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Abstract:

Supercomputer designers traditionally focus on low-level hardware performance criteria
such as CPU cycle speed, disk bandwidth, and memory latency. The High-Performance
Computing  (HPC)  community  has  more  recently  begun  to  realize  that  escalating
hardware performance is, by itself,  contributing less and less to real productivity—the
ability  to  develop  and  deploy  high-performance  supercomputer  applications  at
acceptable time and cost. 

The Defense Advanced Research Projects Agency (DARPA) High Productivity Computing
Systems  (HPCS)  initiative  challenged industry  vendors to  design a new generation of
supercomputers that would deliver a 10x improvement in this  newly acknowledged but
poorly understood domain of real productivity. Sun Microsystems, choosing to abandon
customary evolutionary approaches, responded with two revolutionary decisions. The first
was to investigate the nature of supercomputer productivity in the full context of use, which
includes people, organizations, goals, practices, and skills as well as processors, disks,
memory,  and software.  The  second decision  was  to  rethink  completely  the  design  of
supercomputing  systems,  informed  by  productivity-based  requirements  and  driven  by
recent technological breakthroughs. Crucial to the implementation of these decisions was
the establishment of multidisciplinary, closely collaborating teams that conducted research
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into productivity and developed the many closely intertwined design decisions needed to
meet DARPA’s challenge

Among  the  most  significant  results  from  Sun’s  productivity  research  was  a  detailed
diagnosis of software development as the dominant barrier to productivity improvements in
the HPC community. The level of expertise required, combined with the amount of effort
needed to develop conventional HPC codes, has already created a crisis of productivity.
Even worse, there is no path forward within the existing paradigm that will  significantly
increase productivity as hardware systems scale up. The same issues also prevent HPC
from  “scaling  out”  to  a  broader  class  of  applications.  This  diagnosis  led  to  design
requirements that address specific issues behind the expertise and effort bottlenecks.

Sun’s  design  teams  explored  complex,  system-wide  tradeoffs  needed  to  meet  these
requirements  in  all  aspects  of  the  design,  including  reliability,  performance,
programmability,  and  ease  of  administration.  These  tradeoffs  drew  on  technological
advances  in  massive  chip  multithreading,  extremely  high-performance  interconnects,
resource virtualization, and programming language design. The outcome was the design
for  a  machine  to  operate  at  petascale,  with  extremely  high  reliability  and  a  greatly
simplified programming model. Although this design supports existing codes and software
technologies—crucial  requirements—it  also  anticipates  that  the  greatest  productivity
breakthroughs  will  follow  from  dramatic  changes  in  how  HPC  codes  are  developed,
changes that require a system of the type designed by Sun’s HPCS team.
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1 Introduction 
Supercomputing seeks solutions to computational problems whose scale, in both complexity and 
size, stretches the limits of our technology. Typical supercomputer applications1 include weather 
modeling, crash simulation, hydrodynamic modeling, and encryption [12]. Requirements for new 
supercomputers traditionally focus on hardware performance issues: CPU cycle speed, storage 
I/O, and memory latency. 

The High-Performance Computing (HPC) community has begun to realize, however, that 
evolutionary hardware improvement, although necessary, is not enough to meet the community’s 
goals. Hardware improvements are now delivering less gain in real productivity: the ability to 
develop and deploy high-performance supercomputer applications at acceptable time and cost 
[30]. Equally challenging is an apparent inability to scale out to a wider class of problems for 
which supercomputing would be valuable. The Defense Advanced Research Projects Agency 
(DARPA) High Productivity Computing Systems (HPCS) program addresses these problems by 
funding research and development of more cost-effective supercomputers. In HPCS Phase II, 
DARPA challenged Sun and other vendors2 to develop designs for revolutionary petascale 
computing systems that will not only compute significantly faster than the current generation, but 
will also deliver at least 10 times more productivity. 
HPCS program goals acknowledge that productivity is poorly understood, but suggest that it is 
some combination of factors in the areas of performance, robustness, programmability, and 
portability.3,4 This characterization demands an extraordinary expansion of the design space for 
computing systems: 

• Programmability, and thus productivity in general, is critically dependent on the context 
of a system’s use, a context that includes challenging issues concerning people, skills, 
practices, and organizations.  

