
-
-

e).

ms
al-
ext
l-

on
to
ts.
r-
both

e
nat-

Displaying and Editing Source Code
in Software Engineering Environments

Michael L. Van De Vanter1 and Marat Boshernitsan2

1Sun Microsystems Laboratories
901 San Antonio Avenue
Palo Alto, CA 94303 USA

Tel +1 650 336-1392, Fax +1 650 969-7269, Email michael.vandevanter@sun.com
2Department of Computer Science

University of California at Berkeley
Berkeley, CA 94720-1776 USA

Tel +1 510 642-4611, Fax +1 510 642-3962, Email maratb@cs.berkeley.edu

Abstract

Source code plays a major role in most software engineering environments. The interface of choice between source code
and human users is a tool that displays source code textually and possibly permits its modification. Specializing this tool
for the source code’s language promises enhanced services for programmers as well as better integration with other tools.
However, these two goals, user services and tool integration, present conflicting design constraints that have previously
prevented specialization. A new architecture, based on a lexical representation of source code, represents a compromise
that satisfies constraints on both sides. A prototype implementation demonstrates that the technology can be imple-
mented using current graphical toolkits, can be made highly configurable using current language analysis tools, and that
it can be encapsulated in a manner consistent with reuse in many software engineering contexts.

Keywords: Program editor, software engineering tool integration, language-based editing

SML 2000-0180

Second International Symposium on Constructing Software Engineering Tools (CoSET’2000)
1. Introduction

Any interactive software engineering tool that deals
with programs inevitably displays source code for a
human to read and possibly modify1. The technology for
doing this, however, has changed little in twenty years,
despite a compelling intuition that specializing the tech-
nology for programming languages might increase user
productivity substantially. In contrast, consider how word
processing systems have evolved beyond simple text edi-
tors during those same twenty years.

Extensive research, numerous prototypes, and more
than a few commercial attempts have failed to deliver
practical language-based editing for source code. Pro-
grammers find such systems difficult and unpleasant when
compared with simple text editors. Tool builders find that
implementations are fragile and place high demands on
supporting infrastructure.

Language-based editing will only succeed in practice
when it addresses the real goal: to help programmers pro-
gram in the context of existing skills and tools. This trans-
lates to two sets of requirements, often conflicting, for an

editor:
• Programmer’s perspective: the editor must make read

ing and writing source code easier and more reward
ing.

• Tool builder’s perspective: the editor must reliably
share information with other tools, for which it may
act as a user interface, and it must be packaged for
reuse (portable, highly configurable, and embeddabl
The CodeProcessor2 is an experimental tool for edit-

ing source code, under development at Sun Microsyste
Laboratories. It is based on technology that strikes a b
ance among apparently competing requirements. It is t
oriented, but fundamentally driven by language techno
ogy. It can make its language-oriented representati
(configured by declarative specifications) available
other tools, and can be embedded in other GUI contex
The key architectural choice is a lexically-oriented inte
mediate representation for source code that addresses
usability and integration with other tools.

1. We do not address purely graphical programming languages, although
some of the issues are similar.

2. “CodeProcessor” is an internal code name for this prototype; it is
intended to suggest a specialization of simple text editing for sourc
code, much as word- and document-processors are specialized for
ural language documents.



-
e
il-
by

g
n-
at

is
ny
of
en
on
te

tic
ce

s
di-
d
is
g
g

s,
ate
as

e-
ns,
sign
it

a-
ed

a
ch
ng
s
n-
by

le
.

al
es,
a-
il-
Experience suggests that simple usability testing, bet-
ter GUI design, or new algorithms would not have pro-
duced this design. Rather, it resulted from rethinking the
tasks, skills, and expectations of programmers, and from
then finding ways to address them: using existing lan-
guage technology and within the context of practical soft-
ware engineering tools. The result is an architecture that is
different, though not necessarily more complex, than
those tried in the past.

This paper presents an overview of the CodeProcessor
and the design choices it embodies. Section 2 reviews
requirements, and Section 3 discusses how previous tech-
nologies have failed to meet them all. Section 4 offers a
new look at the design trade-offs needed when combining
text editing and language support, and shows how this
analysis leads to a solution. Sections 5 and 6 describe the
two complementary and mutually dependent aspects of
the CodeProcessor’s design: architecture and user-model.
Finally Section 7 reviews implementation status, followed
by related work and conclusions.

2. Design goals

The requirements mentioned in the introduction, and
discussed in more detail here, reflect different perspec-
tives: programmers and tool designers. Past failures result
from neglecting one point of view or the other; Sections 3
and 4 will show how they can be reconciled.

2.1. No training

All available evidence shows that programmers read
programs textually; they also have “structural” under-
standing, but it is highly variable and not based on lan-
guage analysis [10][12]. Programmers have deeply
ingrained work habits as well as motor-learning that
involves textual editing; they will only accept a tool that is
familiar enough for immediate and comfortable use with-
out special training.

This need not, however, prohibit advanced functional-
ity. Consider how users experienced with simple text edi-
tors find the transition to word processors smoothed by
familiar text entry and cursor commands. By analogy, lan-
guage-based editing services should be layered carefully
onto basic text editing behavior, imposing no (or barely
noticeable) restrictions.

2.2. Enhance reading and writing

Additional editing services derive from specialization
for the tasks confronting programmers. A familiar exam-
ple is automatic indentation of source code lines. This ser-
vice is based loosely on linguistic structure, and it helps
both reading (visual feedback on nesting) and writing
(saving tedious keystrokes). This particular service can be
delivered in a simple text editor, but it can and should be
taken much further.

