Software Engineers are Human Too - Submitted to Software Engineering and Human-Computer Interaction 1

Software Engineers are Human Too

Michael L. Van De Vanter
December 15, 1993

Sun Microsystems Laboratories, Inc.
2550 Garcia Avenue, MTV29-112
Mountain View, CA 94043-1100
Michael.VanDeVanter@Eng.Sun.COM

1 Introduction

Software engineers increasingly understand that human-computer interaction issues are essential to
good software design. Like the proverbial cobbler’s children who want for shoes, however, our own
tools receive far too little of that attention.

Language-based editing systems represent an important evolutionary thread in our tool develop-
ment. These systems allow engineers to create, browse, and modify software documents in terms of
the formal languages and notations in which they are written (for examples in terms of “state-
ments,” “integer expressions,” and “assignments with type-compatibility problems”) not just in
terms of their superficially textual characteristics. However a lack of widespread acceptance has
proven something of a disappointment to those who envision the potential contribution of these sys-

tems.

Part of the problem has been a lack of language-based technology appropriate for interactive use, in
contrast to the much better understood world of batch-oriented program compilation. Several gen-
erations of experimental language-based editing systems have made significant progress with the
technology [Bahlke 86][Borras 88][Donzeau-Gouge 84] [Notkin 85] [Reps 84], and practical sys-
tems of this kind appear within reach.

Experience with these almost-practical systems suggests that many problems remain, for example
characterized by:
1. Annoying restrictions on text-based editing, the style of interaction most people prefer.
2. Failure to address the real productivity bottleneck: the difficulty people have understanding
programs.
3. Exposure of underlying language-based technology to people, leading to inappropriate user
models of system state and document structure.
4. Monolithic document presentations that fail to exploit all the information available in the pro-
gramming environment.
5. Brittle system behavior in the presence of ill-formed programs or inconsistent system infor-
mation.
6. Awkward (or missing) mechanisms for incorporating new languages.
7. Inflexibility because of closed data models and weak extension facilities.

Systems that address some of these issues typically do so at the expense of others. These usability
problems go far beyond the superficial graphical user interface design issues such as the arrange-
ment of menus and the appearance of buttons. At issue are questions about how software engineers
work, what tools they already know and use, how they understand the notation, and what (human)
performance bottlenecks might profitably be addressed by language-based editing systems.

Software Engineers are Human Too - Submitted to Software Engineering and Human-Computer Interaction 2

Recent work carried out as part of the Pan project at the University of California Berkeley [Bal-
lance 92] [Van De Vanter 92b] revisits the design of these systems by posing user-centered rather
than technology-centered questions, with results that have implications on the following issues
[Van De Vanter 92a]:

¢ internal software architecture;

* services offered to users;

e configuration mechanisms;

* styles of interaction;

* integration with other tools in the working environment; and

* the suitability of current language-based technology for the challenge.

The thesis of that investigation was that the success of language-based editing systems has been
limited by inattention to user-centered issues concerning the context in which the tools are needed.
It was further argued that the design of a language-based editing system presents a user interface
problem, not only between user and system (in the conventional sense of the term) but between soft-
ware engineer and software documents (the more important meaning in this context).

2 A Framework for User Interaction

With the design challenge posed in this way, new questions could be asked and new balances struck
on fundamental choices such as text- versus structure-based interaction, language-specific versus
generic services, and frequent versus infrequent analysis. The application of user-centered system
design principles [Norman 86] casts new light on the issues and suggests that a well-founded, prin-
cipled, and coherent approach to the design of language-based editing systems is possible.

The Pan framework for user interaction begins with a basic separation of design concerns not evi-
dent in earlier systems:
1. internal document representation and analyzer implementation;
2. configurable, language-independent mechanisms to support user interaction with software
documents;
3. a coherent and flexible set of user-visible system features and policies; and
4. adaptation of the system to particular working contexts.

Pan I version 4.0 is a fully implemented, multilingual, language-based editing and browsing system
[Ballance 92] [Downs 91] [Van De Vanter 92b] that embodies this framework and demonstrates the
viability of the approach.

3 Guiding Principles

An important goal of Pan’s design framework is to “decouple” user interaction in these systems
from the linguistic and implementation details of their enabling technologies, and in particular from
the compiler-oriented approach that has dominated their design in the past. Software engineers do
not think of programs in the same terms that are useful for compiler designers. For example, a per-
son confronted with a new program first reads comments and then examines the names of program
entities, for example procedures and variables. In contrast, a compiler fed the same program first
discards comments and then abstracts away all names. This example is not meant to imply that a
language-based editing system should analyze comments, but it does suggest the depth of the con-
ceptual challenge for designers who seek appropriate application of the technology.