• Programmability and portability are acknowledged to be whole system properties; 
achieving them requires systems engineering of the sort traditionally applied only to 
performance and robustness. 

• Engineering tradeoffs can be made among at least four system properties with 
requirements that sometimes conflict. There is some precedent for such explicit tradeoffs 
between performance and robustness, but much less so among the other factors. 

It is equally challenging to develop design metrics for real-world productivity. The HPC 
community traditionally uses machine utilization as a proxy for productivity, where utilization 

                                                

1 The HPC community refers to software written to perform scientific computations as codes; in this 
paper, they are referred to interchangeably as HPC applications or simply applications. 
2 HPCS Phase II vendors were Sun, Cray and IBM. 
3 Considerable expense in the lifetime of HPC applications derives from platform-specific optimizations 
that confound porting to new platforms. 
4 Sun added administration to DARPA’s list of productivity factors – see Section 3.9. 
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denotes that portion of the potentially available floating point operations consumed by an 
application during execution. This has the advantage of being easily measured and the 
disadvantage of addressing only some aspects of HPC’s cost. An even more severe disadvantage 
is that it completely ignores the value side of any productivity equation. Utilization as a proxy 
for productivity is useful only in environments where almost nothing changes. This renders 
utilization useless in the face of the extraordinary improvement sought by DARPA, through 
which almost everything changes. 
Sun responded to the HPCS challenge by committing to a complete rethinking of supercomputer 
design, attending not only to hardware performance but also to requirements derived from the 
best possible understanding of real productivity. The project began with the guiding aphorism: 

Productivity must be built in; it cannot be added on. 
Two general decisions guided this work: 

1. Broaden the scope. In addition to traditional hardware and software concerns, decisions were 
based on human and organizational issues concerning software development, system 
administration, and the scientists for whom the computer is intended. The team drew on 
expertise in hardware and software architecture, computational science, software 
engineering, programming languages and tools, physics, and cultural anthropology. The 
approach was empirical, driven by data on a wide variety of issues, many of which are 
messy, historically ignored, and subject to unstated assumptions. 

2. Identify bottlenecks. Opportunities for dramatic change in complex systems, including human 
organizations, are best prioritized in terms of constraints that limit progress toward goals 
[16]. These constraints often manifest most clearly at system boundaries. The team’s research 
focused on identifying the most significant bottlenecks that inhibit system-wide productivity. 
For example, analysis revealed a crucial programming bottleneck created by the 
extraordinary amount of both effort and expertise required to develop and maintain HPC 
applications. This is caused by the failure of current systems to isolate programmers from 
machine details (for example, memory models and failure modes). Current systems also do 
not permit applications to be expressed in ways that are intelligible to the domain scientists 
for whom the computations are performed. An example of an administrative bottleneck is 
lost availability of machine resources during switchover between capability and capacity 
modes of operation. 

Three additional decisions guided Sun’s approach, informed by productivity-based requirements 
and supported by recent technological breakthroughs: 
3.  Focus on whole system properties. Experts in performance and robustness understand that 

these are emergent properties of complex systems, requiring design skills that span every 
aspect from hardware to application software. The team observed that the less-studied areas 
of programmability, portability, and administration also have this nature.  

4. Rethink system layers. Decomposing systems into layers with distinct concerns is one of the 
most powerful intellectual tools available for constructing complex systems. Traditional 
strategies for redesigning system boundaries include moving functionality down, aligning 
interfaces with more appropriate abstractions, distributing new functionalities across layers, 
and making global tradeoffs in the name of overall cost and complexity. The extended scope 



Productive Petascale Computing  Page 9 of 139 

of this design considers people and organizations as parts of the system, for example, as 
additional layers in a system stack, inviting analogous tradeoffs—for example, between 
human and machine effort. 