Research shows that high quality, linguistically-driven
typography measurably improves reading comprehension

[3][19]. In many environments, reading is still the domi
nant task for programmers, even while writing cod
[9][31]. Good designs for program typography are ava
able (for example the paper-based publication designs
Baecker and Marcus [3]), yet rarely used.

Also highly important, is special support (both readin
and writing) for program comments. Transparent to co
ventional language tools, comments are tedious to form
but crucial for readers.

Although specialized enhancements are important, it
absolutely essential that they not make things worse. A
intrusion on text editing must respect the “balance
power” between user and tool. This can be delicate ev
in the simplest of cases, for example auto-indentati
mechanisms that programmers find helpful but “not qui
right.”

Nowhere has intrusiveness been more problema
than in treatment of fragmentary and malformed sour
code. This is, of course, the normal state for program
under development. Unfortunately, language-based e
tors typically treat such situations as user “errors” an
encourage or require corrective action. The real “error”
that the tools fail to model what the user is really doin
[14] and cannot function usefully until rescued. Editin
tools must function without interruption in any context.

2.3. Access to linguistic structure

Software engineering tools (for example analyzer
builders, compilers, and debuggers) generally oper
over structural source code representations such
abstract syntax trees. An editing tool is most easily int
grated with other tools if it can share such representatio
but as Section 3.1 discusses, this presents severe de
challenges for a tool whose job is to display and perm
modification to source code in terms of text.

2.4. Configuration and embedding

Finally, as software engineering tools evolve, emph
sis shifts from standalone editing systems to specializ
tools that must work with other tools. A tool for source
code editing must be well encapsulated, somewhat like
GUI component, and not demand complex support su
as a particular kind of source code repository. Reflecti
the reality that practical software engineering involve
many languages, it should be easily configured via la
guage specifications. In order to be used as an interface
many other tools, an editing tool must have a visual sty
that is easily configured for different contexts and tasks

3. The design space

At the heart of a specialized editing tool is an intern
representation for source code. Conventional choic
depicted in Figure 1, are divided by a gulf between fund
mentally different approaches: one oriented toward usab
ity and one toward higher level services.



i-
rely
es-
cts.
i-
-

tic
le.
x
te
t

en
a-
s-

l
ch
o
een
.

-

e

is

ly
ic
se

e
c-
3.1. Pure designs

At the far right of the diagram are “structure editors”
[4][6][8][18], so called because of internal representations
closely related to the tree and graph structures used by
compilers and other tools. This greatly simplifies some
kinds of language-oriented services, but it requires that
programmers edit via structural rather than textual com-
mands. Behind this approach is a conjecture, articulated
by Teitelbaum and Reps, that programs are intrinsically
tree structured, and that programmers understand and
should manipulate them that way [25]. Unfortunately,
years of failed attempts [11], combined with research on
program editing [17] and on how programmers really
think about programs [13][22] have refuted that conjec-
ture. From a tool integration perspective, the advantages
of complete linguistic analysis are offset by its fragility (in
the presence of user editing) and context-dependency (the
meaning of code in many languages depends potentially
on all the other code with which it will run). Few structure
editors are in use today

At the far left are simple text editors with no linguistic
support. Editing is simple and familiar, but there is no real
specialization for source code. Integrating a simple text
editor with software engineering tools requires complex
mappings between structure and text, but these typically
result in restrictive and confusing functionality, fragile
representations (for example, where the identity of struc-
tural elements is not preserved during editing operations),
or both [27].

3.2. Modified designs

Subsequent efforts in language-based editing can be
viewed as attempts to bridge this gulf. Some structure edi-
tors allow programmers to “escape” the structure by trans-
forming selected tree regions into plain text [21], but
usability problems persist. The complex unseen relation-
ship between textual display and internal representation
makes editing operations, both structural and text escapes,
confusing and apparently unpredictable [27] because of
“hidden state.” Textual escapes make matters with a con-
fusing and distracting distinction between those parts of
the program where language-based services are provided
and those where they are not. Often language services and
tools stop working until all textual regions are syntacti-

cally correct and promoted back into structure.
At the left side of Figure 1 are widely used code-or

ented text editors such as Emacs [23]. These use a pu
textual representation, assisted by ad-hoc regular expr
sion matching that recognizes certain language constru
The structural information computed by simple text ed
tors is, by definition, incomplete and imprecise. It there
fore cannot support services that require true linguis
analysis, advanced program typography for examp
Simple text editors typically provide indentation, synta
highlighting1 and navigational services that can tolera
structural inaccuracy. A malformed program will, a
worst, be incorrectly highlighted.

A few text editors perform per-line lexical analysis
with each keystroke, but the information has never be
fully exploited and the lack of a true program represent
tion leads to confusion in the inevitable presence of mi
matched string quotes and comment delimiters.

3.3. Inclusive designs

A more inclusive approach is to maintain both textua
and structural representations. Although this approa
promises a number of advantages [5][26], it is difficult t
keep the representations consistent and it has not b
demonstrated that the cost and complexity are justified

4. Finding the middle ground

Section 3 described a fundamental design tension:
• It is desirable to maintain a linguistically accurate pro

gram representation, updating it on every modifica-
tion, however small.

• The greater the degree of structural sophistication, th
more fragile the representation is in the presence of
unrestricted textual editing, and the more room there
for confusing behavior and inconsistency between
what’s seen and what’s represented internally.

