. He

proposes that an extended text editor track the syntactic

scope (‘referent’ in the terminology of this paper), but

without convincing detail.

Another class of programming environments replaces the

textual representation of source code with purely structural

storage that is assumed to permit greater richness. For

example, structure editors such as the Synthesizer Generator

represent programs only as annotated syntax trees [33]. But

comments are seen as little more than annotations on nodes.

This reduces programmer control over documentary

structure without offering anything new in its place.

Both of the above two approaches are based on the

assumption, refuted in Section 3, that comments are ‘about’

particular syntax nodes.

Smalltalk programming takes place in a structured,

browser-based environment [13], and it is no coincidence

that current approaches to code refactoring originated in that

community. Documentary structure does not confound code

transformations in Smalltalk to the extent that it does in

other languages because documentary structure in Smalltalk

is generally expressed in very different, more structural

ways. Class comments, class and method categories, and

distinguished comments at the head of methods are all

managed structurally by the environment. Furthermore, the

custom of factoring Smalltalk code into very small methods

elevates the role played by naming, a documentary element

that is also managed structurally.

An even more provocative approach is hyperprogram-

ming: representing programs as fully typed persistent

language objects that can be manipulated by specialized

editors [21]. There have been proposals to extend the

hyperprogramming model with fine-grained hyperlinks to

documentation such as requirements, but there is surpris-

ingly little discussion of how to document the code itself [8].

Such systems require very different languages and program-

ming infrastructures than are widely available today.

6.4. Make comments unnecessary

As in Smalltalk, the more widespread trend toward

highly factored object-oriented code, combined with

intelligent naming of the parts, reduces the need for

interspersed comments. Fowler puts it this way: “How do

you identify the clumps of code to extract? A good

technique is to look for comments. They often signal this

kind of semantic distance. A block of code with a comment

M.L. Van De Vanter / Information and Software Technology 44 (2002) 767–782780



that tells you what it is doing can be replaced by a method

whose name is based on the comment. Even a single line is

worth extracting if it needs explanation” [10].

This is Fowler’s Extract Method transformation, men-

tioned in Section 5.3. It can be seen as a kind of lateral move

in which one kind of documentary structure (comments

associated with a group of lines, as described in Section 3.4)

is replaced with another kind (method naming) that

presumably carries the same information. Section 3,

however, showed many other kinds of documentary

structure than the one addressed by ‘method extraction.’ It

certainly does not change the need for intelligent white

space layout, nor is it likely to replace the kind of general

commentary (explanation, background, and motivation)

readers appreciate.

Frequent refactoring is a basic tenet of Extreme

Programming [5], and there is a natural interest in tools to

support the process. These are among the language-based

transformation tools addressed by this paper, and they are

likewise subject to the analysis presented in Section 5.1.

Programmers may appreciate tools that automate refactor-

ing, but will be unhappy if they must investigate and

possibly repair every bit of affected source code. Some of

the more ambitious transformations will have widespread

effects, making the preservation of documentary structure

essential to success.

7. Conclusions, status, and outlook

The documentary structure of code (the use of comments,

white space, and naming) is far more important to

programmers than one might infer from its treatment by

designers of programming languages and language-based

tools.

The perspective presented here calls new attention to the

job of programming. In addition to other responsibilities,

programmers should be seen as authors and graphical

designers who take responsibility for the human legibility of

their source code. They use the limited means available to

them, documentary structure, to make important things

obvious.

Advanced programming tools, interactive or batch, that

perform language-based source code transformations will

find little acceptance without attention to this issue.

Strategies for dealing with documentary structure in such

tools must ultimately be judged by their success: whether

programmers find that the need to repair damage done by

tools outweighs their advantages.

The analysis presented here, based on concrete examples

from production code, points toward a better understanding

of documentary structure and how tools might account for it

properly. A corollary is that conventional compiler-oriented

architectures for language analysis are fundamentally

unsuited to capturing documentary structure.

Some of the strategies presented here were implemented

in 1993 as part of an internal project at Sun Microsystems

Laboratories, but in a system that was never complete

enough for evaluation. A new implementation is currently in

progress as part of the Jackpot project at Sun Labs, with the

expectation that many of these options can be explored.

Acknowledgments

Discussions with members of the Jackpot project at Sun

Labs, Tom Ball, James Gosling, and Tim Prinzing

contributed to this paper, as have extensive comments and

suggestions from Yuval Peduel. Marat Boshernitsan and

anonymous reviewers made helpful comments on an earlier

version of this paper.