5. Leverage new technologies. Emerging technologies, such as those in the areas of chip 
interconnect and resource virtualization, create new opportunities to rethink established 
designs around known system bottlenecks. 

This report describes Hero, the revolutionary petascale supercomputer, the design of which arose 
from this work. It also describes Sun’s interdisciplinary, highly collaborative design process, 
without which the goals could not have been achieved. Sun’s HPCS productivity team, of which 
the authors were members, played several roles in that process. The team: 

• Conducted research as part of the HPCS extended productivity program. 
• Gathered empirical data from the HPCS mission partners, the organizations for which the 

HPCS supercomputers are intended. 
• Applied research results to development of system hardware and software requirements. 
• Worked closely with design teams to create the alignment needed to meet the 

productivity challenge.  

Section 2 describes how the team constructed an interdisciplinary perspective on the wide range 
of significant issues faced by the supercomputing community as systems and problems continue 
to increase in scale and the requirement to scale out to a wider audience becomes more 
important. It includes an informal, operational definition of productivity that is consistent with a 
more precise mathematical model developed during the HPCS program [40], as well as a 
discussion of the role of quantitative metrics. 
Section 3 describes productivity bottlenecks identified by this research and reviews the multiple 
methodologies used to understand them, including observational experiments, case studies, and 
literature reviews [54]. 

The productivity research described in Sections 2 and 3 informed the platform development 
strategy described in Section 4. Drawing on well-understood principles from other computational 
domains, this development strategy relies on the application of abstraction and automation to a 
wide range of productivity-related issues. Application of this development strategy leads to the 
productivity requirements in Section 5. These requirements touch on the system memory model, 
application portability, tools, libraries, programming languages, resource monitoring and 
management, checkpointing, failure recovery, and many others. 
Section 6 describes the transition from productivity research and analysis to a design that treats 
productivity as a property of the whole system. It introduces an interdisciplinary, collaborative 
process for making high-level design decisions, and notes the interplay among those decisions in 
rethinking system layers to meet productivity-driven requirements. 
Section 7 provides an overview of the Hero system. Each of the subsequent five sections 
describes a Hero system layer and how it interacts with other system layers to support 
productivity as a whole system property. These sections also introduce the emerging 
technologies that enabled the team to rethink system design: 

• Compute nodes (Section 8): reliance on massive chip multithreading (CMT) 
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• System Interconnect (Section 9): proximity communication and silicon photonics 
• Execution model (Section 10): single address space memory 
• System software (Section 11): layers, virtualization, system checkpointing, file and 

network I/O, and administrative support 
• Development support (Section 12): languages, tools, and skills 

Section 13 revisits the theme, discussed briefly in Section 6, of interdependent design decisions 
that must address multiple requirements and have implications across many system layers. As an 
illustrative example, the Hero memory model is chosen for more detailed discussion. Finally, 
Section 14 re-emphasizes key lessons from Sun’s productivity research and Hero system design.  

Sections 15-19 are appendices that include acknowledgements, references, a glossary, and 
documentation associated with the HPCS Phase II program. Section 17 contains a detailed 
example of the difference between programming in highly productive and standard HPC 
languages. 
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2 Characterizing productivity in High-Performance Computing (HPC) 
The productivity team began with the definition of real productivity set forth in the HPCS 
program goals: the ability to develop and deploy high-performance supercomputer applications 
at acceptable time and cost [30]. The range of issues implicit in this precise but general 
definition makes it difficult to create a common understanding of the domain within which 
design work can proceed. 

This section describes several vantage points from which to begin developing an operational 
understanding of HPC productivity, starting with characteristics that set it apart from other areas 
of computation (Section 2.1). It considers traditional layered models used to manage the 
complexity of computer systems, observing that they exclude many significant productivity-
related issues. Drawing on two additional perspectives, software engineering and anthropology, 
the layered model is extended to describe the whole supercomputer system: hardware, software 
and the full context of use (Section 2.2). Design metrics depend on quantitative models, for 
which the utilization-based approach customary in the HPC community turns out to be 
inadequate (Section 2.3). Finally, none of these models adequately address the desire to scale out 
HPC to a wider range of practitioners and problems (Section 2.4). 