In summary, an ideal representation would be close
related to displayed text, but would also reflect linguist
structure at all times. What’s needed is a compromi

Text

Rich representation
(more structural: better for services)

Simple user-model
(less structural: better for users)

Figure 1: Design choices for program editors

Language
Structure

Text
+

Ad Hoc Matching

Language Structure
+

Text Escapes

1. “Syntax highlighting” is an unfortunate misnomer, since pattern-
matching is considerably weaker than syntactic analysis. It would b
more accurate to call it “unreliable keyword, string, and comment re
ognition”.



or

-

fter

le-

n
-

t

f

k

o-

in

h
ts

-

h
nt
le-
ted
by
somewhere in the middle of Figure 1, where the amount
of language analysis performed is as simple (and local-
ized) as possible, but also as useful as possible.

A compromise can be found by taking a closer look at
language analysis: both the internal engineering of com-
pilers, and the formal language theory behind it. A typical
compiler analyzes textual programs in phases, shown
below. Each stage is driven by a different kind of grammar

(corresponding approximately to types 3, 2, and 1 in the
Chomsky grammar hierarchy) and uses a corresponding
kind of analyzer [29]. Programming languages are often
designed around this grammatical decomposition, and
batch-oriented compilers benefit from the simplicity and
formal foundations of separate phases.

This decomposition reveals additional choices,
depicted in Figure 2, for analyzing and representing pro-
grams being edited. Possible representations include the
standard products of each phase: lexical token stream,
parse tree, and attributed tree respectively. Intermediate
choices include partial analysis of the next grammatical
level: regular expression matching is a partial lexical anal-
ysis, fuzzy parsing is a partial syntactic analysis which
recognizes only certain features of the context-free syntax
(e.g. nested parenthesis or context-dependent categoriza-
tion of identifiers into function and variable names), and
partial semantic attribution that can be used for computing
limited amounts of semantic context. Partial analyses are
often simpler to implement (fuzzy parsing can be per-
formed through a simple pattern matching on the token
stream) and more forgiving of inconsistencies in the rep-
resentation.

An important distinction among the three analysis
phases concerns the scope of cause and effect. Static
semantic analysis (closely related to Chomsky’s context-
sensitive syntax) at each point in a program depends
potentially upon the entire program. Parsing (context-free
syntax) depends only on the enclosing phrase, but
assumes that program is well formed. Lexical analysis
(regular syntax) depends only on adjacent tokens, making
it highly suitable for the inner loop of an editor.

Thus the lexical representation, not used in any pri
systems, emerges as a promising compromise:
• It is a stream, not a tree, and thus bears a close rela

tionship to textual source code;
• The analysis needed to update the representation a

each edit usually requires only local context;
• It is suitable for program fragments;
• It has enough linguistic information to provide many

language-based services, including more robust imp
mentation of familiar services such as indentation,
parenthesis and bracket matching, procedure or
method head recognition, etc.; and

• It is a language representation suitable for integratio
with other tools, including complete language analyz
ers. Further analysis, for example parsing, could be
folded into the CodeProcessor if added carefully, bu
at some additional cost in complexity.
Although this approach is promising, a number o

design questions remain:
• Can the textual display and behavior be made to loo

and feel familiar enough that it requires no training?
• To what degree can the display be specialized for pr

grams using only lexical information?
• Can such a fine-grained typographical display be

implemented using current toolkit technology and
made configurable?

• Can the lexical token representation be made robust
the presence of partially typed and badly formed
tokens? In particular, how can “bracketed” tokens suc
as string literals be managed when one of the bracke
(double quotes for strings) is missing?

• What specialized support for comments and other,
possibly non-textual, annotations is possible?

• How can a description-driven lexical analyzer be
adapted to update the representation after each key
stroke?

Solutions appear in the following two sections, whic
summarize respectively the two mutually depende
aspect of the CodeProcessor’s design: architecture/imp
mentation and user-model. The architecture is presen
first in Section 5, although many aspects were driven
the user-model design described in Section 6.

lexical analysis→ parsing→ static semantic analysis

Pure
Text

Text
+

Regular
Expressions

Lexical Tokens

Lexical Tokens
+

Fuzzy
Parsing

Parse Tree

Syntax Tree
+

Fuzzy
Attribution

Fully-Attributed
Syntax Tree

Rich representation
(more structural: better for services)

Simple user-model
(less structural: better for users)

Figure 2: Additional choices for program representation and analysis



s,
on

el

-
ge.
the

in
ce.
s-
t

ted
ta-

ta-
s
e-

n-
er,
rs
r-

ge
il-
to
ed

r

5. Architecture

The CodeProcessor’s architecture, depicted in Figure
3, is based on the Model-View-Controller design para-
digm. This choice is not accidental: in addition to being a
natural architecture for display and editing, it also reflects
the design of the Java™ Foundation Classes (JFC)
“Swing” toolkit and its text framework [30] which was
used to implement the current prototype. Multi-lingual
behavior is supported by separating each of the three core
modules into two components: one implementing the lan-
guage-independent functionality, and the other (collec-
tively known as aLanguage Module) providing language-
sensitive features for a particular language. In the
CodeProcessor this separation is achieved by subclassing,
but other decompositions are also possible.

The remainder of this section describes each of the
major design constituents in order.

5.1. The Controller

The Controller is manifested through two closely
related components: theEditor Widget and theEditor Kit.
The Editor Widget is responsible for dispatching window
system events and making the CodeProcessor a fully func-
tional member of the JFC widget family. The Editor Kit
implements the intricate editing behavior described in
Section 6.2.