References

[1] P.F. Albrecht, P.E. Garrison, S.L. Graham, R.H. Hyerle, P. Ip, B.

Krieg-Brückner, Source-to-source translation: Ada to Pascal and

Pascal to Ada, Proceedings of the ACM-SIGPLAN Symposium on the

Ada Programming Language, Boston, MA, USA, 9–11 December,

SIGPLAN Notices 15 (11) (1980) 183–193.

[2] G.J. Badros, JavaML: a markup language for Java source code, Ninth

International World Wide Web Conference Amsterdam (2000).

[3] R.M. Baecker, A. Marcus, Human Factors and Typography for More

Readable Programs, Addison-Wesley, Reading, MA, 1990.

[4] H.G. Baker, Strategies for the lossless encoding of strings as Ada

identifiers, ACM Ada Letters XIII (5) (1993) 43–47.

[5] K. Beck, Extreme Programming Explained: Embrace Change,

Addison-Wesley, Reading, MA, 1999.

[6] F.W. Calliss, Problems with automatic restructurers, SIGPLAN

Notices 23 (3) (1988) 13–21.

[7] T.R. Dean, J.R. Cordy, K.A. Schneider, A.J. Malton, Using design

recovery techniques to transform legacy systems, Proceedings of the

ICSM—IEEE International Conference on Software Maintenance,

Florence November (2001) 622–631.

[8] A. Dearle, C. Marlin, P. Dart, A hyperlinked persistent software

development environment, Proceedings of Hyper-Oz’92: A Work-

shop on Hypertext Activities in Australia, Adelaide, Australia (1992).

[9] F. Détienne, Software Design—Cognitive Aspects, Springer, Berlin,

2002.

[10] M. Fowler, Refactoring: Improving the Design of Existing Code,

Addison-Wesley, Reading, MA, 1999.

[11] L. Friendly, The design of distributed hyperlinked programming

documentation, in: S. Fraı̈ssé, F. Garzotto, T. Isakowitz, J. Nanard, M.

Nanard (Eds.), Hypermedia Design, Proceedings of the International

Workshop on Hypermedia Design (IWHD’95) Montpellier, France,

Springer, Berlin, 1996, pp. 151–173.

[12] K. Gabryelski, Wildfire Cþþ Programming Style: With Rationale,

Wildfire Communications Inc, 1997, http://www.

literateprogramming.com/wildfire.pdf.

[13] A. Goldberg, Smalltalk-80: The Interactive Programming Environ-

ment, Addison-Wesley, Reading, MA, 1983.

[14] A. Goldberg, Programmer as reader, IEEE Software 4 (5) (1987)

62–70.

[15] J. Gosling, B. Joy, G. Steele, G. Bracha, The Java Language

Specification, Second ed., Addison-Wesley, Reading, MA, 2000.

[16] R. Green, How to write unmaintainable code, Java Developers’

Journal 2 (6), updated frequently at http://mindprod.com/unmain.

html.

[17] T.R.G. Green, Instructions and descriptions: some cognitive aspects

M.L. Van De Vanter / Information and Software Technology 44 (2002) 767–782 781

http://www.literateprogramming.com/wildfire.pdf
http://www.literateprogramming.com/wildfire.pdf
http://mindprod.com/unmain.html
http://mindprod.com/unmain.html


of programming and similar activities, in: V. Di Gesù, S. Levialdi, L.

Tarantino (Eds.), Proceedings of the Working Conference on

Advanced Visual Interfaces (AVI 2000), ACM Press, New York,

2000, pp. 21–28.

[18] T.R.G. Green, M. Petre, Usability analysis of visual programming

environments: a ‘cognitive dimensions’ framework, Journal of Visual

Languages and Computing 7 (1996) 131–174.

[19] P. Grogono, Comments, assertions, and pragmas, SIGPLAN Notices

24 (3) (1989) 9–84.

[20] M.J. Kaelbling, Programming languages should NOT have comment

statements, SIGPLAN Notices 23 (10) (1988) 59–60.

[21] A.M. Farkas, A. Dearle, G.N.C. Kirby, Q.I. Cutts, R. Morrison,

R.C.H. Connor, Persistent program construction through browsing

and user gesture with some typing, in: A. Albano, R. Morrison (Eds.),

Proceedings of the Fifth International Workshop on Persistent Object

Systems (POS5), San Miniato, Italy, Springer, Berlin, 1992, pp.