These models represent a starting point for the research data and analysis presented in Section 3 
and for the design decisions described in subsequent sections. 

2.1 Unique characteristics of HPC 
Although software productivity has been studied in other computing domains for years (for 
example, Boehm’s software engineering economics [5]), these results have proven difficult to 
transfer to HPC applications. There are certainly attributes in common, but there are also ways in 
which the context of HPC application development differs significantly from general 
computation. 
Capability trumps cost-effectiveness: By definition, supercomputing takes place at the frontier of 
what is possible in hardware scale and performance, well beyond the cost-effective “sweet spots” 
available to consumers of commodity computing. Time to solution is often more important than 
cost. 
Software requirements are not well understood: HPC applications are often undertaken to exploit 
new scientific insights or newly developed numerical and computational techniques, but the 
software’s actual design requirements are created by trial and error [50]: this puts HPC 
development in the special software development category of “exploratory programming”. 
Parallel programming is essential: Applying the hardware resources of a supercomputer to large 
problems demands that applications execute with as much parallel computation as possible. 
Application life cycles are long: Figure 1 describes a typical HPC application life cycle; it spans 
up to 35 years, well beyond the lifetime of applications in other domains. Initial deployment 
often follows three to five years of development, and maturity may not be reached until years 
beyond that. Steady-state production support (known as maintenance and evolution in the 
software engineering community) continues for decades [50]. 
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Figure 1: Typical large-scale computational science and engineering (CSE) project life 

cycle5 
Ports are frequent: An application is likely to need porting every three to four years during its 
life cycle, usually at least once during initial development, often at the cost of significant code 
modification. Because FORTRAN 77 is the only language universally supported with high-
quality compilers, it is still considered the safest choice at the outset of new projects, even 
though other languages (including Fortran 90/95) may shorten initial development. 
Validation and verification are expensive: Correctness constraints on complex scientific 
calculations are stringent [7] [49] [53], but the main approach to testing relies on users, who may 
also be developers. 

Mainstream computing technologies are considered irrelevant: Advances in mainstream 
software engineering technologies have taken place outside the extraordinary constraints and 
priorities of HPC. Very little supercomputing is done by people with backgrounds in computer 
science, because they lack the training, experience, and attitude expected by the HPC 
community. 

2.2 Design models and strategies 
HPCS program goals explicitly call out components of productivity (especially portability and 
programmability) that are sensitive to issues such as software product life cycles, technology 
replacement cycles, skills, experience, and many more. In other words, the value of a 
supercomputer depends not only on the hardware but also on the context of its use. This is a 
broad scope for study. An immediate challenge was to derive a framework for relating research 
results and system design choices, complicated by the breadth of issues under study and the 
interdisciplinary team’s diverse viewpoints.  

This section describes an informal model of a whole HPC system that was developed to meet this 
need. The model begins with the layered system models ubiquitous in computer systems (Section 

                                                
5 Figure reproduced with permission from “Large-Scale Computational Scientific and Engineering Code 
Development and Production Workflows” [50]. 
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2.2.1); these are powerful intellectual tools, but they are too narrowly focused for this study’s 
purposes. The team drew on models from two additional disciplines, software engineering 
(Section 2.2.2) and anthropology (Section 2.2.3), leading to a synthesized model that captures the 
notion of a whole supercomputer system (Section 2.2.4). Design strategies familiar to traditional 
computer system design can be applied within this extended model, after the appropriate data are 
gathered. 

Hero’s expanded set of productivity-driven requirements fundamentally changes the nature of 
computer system design. Issues that might once have been considered simple constraints become 
opportunities for tradeoffs. These may involve not only hardware and software layers, but also 
legacy applications, people, and organizations. 

2.2.1 A computer system design perspective 
Asking a computer system designer for a simple description of a complex system often yields a 
diagram such as the one appearing in Figure 2. Layered models represent a powerful intellectual 
tool for managing complexity, and they can be applied at many levels of granularity. For 
example, Dijkstra’s seminal 1968 paper on operating system design described the advantages of 
a layered approach to system software and the useful “separation of concerns” it permits [13]. 