Much of Editor Kit’s functionality is language-inde-
pendent; some, however, may be custom-tuned for each
particular language, for example adding keyboard short-
cuts for inserting language constructs.

The primary responsibility of the Editor Kit is to
implement user actions that require taking the context of
the action into the consideration. Some actions, such as
cursor movement commands, require no changes to the
source code model; their execution depends only on the

context (tokens) surrounding the cursor. Other action
such as insertions and deletions, may depend not only
the modification context, but also on the stateafter the
modification, since certain nuances of the user-mod
require “looking into the future.”

To facilitate this, the Editor Kit commences a two
stage modification process upon any potential chan
First, the source code model is requested to consider
effects of the changewithout modifying the underlying
content. This produces an object describing the change
terms of a model transformation that needs to take pla
When the Editor Kit regains control it examines the tran
formation, either discarding it, if it has no effect or is no
valid, or applying it to the model.

5.2. The Model

As discussed in Section 4, source code is represen
as a sequence of lexical tokens, although this represen
tion is extended in several crucial ways. This represen
tion allows for much-needed flexibility, as it both support
the required user-model, and fits naturally with the incr
mental lexical analysis algorithm.

The lexical analysis algorithm, developed by Tim
Wagner [28], is fully general: it supports unbounded co
textual dependency and multiple lexical states. Moreov
incrementality can be crafted onto existing batch lexe
that conform to a simple interface. For instance, the cu
rent prototype’s lexer for the Java programming langua
is generated by the JavaCC tool [16] from a readily ava
able lexical specification; the specification is extended
include various categories of irregular lexemes creat
during editing, as discussed in Section 6.1.

Figure 4 depicts the modification of a model afte
insertion of the characters “=x ” into a fragment contain-
ing the four tokens ‘a’, ‘ +’, ‘ c ’, and ‘; ’ with cursor ini-
tially between ‘+’ and ‘c ’. Figure 4a represents the

Get token
text & type

Model
changed

Editor Kit

Styler

Abstract
Editor Kit

Abstract
Styler

Abstract
Lexer

Language
Module

Source Code
Model Model/Editor Kit

protocol

Model/Lexer
protocol

Rendering
Engine

View/Styler
protocol

User actions

Lexer

Editor
Widget

PaintModel

View

Controller

Figure 3: CodeProcessor Architecture



or
s
e

for
for

s-
ri-

ts
e

les
re
ing
n-
d-
g
d

rate
e
d

-
 us,
le
content immediately prior to the modification, 4b -- the
transformation resulting from considering given modifica-
tion, and 4c -- the content after the suggested transforma-
tion has been applied.

The source code model is also responsible for adding
and removing “separators,” special non-linguistic tokens
whose role in the user-model is described in Section 6.2.
Other non-linguistic tokens include comments, line
breaks, and other layout directives.

A significant advantage of the model, from the per-
spective tool integration is that it enablesstablereferences
to source code structure: during any kind of editing, the
identity of unaffected tokens is guaranteed.

5.3. The View

The rendering mechanism displays source code in
accordance with the requirements outlined in Section 6.1.
The typographically-enhanced display is facilitated by
assigning stylistic properties to each token by means of
the Styler component. The Styler lends itself to being
automatically-generated, although the current implemen-
tation uses hand-written Stylers.

Stylers can also be used to export human-readable
source code from the CodeProcessor by rendering into a
character stream, dropping stylistic information that can-
not be represented. Appropriate formatting can be
achieved by Stylers optimized for text output.

5.4. Representing embedded structures

Programming languages commonly include embedded
syntactic structures that have distinct lexical rules, most
notably comments and strings. Embedded structures are
supported by nested editors with transparent boundaries
(behavioral considerations are presented in Section 6.3).
The only requirements for this support, easily met by all
embedded language structures we have encountered, are
that they have well-defined linguistic boundaries and that
their contents be tokenized as a single entity by the lan-
guage lexer.1

This architecture permits utilization of any editors in

the JFC text framework, including the CodeProcess
recursively. The mapping from token types to editor type
is performed by the Language Module; this module in th
current prototype uses the standard JFC text editor
comments and a token-based CodeProcessor editor
strings and character literals.2

6. Functionality and user-model

This section presents an overview of the CodeProce
sor’s functional behavior as well as the user-model expe
enced by the programmer.

6.1. Advanced program typography

The CodeProcessor is visually distinguished by i
advanced typographical “styles,” implemented by th
view architecture described in Section 5.3. These sty
approximate designs by Baecker and Marcus [3] and a
updated with each keystroke as the source code is be
incrementally reanalyzed. Alternate styles for each la
guage can be selected dynamically, either to suit indivi
ual preference or as required by particular tools drivin
the display. The style appearing in Figure 5 is configure

by 123 token categories to which are assigned 61 sepa
token styles.3 Each token style specifies type face, siz
relative to a base, style (plain, bold, italic), foreground an

1. If the nested editor is, in fact, another instantiation of the CodeProces-
sor, the contents of an embedded structure may be further tokenized
by the nested lexer.

a + c ;

Figure 4: Example model update

a)

b) replace from to with += xc

a += xc ;c)

2. Both strings and character constants afford a simple lexical descrip
tion that recognizes character escapes such as \n, \t, etc. This lets
for example, highlight legal escapes so that they are distinguishab
from the rest of the text, as well as indicate which ones are invalid.