Adaptation to working contexts is captured in Pan’s design framework by the notion of multiple

Software Engineers are Human Too - Submitted to Software Engineering and Human-Computer Interaction 3

view styles for user interaction, each specialized for a particular combination of user population,
task at hand, and language being used. A view style
1. includes traditional syntax and static-semantic language descriptions, but may extend to
extra-lingual analysis such as stylistic and usage guidelines;
2. specifies services to be provided and specializes generic services for the particular language;
3. defines a visual context, including typography and use of color; and
4. configures details of interaction, including keystroke and menu-bindings.

A human designer creates view styles. A working Pan system includes a suite of view styles that
collectively offers appropriate services and uniform user interaction. Pan’s design framework pro-
vides tools, guidelines, and examples, among which are solutions to usability problems that plague
earlier generations of systems.

Finally, Pan’s design framework is open. To realize the full power of language-based interaction,
the editor must function as an interface through which an open-ended collection of language-related
services can be delivered to software engineers. Known as applications in the Pan framework, these
additional services can be added to Pan using its extension language, rich configuration mecha-
nisms, and an extensible data repository. Alternately they can be delivered by integration with other
tools, for example allowing Pan to serve as a user interface for compilers, profilers, debuggers, and
code auditors.

4 Accomplishments

The Pan I prototype addresses each of the usability problems identified above and continues to sup-
port ongoing research at Berkeley and elsewhere; current topics include advanced software viewing
and browsing, code optimization and generation, reverse engineering, and static-semantic analysis.
Some of Pan’s technology is being carried forward into Pan’s successor at UC Berkeley, the
Ensemble project [Graham 92].

Several novel aspects of Pan’s design, developed while meeting these goals, deserve mention.

Isolation of Language-Based Technology: It is tempting think of language-based editing systems
as interactive compilers, but language-based technology developed for compilers ports badly into
the domain of user interaction. This proved to be true even in Pan where the project began with the
benefit of insight from two earlier generations of language-based systems. Pan’s layered design
model separates language-based analysis mechanisms from user-oriented, language-independent
services; most of the system’s design accommodates user-centered design choices without exces-
sive coupling to the batch-oriented, compiler model of software structure.

Operand Class Abstraction: A description-driven mechanism in Pan’s language-independent
kernel drives a variety of user-oriented services, ranging from simple navigation to complex projec-
tions in alternate views. The abstraction solves several problems in user interface design and per-
mits services to be adapted for uniform operation across multiple language-based view styles.

Gracious Services Metaphor: Frequent inconsistency between edited text and analysis-derived
data is inescapable in Pan, and will persist in any similar system that scales up to confront large-
scale propagation of changes. An appropriate design metaphor (as well as some experimental
implementations) leads to services that continue to be useful when operating with approximate
information.

Elements of User Interaction: Pan users see a simple system through which an open-ended vari-
ety of potentially complex information may be exploited. Simplicity derives from a few basic ser-

Software Engineers are Human Too - Submitted to Software Engineering and Human-Computer Interaction 4

vices that can be applied in a variety of ways, but which have simple and predictable behavior of
their own.

Smart Services Metaphor: Pan’s structure-oriented commands are presented as optional, better-
informed elaborations of familiar text-based commands, avoiding the confusion that can arise from
a separate command set based on unseen structure.

Coherent Interaction with Document Structure: A view style specification describes an inter-
face, implemented by Pan, between users and documents in a particular language. Each interface
can be tailored for particular users, their tasks, and an underlying language. Much of the richness
and effectiveness of Pan derives from view style design.

The View Style Designer: Formal language description is not an adequate basis for specifying user
interaction. A tool like Pan embodies a complex relationship among (a) users, (b) the medium in
which they work, and (c) the tasks they perform; it must be designed with these factors in mind, a
challenging task. The Pan system cannot guarantee good design; it offers a framework, building
blocks, examples, and guidelines that enable good design.

5 Open Issues

Work on the framework for user interaction in Pan leaves open a number of issues.

User Experience: More empirical evidence is needed to validate and refine the user interaction
techniques developed here. This kind of experience can only be gathered by experimenting with a
flexible system such as Pan in production environments using production languages.