 

 
Figure 2: Simple layered model of a computer system 

As a design strategy, the layered model presents two important implications. First, it casts system 
design as an exercise in defining boundaries between layers, also called interfaces in some 
contexts. A boundary serves to divide the work of designing and building a system, and it defines 
what is to be done in each layer. From the perspective of each layer’s design: 

• The layer below offers resources with which to carry out the work of the layer. 
• The layer above is a client or consumer of the results created by the layer. 

Proper layering creates boundaries that are both maximally useful to the layer above and most 
easily implemented by resources available in the layer below. Achieving a balance between these 
two goals can require complex tradeoffs in the definition of the boundaries—tradeoffs that 
change as both technology and goals evolve. For example, increases in hardware capability have 
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permitted a great downward migration of functionality, and two historic revolutions in computer 
system design, the virtualization of time (time sharing) and storage (virtual memory), eventually 
led to redesign at every level. 
A second implication of such a diagram is that it defines the scope of the system designer’s 
concerns: 

• A designer ignores (or, more accurately, treats as a fixed constraint) anything below the 
lowest layer in the model, for example the fabrication of processor chips. 

• A designer ignores (or, more accurately, treats as a fixed requirement) anything above the 
highest layer in the model, for example, the skills of application programmers or what 
tools they use. 

This traditional layered model of computer systems, although essential, fails to encompass the 
range of issues raised by productivity-based requirements. This model was extended by drawing 
on perspectives from other disciplines, starting with software engineering. 

2.2.2 A software engineering perspective 
The HPC Productivity Research community proposed describing application development 
activities as workflows within a single cycle of the sort summarized in Figure 1 on page 12. 
Although HPC life cycles are extraordinarily long, a software engineering analysis reveals that 
focusing only on a single application workflow fails to account for the complete context of HPC 
software development. Figure 3 presents a more complete model, in which the single application 
workflow is represented in the context of surrounding workflows. 
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Figure 3: Software engineering perspective on workflows 

 
This model derives from research into general software development, but it applies equally well 
in environments such as those targeted by the HPCS program. Objectives and resources differ 
from one level to the next, which means that any notion of productivity must also vary. The three 
workflows in this model include: 

• Code Development: A typically small team develops an HPC application with a well-
articulated scientific objective, for example modeling thermal dispersion under certain 
circumstances; such a team is focused on a timely solution. 

• Project: A project often has a larger goal, for example studying the thermal stability of 
nuclear weapons, and takes a longer view than a single application. For example, 
development of a modern replacement for an important application might begin midway 
through the life cycle of its predecessor. Important issues at this level include strategic 
reuse of existing code, and decisions about new technology adoption.6 

• Organization: Human organizations, such as government-sponsored laboratories, have 
missions that are both longer-term and broader than any constituent project, for example 
strategic stewardship of the nuclear arsenal. Important issues at this level include 

                                                
6 Significant decisions to adopt new technologies are almost always taken only at the beginning of new 
application development, although experimentation may be underway in parallel (Section 3.10). 
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collective cost effectiveness, the project portfolio in the face of evolving mission 
objectives, and securing funding. 

Many software engineering productivity problems and opportunities lie outside the scope of a 
single code development cycle, but within a single cycle for a project or organization. In 
practice, programming productivity is often affected by past decisions such as tool investments, 
reusable code development, and hiring policies. Problems of this sort appeared during the team’s 
research on the topic of specialized programming tools (Section 3.8). A software engineering 
perspective enabled the team to understand that the root cause of an apparent failure in the HPC 
community was misalignment across levels (Section 5.1.5). 
As with computer systems, tradeoffs among software engineering levels (layers) can have 
significant impact. For example, programmer training might take place on the job (code 
development) or through a wider investment in education (project or organization). Investment in 
extensible and reusable software application architectures, such as those explored in the “product 
line” approach [3], is counterproductive for a development team, but it might be vital to an 
organization’s survival. 
Finally, the team observed an interesting alignment: the lowest level of the software engineering 
model (code development) corresponded to the highest level in the computer system model 
characterized in Figure 2. From the system designer’s perspective, application development is 
out of scope (a fixed requirement). From the software engineering perspective, computer system 
characteristics are out of scope (a fixed constraint). There is more discussion of this observation 
following mention of yet another perspective. 