3. Much of the stylistic detail is required as compensation for the
absence of type faces suitable for programs [3].

Figure 5: Example CodeProcessor display



rd
dja-
f a
t to

pa-
ja-
re

nt,
s
re

all

e
he
n

not

ro-
eir
or
l

g

e
zed
re
r
in
p-

s
m,
the
es-
ss

it-
-
ir
d
n-
nd

ary
n-

nd-
e
n
at
background colors, baseline elevation, and both left and
right boundary specifications used to compute display
spacing between adjacent tokens. Token styles can also
specify alternate display glyphs, for example to display
ligatures.

In a departure from the Baecker and Marcus designs,
which require well-formed programs, CodeProcessor
styles reveal that certain tokens are lexically incomplete
(for example “0x ”) or badly formed (for example “08”),
based on lexical grammars extended to include such
tokens. The CodeProcessor treats such tokens as legiti-
mate in every other respect.

Although the Baecker and Marcus designs require full
program analysis, a surprising amount of the visual detail
can be achieved using only lexical information. Indenta-
tion requires fuzzy parsing in the style of many text edi-
tors. More visual features could be added through other
kinds of fuzzy parsing, for example adjusting operator
spacing based on expression depth.

Horizontal spacing between tokens is computed from
the source code, not affected by presses on the space bar.
This improves legibility and saves keystrokes, much in the
same way that conventional auto-indentation works at the
beginning of each line. We anticipate adding a tab-like
mechanism to the current prototype that gives program-
mers some ability to impose vertical alignment.

6.2. Editing behavior

The CodeProcessor behaves like a code-oriented text
editor in most respects. Where it differs, the behavior has
been designed so that it appears to do the right thing when
used as a text editor. Preliminary experience with the
CodeProcessor’s user-model suggests that programmers
find descriptions of the behavior confusing, but the behav-
ior itself unremarkable.

Some behaviors are completely conventional. Indenta-
tion is automatic. Line breaks are explicitly entered and
deleted by the programmer.1 Typing text within comments
and language tokens (especially string literals) is likewise
conventional, with the notable exception that program-
mers can easily type multi-line comments (and perhaps
eventually strings), as shown in Figure 5.

Non-standard behavior appears in and around token
boundaries. To first approximation, token boundaries are
determined purely by the lexical analyzer. When the cur-
sor rests between two tokens it is displayed midway
between them; pressing the space bar silently does noth-
ing.

However, not all boundaries can be unambiguously
computed, for example between keywords. Here the
CodeProcessor automatically inserts a “separator” token.

This behaves somewhat like a “smart space” in a wo
processor: no more than one can be present between a
cent lexical tokens. The cursor can rest on either side o
separator; deleting a separator is treated as a reques
join surrounding lexical tokens (if they could not be
joined, there would have been no separator present). Se
rators often come and go as the lexical categories of ad
cent tokens are changed by editing, but since they a
behavioral rather than visual, this is not distracting.

String literals and comments receive special treatme
as described in the following section. Additional subtletie
in the user-model, beyond the scope of this paper, a
required so that “the right thing” appears to happen at
times.

6.3. Nested editors

The user-model for editing programs described in th
previous section is inappropriate in certain regions. T
contents of string literals obey different grammars tha
surrounding code, and the contents of comments are
analyzed at all.

Such regions receive special support in the CodeP
cessor, beginning with behavior that preserves th
boundaries during all normal editing. This has the flav
of structure editing, but it solves a number of traditiona
problems with boundary confusion; potentially confusin
behavior can smoothed over with careful design.

Having guaranteed boundary stability for thes
regions, the CodeProcessor can then provide speciali
behavior in a straightforward way. Specialized editors a
simply embedded to match the model: one kind fo
strings, another for character literals, yet another for pla
text comments. More can be added, for example to su
port HTML or graphical comments. Although this ha
something of the flavor of a compound document syste
it is specialized for source code and designed so that
boundaries are no more obtrusive than absolutely nec
sary. For example, the text cursor moves smoothly acro
boundaries between code and embedded structures.

6.4. The Programmer’s Experience

The net result of these behaviors is by design an ed
ing experience that is visually rich but otherwise unobtru
sive. Nearly all familiar keystroke sequences have the
intended effect, with the added bonus of fine-graine
visual feedback. Time wasting efforts at whitespace ma
agement, for example deciding where to insert spaces a
how to align multi-line comments, become as unnecess
as manual indentation. This frees the programmer to co
centrate more completely on the task at hand: understa
ing and writing code. Furthermore, the rich display engin
creates new opportunities for tools to present informatio
by modulating the source code display to suit the task
hand.

1. The CodeProcessor does not break lines, but it would be helpful to add
a linguistically driven mechanism for “wrapping” lines wider than the
available window.



g,
0].
ia
g

ro-
].
ys-
e-

ing
re-
ls.
c-
ed
in
e-
as
he

l.
nto
s

o-
ors,

l,
f
y

t-
ta-

ly-
n-
-fly
is
it
d

is

se
at
,

oft-
r-

si-
f
s.

of
7. Implementation status

Initial design of the CodeProcessor was carried out at
Sun Labs by the first author in the Spring of 1993. A pro-
totype using C++, thelex analyzer, and the Interviews
graphical toolkit [15], was demonstrated later that year as
part of a larger programming environment project. An
evolution of the first prototype, using the Fresco toolkit
[7] (itself an evolution of Interviews) was completed and
demonstrated in early 1995, at which time work ceased
with the conclusion of the project. The design was then
shelved, awaiting more suitable infrastructure than was
available at that time.