Advanced Visual Presentation: Many potentially useful presentation techniques, based on the
static book publishing paradigm, are not supported by Pan I’s prototype rendering engine. Just as
batch-oriented compiler technology doesn’t necessarily port well into an interactive environment,
however, some design choices made for a static publishing paradigm may not be appropriate in a
more dynamic context, and some techniques may not justify their implementation costs.

Integration with Other Tools: Pan mechanisms for viewing software documents are designed to
exploit a wide variety of possibly large scale information. Pan’s potential will only be realized
through integration with other tools one expects to find in a modern computer-aided software engi-
neering environment: more ambitious analyzers (data flow for example), debuggers, profilers, test
coverage generators, design documentation systems, and persistent storage.

Object-Oriented Programming: Much of the experience and insight that drove Pan’s design pre-
dates widespread acceptance of object-oriented design and languages. These languages are still in
flux, and only the most tentative results are starting to appear that will cast light on the cognitive
processes of programmers working in the new design paradigm. Many of Pan’s techniques will
apply, but new ones will probably be needed to accommodate changing notions of system modular-
ity and connectivity.

Language Extension: Pan’s language description and analysis model is not well suited to lan-
guages with powerful extension facilities, for example the macro processing facilities supported by
Commonlisp. Closely related is the delivery of services that effectively blur the boundary between
language definition and editing system. Pan’s techniques for user interaction should apply in most
cases, but they may need to be adapted (as the language analysis model must change) for the more
dynamic context.

Language-Based Technology: Technology that can be shared between language-based editing

Software Engineers are Human Too - Submitted to Software Engineering and Human-Computer Interaction 5

systems and compilers must be developed and exploited in order to avoid the kinds of infrastructure
problems discovered during this work. In the best cases, the boundary between the two applications
will become blurred (as it will between editing systems, compilers, and their underlying languages).
But it will not succeed until each component of the technology is recast into this new, more general
role.

6 References

[Bahlke 86] Rolf Bahlke and Gregor Snelting, The PSG System: From Formal Language Defini-
tions to Interactive Programming Environments, ACM Transactions on Programming Languages
and Systems 8,4 (October 1986), 547-576.

[Ballance 92] Robert A. Ballance, Susan L. Graham and Michael L. Van De Vanter, The Pan Lan-
guage-Based Editing System, ACM Transactions on Software Engineering and Methodology 1,1
(January 1992), 95-127.

[Borras 88] P. Borras, D. Clemént, Th. Despeyroux, J. Incerpi, G. Kahn, B. Lang and V. Pascual,
“CENTAUR: the system”, Proceedings ACM SIGSOFT ‘88: Third Symposium on Software Devel-
opment Environments, November 1988, 14-24.

[Downs 91] Laura M. Downs and Michael L. Van De Vanter, “Pan I Version 4.0: An Introduction
for Users”, 91/659, Computer Science Division, EECS, University of California, Berkeley, August
1991.

[Donzeau-Gouge 84] Véronique Donzeau-Gouge, Gérard Huet, Giles Kahn and Bernard Lang,
“Programming Environments Based on Structured Editors: The MENTOR Experience”, in Interac-
tive Programming Environments, David R. Barstow, Howard E. Shrobe and Erik Sandewall (edi-
tors), McGraw-Hill, New York, NY, 1984, 128-140.

[Graham 92] Susan L. Graham, Michael A. Harrison and Ethan V. Munson, “The Proteus Presenta-
tion System”, Proceedings ACM SIGSOFT ‘92: Fifth Symposium on Software Development Envi-
ronments, December 1992, 130-138.

[Norman 86] Donald A. Norman and Stephen W. Draper (editors), User Centered System Design:
New Perspectives on Human-Computer Interaction, Lawrence Erlbaum Associates, Hillsdale, New
Jersey, 1986.

[Notkin 85] David Notkin, The GANDALF Project, Journal of Systems and Software 5,2 (May
1985), 91-105.

[Reps 84] Thomas Reps and Tim Teitelbaum, The Synthesizer Generator, Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Development Envi-
ronments 19,5 (May 1984), 42-48.

[Van De Vanter 92a] Michael L. Van De Vanter, “User Interaction in Language-Based Editing Sys-
tems”, UCB/CSD-93-726, Ph.D. Dissertation, Computer Science Division, EECS, University of
California, Berkeley, December 1992.

[Van De Vanter 92b] Michael L. Van De Vanter, Susan L. Graham and Robert A. Ballance, Coher-
ent User Interfaces for Language-Based Editing Systems, International Journal of Man-Machine
Studies 37,4 (1992), 431-466.