86–106.

[22] D.E. Knuth, Literate programming, The Computer Journal 27 (2)

(1984) 97–111.

[23] M. Lutz, D. Ascher, Learning Python, O’Reilly & Associates, 1998.

[24] A. Malton, K.A. Schneider, J.R. Cordy, T.R. Dean, D. Cousineau, J.

Reynolds, Processing Software Source Text in Automated Design

Recovery and Transformation, Proceedings of the Ninth International

Workshop on Program Comprehension (IWPC) Toronto, Canada,

IEEE Computer Society, 2001, pp. 127–134.

[25] L.R. Neal, Cognition-sensitive design and user modeling for syntax-

directed editors, Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, Toronto, Canada (1987) 99–102.

[26] D. Norman, S. Draper (Eds.), User Centered System Design: New

Perspectives on Human–Computer Interaction, Lawrence Erlbaum,

London, 1986.

[27] E. Nygren, M. Lind, M. Johnson, B. Sandblad, The art of the obvious,

Human Factors in Computing Systems CHI’92 Conference Proceed-

ings, Monterey, CA, USA May (1992) 235–239.

[28] P. Oman, C.R. Cook, Typographic style is more than cosmetic,

Communications of the ACM 33 (5) (1990) 506–520.

[29] P.-N. Robillard, Automating comments, SIGPLAN Notices 24 (5)

(1989) 66–70.

[30] S. Shum, C. Cook, Using literate programming to teach good

programming practices, Proceedings of the 25th SIGCSE Technical

Symposium on Computer Science Education, Phoenix, AZ (1994)

66–70.

[31] E. Soloway, K. Ehrlich, Empirical studies of programming knowl-

edge, IEEE Transactions on Software Engineering 10 (1984)

595–609.

[32] Sun Microsystems, Code Conventions for the Javae Programming

Language (http://java.sun.com/docs/codeconv/), 1999.

[33] T. Teitelbaum, T. Reps, The Cornell program synthesizer: a syntax-

directed programming environment, Communications of the ACM 24

(9) (1981) 563–573.

[34] T. Tenny, Program readability: procedures versus comments, IEEE

Transactions on Software Engineering 14 (9) (1988) 1271–1279.

[35] M.L. Van De Vanter, R.A. Balance, S.L. Graham, Coherent user

interfaces for language-based editing systems, International Journal of

Man–Machine Studies 37 (4) (1992) 431–466 (reprinted in Structure-

Based Editors and Environments, G. Szwillus, L. Neal (Eds.),

Academic Press, 1996).

[36] M.L. Van De Vanter, Practical Language-based Editing for Software

Engineers, Software Engineering and Human–Computer Interaction:

ICSE’94 Workshop on SE-HCI: Joint Research Issues, Sorrento, Italy,

Springer, Berlin, 1995, LNCS 896.

[37] M.L. Van De Vanter, M. Boshernitsan, Displaying and editing source

code in software engineering environments, Second International

Symposium on Constructing Software Engineering Tools

(CoSET’2000), 5 June 2000, Limerick Ireland, ICSE 2000 Workshop

Proceedings.

[38] T.A. Wagner, Modeling user-provided whitespace and comments,

Practical algorithms for incremental software development environ-

ments, PhD Dissertation, Report No. UCB/CSD-97-946, University of

California, Berkeley, 1997.

[39] XEmacs, http://www.xemacs.org.

M.L. Van De Vanter / Information and Software Technology 44 (2002) 767–782782

http://java.sun.com/docs/codeconv/
http://www.xemacs.org

	The documentary structure of source code
	Introduction
	Background
	Programming languages
	Programming practice
	Language-based transformation tools
	Structural mismatch
	Technology bias

	Documentary vs. linguistic structure
	An introductory example
	Identifying comment boundaries
	White space as comments
	Finding structural referents
	Missing structural referents
	Control flow and stylistic variation

	The documentary structure of code
	Documentary structure in the literature
	The elements of documentary structure
	Documentary structure is primarily visual
	Documentary structure uses natural language
	Relationships matter
	Documentary structure is robust

	Architectures for documentary structure
	When documentary structure matters
	Why compilers do not help
	Three architectural approaches

	Other directions
	Literate programming
	Fix the languages
	Fix the programming environments
	Make comments unnecessary

	Conclusions, status, and outlook
	Acknowledgments
	References