The second author commenced a reimplementation of
the CodeProcessor design during a summer internship at
Sun Labs in 1998, adding recent improvements in incre-
mental lexing technology and adapting the recently devel-
oped text framework from the JFC swing toolkit [30].
This prototype, which will be subject to further refinement
and evaluation, is substantially complete, with the excep-
tion of automatic indentation and other services not part of
the core design.

8. Related work

Emacs [23] is an augmented text editor of the kind
described in Section 3.2. Its editingmodesadd specialized
behavior and text coloring via pattern matching, but they
fall short of the CodeProcessor’s requirements. Weak
encapsulation of its internal representation, as well as
insufficient model-controller separation, makes reliable
representation and manipulation of structural information
difficult, if not impossible. Language analysis is limited to
(unreliable) regular expression matching of fewer than ten
lexical constructs. Rendering and layout, even in the more
recent XEmacs [32], does not meet the CodeProcessor’s
demands. The editors embedded in many commercial
integrated development environments have basic text edit-
ing and display functionality comparable to Emacs.

Numerous structure editors, mentioned in Section 3.1,
were built in research environments, for example Centaur
[6], Gandalf [18], Mentor [8], and PSG [4]. All had
acknowledged usability problems [11].

The commercialized Synthesizer Generator [21] is a
notable example of the modified structure editors
described in Section 3.2, but was still plagued by confus-
ing behavior [27] and by restrictions on editing.

The Pan system [5] is characteristic of the inclusive
designs described in Section 3.3. It permitted unrestricted
text editing, performed full incremental language analysis
on demand, and provided semantic feedback. Although
some attention was paid to usability [26], the implementa-
tion was enormously complex and offered no language-
related advantages during textual editing. Important fea-
tures such as comments received no special support at all.

Several elements of the CodeProcessor’s design subse-
quently appeared in the Desert environment, including

attention to usability, adoption of advanced typesettin
and the choice of a token-based representation [2
FRED, the Desert editor, performs language analysis v
integration with the FrameMaker document processin
system [1]. This limits FRED’s ability to support fine-
grained language-based behavior due to the lack of app
priate abstractions in the Frame Developer’s Kit API [2
Moreover, reliance on a sizable document processing s
tem reduces the likelihood of embedding FRED els
where.

9. Conclusions

We have designed and prototyped source code edit
technology that addresses the full spectrum of requi
ments faced by designers of software engineering too
This technology matches programmers’ skills and expe
tations, and brings to bear the power of language-bas
technology in support of both the people and other tools
the environment. Meeting these often conflicting requir
ments required both a new user-model for its behavior
well as a new architecture. Its construction stretches t
limits of the existing infrastructure.

History tells us that less ambitious designs will fai
Some language-oriented technology can be grafted o
simple text editors, but insufficiently rich representation
limits their power and accuracy. Some usability compr
mises can be made to language-oriented structure edit
but the fundamental architecture dooms their usability.

A lexical-based architecture by itself would also fai
since a naive user-model would suffer many of the ills o
tree-oriented editors. Likewise, the new user-model b
itself would fail, since the mismatch between it and exis
ing representations would preclude adequate implemen
tions.

The CodeProcessor performs enough linguistic ana
sis to permit useful tool integration, as well as useful la
guage-based services such as high-quality on-the
typography. At the same time its fundamental behavior
textual, permitting easy adoption by programmers, and
includes specialized support that simplify and exten
comment management significantly.

Designing tools that are both powerful and effective
difficult, and the more “low level” the tool, the more
demanding are the user requirements. Starting with the
requirements, however, and embracing the notion th
powerful tools must above all fit with programmers skills
expectations, and tasks, gives hope that benefits of s
ware development technology can actually make a diffe
ence in the way people work.

10. Acknowledgments

The reimplementation of this design was made pos
ble by support from Mick Jordan, Principal Investigator o
the Forest Project at Sun Microsystems Laboratorie
Yuval Peduel made helpful comments on early drafts



-

-

es

s-

-

a-

t

this paper, and we thank the anonymous reviewers for
their constructive suggestions as well.

11. Trademarks

Sun, Sun Microsystems, and Java, are trademarks or
registered trademarks of Sun Microsystems Inc. in the
United States and other countries.

References
[1] Adobe Systems Incorporated, Adobe FrameMaker,

http://www.adobe.com/products/framemaker/

[2] Adobe Systems Incorporated, Frame Developer’s Kit,
http://partners.adobe.com/asn/developer/framefdk/
fdkguide.html

[3] Ronald M. Baecker and Aaron Marcus,Human Factors
and Typography for More Readable Programs, Addison-
Wesley Publishing Co. (ACM Press), Reading, MA, 1990.

[4] Rolf Bahlke and Gregor Snelting, “The PSG System:
From Formal Language Definitions to Interactive Pro-
gramming Environments,”ACM Transactions on Pro-
gramming Languages and Systems8,4 (October 1986),
547-576.

[5] Robert A. Ballance, Susan L. Graham and Michael L. Van
De Vanter, “The Pan Language-Based Editing System,”
ACM Transactions on Software Engineering and Method-
ology1,1 (January 1992), 95-127.f

[6] P. Borras, D. Clemént, Th. Despeyroux, J. Incerpi, G.
Kahn, B. Lang and V. Pascual, “CENTAUR: the system,”
Proceedings ACM SIGSOFT ‘88: Third Symposium on
Software Development Environments, November 1988,
14-24.

[7] Steve Churchill, “C++ Fresco: Fresco tutorial,”C++
Report, (October 1994).

[8] Véronique Donzeau-Gouge, Gérard Huet, Giles Kahn and
Bernard Lang, “Programming Environments Based on
Structured Editors: The MENTOR Experience,” inInter-
active Programming Environments, David R. Barstow,
Howard E. Shrobe and Erik Sandewall (editors), McGraw-
Hill, New York, NY, 1984, 128-140.

[9] Adele Goldberg, “Programmer as Reader,”IEEE Software
4,5 (September 1987), 62-70.

[10] Robert W. Holt, Deborah A. Boehm-Davis and Alan C.
Schultz, “Mental Representations of Programs for Student
and Professional Programmers,” inEmpirical Studies of
Programmers: Second Workshop, Gary M. Olson, Sylvia
Sheppard and Elliot Soloway (editors), Ablex Publishing,
Norwood, New Jersey, 1987, 33-46.

[11] Bernard Lang, “On the Usefulness of Syntax Directed
Editors,” in Advanced Programming Environments, Lec-
ture Notes in Computer Science vol. 244, Reidar Conradi,
Tor M. Didriksen and Dag H. Wanvik (editors), Springer
Verlag, Berlin, 1986, 47-51

[12] Stanley Letovsky, “Cognitive Processes in Program Com
prehension,” inEmpirical Studies of Programmers, Elliot
Soloway and Sitharama Iyengar (editors), Ablex Publish
ing, Norwood, New Jersey, 1986, 58-79.

[13] Stanley Letovsky and Elliot Soloway, “Delocalized Plans
and Program Comprehension,”IEEE Software3,3 (May
1986), 41-49.

[14] Clayton Lewis and Donald A. Norman, “Designing for
Error,” in User Centered System Design: New Perspectiv
on Human-Computer Interaction, D. A. Norman and S.
W. Draper (editors), Lawrence Erlbaum Associates, Hill
dale, New Jersey, 1986, 411-432.

[15] Mark A. Linton, John M. Vlissides, and Paul R. Calder,
“Composing user interfaces with InterViews,”Computer,
22,2 (February 1989), 8-22.

[16] Metamata, Inc. “JavaCC - The Java Parser Generator: A
Product of Sun Microsystems,”
http://www.metamata.com/JavaCC/

[17] Lisa Rubin Neal, “Cognition-Sensitive Design and User
Modeling for Syntax-Directed Editors,” Proceedings SIG-
CHI Conference on Human Factors in Computing Sys-
tems, Toronto, Canada, April 1987, 99-102.

[18] David Notkin, “The GANDALF Project,”Journal of Sys-
tems and Software5,2 (May 1985), 91-105.

[19] Paul Oman and Curtis R. Cook, “Typographic Style is
More than Cosmetic,”Communications of the ACM33,5
(May 1990), 506-520.

[20] Steven P. Reiss, “The Desert Environment,”ACM Trans-
actions on Software Engineering and Methodology8, 1
(October 1999), 297-342.

[21] Thomas Reps and Tim Teitelbaum,The Synthesizer Gen-
erator Reference Manual, Springer Verlag, Berlin, 1989.
Third edition.

[22] Elliot Soloway and Kate Ehrlich, “Empirical Studies of
Programming Knowledge,”IEEE Transactions on Soft-
ware EngineeringSE-10,5 (September 1984), 595-609.

[23] Richard M. Stallman, “EMACS: The Extensible, Custom
izable, Self-Documenting Display Editor,”Proceedings of
the ACM-SIGPLAN SIGOA Symposium on Text Manipul
tion, SIGPLAN Notices16,6 (June 8-10 1981), 147-156.

[24] Gerd Szwillus and Lisa Neal (editors),Structure-Based
Editors and Environments, Academic Press, 1996.

[25] Tim Teitelbaum and Thomas Reps, “The Cornell Program
Synthesizer: A Syntax-Directed Programming Environ-
ment,”Communications of the ACM24,9 (September
1981), 563-573.

[26] Michael L. Van De Vanter, Susan L. Graham and Rober
A. Ballance, “Coherent User Interfaces for Language-
Based Editing Systems,”International Journal of Man-
Machine Studies37,4 (1992), 431-466, reprinted in [24].

[27] Michael L. Van De Vanter, “Practical Language-Based
Editing for Software Engineers,” inSoftware Engineering



and Human-Computer Interaction: ICSE '94 Workshop on
SE-HCI: Joint Research Issues, Sorrento, Italy, May 1994,
Proceedings, Lecture Notes in Computer Science vol.
896, Richard N. Taylor and Joelle Coutaz (editors),
Springer Verlag, Berlin, 1995, 251-267.

[28] Tim A. Wagner,Practical Algorithms for Incremental
Software Development Environments, UCB/CSD-97-946,
Ph.D. Dissertation, Computer Science Division, EECS,
University of California, Berkeley, December 1997.

[29] William M. Waite and Gerhard Goos,Compiler Construc-
tion, Springer-Verlag, 1984.

[30] Kathy Walrath and Mary Campione,The JFC Swing Tuto-
rial: A Guide to Constructing GUIs, Addison-Wesley,
1999.

[31] Terry Winograd, “Beyond Programming Languages,”
Communications of the ACM22,7 (July 1979), 391-401

[32] XEmacs,http://www.xemacs.org


	1 . Introduction
	2 . Design goals
	2.1 . No training
	2.2 . Enhance reading and writing
	2.3 . Access to linguistic structure
	2.4 . Configuration and embedding

	3 . The design space
	Figure 1 : Design choices for program editors
	3.1 . Pure designs
	3.2 . Modified designs
	3.3 . Inclusive designs

	4 . Finding the middle ground
	In summary, an ideal representation would be closely related to displayed text, but would also re...
	Figure 2 : Additional choices for program representation and analysis
	Solutions appear in the following two sections, which summarize respectively the two mutually dep...

	5 . Architecture
	Figure 3 : CodeProcessor Architecture
	5.1 . The Controller
	5.2 . The Model
	Figure 4 : Example model update

	5.3 . The View
	5.4 . Representing embedded structures

	6 . Functionality and user-model
	6.1 . Advanced program typography
	Figure 5 : Example CodeProcessor display

	6.2 . Editing behavior
	6.3 . Nested editors
	6.4 . The Programmer’s Experience

	7 . Implementation status
	8 . Related work
	9 . Conclusions
	10 . Acknowledgments
	11 . Trademarks
	References
	[1] Adobe Systems Incorporated, Adobe FrameMaker, http://www.adobe.com/products/framemaker/
	[2] Adobe Systems Incorporated, Frame Developer’s Kit, http://partners.adobe.com/asn/developer/fr...
	[3] Ronald M. Baecker and Aaron Marcus, Human Factors and Typography for More Readable Programs, ...
	[4] Rolf Bahlke and Gregor Snelting, “The PSG System: From Formal Language Definitions to Interac...
	[5] Robert A. Ballance, Susan L. Graham and Michael L. Van De Vanter, “The Pan Language-Based Edi...
	[6] P. Borras, D. Clemént, Th. Despeyroux, J. Incerpi, G. Kahn, B. Lang and V. Pascual, “CENTAUR:...
	[7] Steve Churchill, “C++ Fresco: Fresco tutorial,” C++ Report, (October 1994).
	[8] Véronique Donzeau-Gouge, Gérard Huet, Giles Kahn and Bernard Lang, “Programming Environments ...
	[9] Adele Goldberg, “Programmer as Reader,” IEEE Software 4,5 (September 1987), 62-70.
	[10] Robert W. Holt, Deborah A. Boehm-Davis and Alan C. Schultz, “Mental Representations of Progr...
	[11] Bernard Lang, “On the Usefulness of Syntax Directed Editors,” in Advanced Programming Enviro...
	[12] Stanley Letovsky, “Cognitive Processes in Program Comprehension,” in Empirical Studies of Pr...
	[13] Stanley Letovsky and Elliot Soloway, “Delocalized Plans and Program Comprehension,” IEEE Sof...
	[14] Clayton Lewis and Donald A. Norman, “Designing for Error,” in User Centered System Design: N...
	[15] Mark A. Linton, John M. Vlissides, and Paul R. Calder, “Composing user interfaces with Inter...
	[16] Metamata, Inc. “JavaCC - The Java Parser Generator: A Product of Sun Microsystems,” http://w...
	[17] Lisa Rubin Neal, “Cognition-Sensitive Design and User Modeling for Syntax-Directed Editors,”...
	[18] David Notkin, “The GANDALF Project,” Journal of Systems and Software 5,2 (May 1985), 91-105.
	[19] Paul Oman and Curtis R. Cook, “Typographic Style is More than Cosmetic,” Communications of t...
	[20] Steven P. Reiss, “The Desert Environment,” ACM Transactions on Software Engineering and Meth...
	[21] Thomas Reps and Tim Teitelbaum, The Synthesizer Generator Reference Manual, Springer Verlag,...
	[22] Elliot Soloway and Kate Ehrlich, “Empirical Studies of Programming Knowledge,” IEEE Transact...
	[23] Richard M. Stallman, “EMACS: The Extensible, Customizable, Self-Documenting Display Editor,”...
	[24] Gerd Szwillus and Lisa Neal (editors), Structure-Based Editors and Environments, Academic Pr...
	[25] Tim Teitelbaum and Thomas Reps, “The Cornell Program Synthesizer: A Syntax-Directed Programm...
	[26] Michael L. Van De Vanter, Susan L. Graham and Robert A. Ballance, “Coherent User Interfaces ...
	[27] Michael L. Van De Vanter, “Practical Language-Based Editing for Software Engineers,” in Soft...
	[28] Tim A. Wagner, Practical Algorithms for Incremental Software Development Environments, UCB/C...
	[29] William M. Waite and Gerhard Goos, Compiler Construction, Springer-Verlag, 1984.
	[30] Kathy Walrath and Mary Campione, The JFC Swing Tutorial: A Guide to Constructing GUIs, Addis...
	[31] Terry Winograd, “Beyond Programming Languages,” Communications of the ACM 22,7 (July 1979), ...
	[32] XEmacs, http://www.xemacs.org

	Displaying and Editing Source Code in Software Engineering Environments
	Michael L. Van De Vanter1 and Marat Boshernitsan2
	1Sun Microsystems Laboratories 901 San Antonio Avenue Palo Alto, CA 94303 USA Tel +1 650 336-1392...
	2Department of Computer Science University of California at Berkeley Berkeley, CA 94720-1776 USA ...
	Editor Kit
	Styler
	Abstract Editor Kit
	Abstract Styler
	Abstract Lexer
	Source Code Model
	Model/Editor Kit protocol
	Rendering Engine
	View/Styler protocol
	Lexer
	Editor Widget