2.2.3 An anthropological perspective 
The interdisciplinary team also included a cultural anthropologist, skilled at the systematic study 
of culture: a complex phenomenon that includes interrelated economic systems, political 
systems, social organizations, and belief systems.7 Observed behavior patterns in people and 
organizations reflect the combined interrelationships of all these systems. 
As the team began to collect data from and about HPCS mission partners, it became clear that the 
development of HPC applications could be understood only in a much larger context. This led to 
many questions, starting with those immediately facing the individual programmer and including 
issues that eventually encompassed the mission’s fundamental nature: 

• What tasks do programmers perform? 
• What training and skills do programmers need? 
• How are programmers assigned to projects? 
• How does a programmer gain access to computing resources? 
• How does a programmer make economic tradeoffs with available resources? 
• How do careers in HPC programming develop? 

                                                
7 Franz Boas, the “father of American anthropology” received his doctorate in physics and is known for 
applying the scientific method to the study of people and societies. 
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• How are projects managed? 
• How are computing resources allocated to projects? 
• How is access to resources managed on a day-to-day (or minute-to-minute) basis? 
• What external products (compilers, for example) are essential, and who pays for 

them? 
• How and when are new programming technologies adopted? 
• How is the purchase of a supercomputer justified? 
• Who pays for a supercomputer and under what circumstances? 
• How is a supercomputer vendor chosen, and what does the purchase include? 
• How are laboratories funded? 

An anthropologist frames such questions in the multiple contexts in which work gets done: for 
example individual, group, organization, subculture, and culture. A person makes decisions and 
acts in every one of those contexts simultaneously; each context has its own systematic structure 
and rules. 

HPC, in the context of the mission partners, is visualized in Figure 4 by mapping these 
anthropological categories to specific organizational structures. An HPC programmer is an 
individual (with particular skills), but is also a group member (with short- to medium-term 
goals), member of a lab or other organization (with career goals), member of the scientific 
programming community and a citizen. 
 

 
Figure 4: Anthropological perspective on HPCS mission partners 

Finally, observe another useful alignment: the layers of the anthropologist’s view are similar to 
the three workflows described in the software engineering perspective depicted in Figure 3. 
Similar questions arise, and objectives and resources differ from level to level. For example, the 
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decision (and funding) to purchase a supercomputer is an act with national policy considerations 
and also has a different kind of impact on every level of HPC, down to the individual. The 
mission’s nature has a profound impact on the people who are attracted to the environment, as 
does the design (and prestige) of the supercomputer around which work gets done. 

2.2.4 An interdisciplinary perspective 
Drawing on these diverse perspectives, the team extended the conventional but limited layered 
system model to include explicitly the context of the system’s use, as shown in Figure 5. 
 

 
Figure 5: Interdisciplinary view of a whole HPC system 

This is the “whole system” whose productivity the team addressed. It is described in terms of 
layers that embody separate concerns, which interact at boundaries. These layers are subject to 
design decisions that might redefine boundaries, migrate functionality, and make tradeoffs. 
Extending the model in this way brings more design parameters into scope for investigation and 
design. For example, programmer skills and project organization are no longer fixed 
requirements for software and hardware system design, but opportunities for rethinking and 
redesign. A machine’s architecture is no longer a fixed constraint for developing application 
software, but an opportunity to make different tradeoffs in the name of overall productivity. 
General strategies for design apply, including abstraction (making the output, or work result, of 
each layer as useful as possible to the layer above) and automation (arranging for as much of the 
work as possible at each layer to be subsumed efficiently by a lower layer). Each of the HPCS 
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productivity components (performance, reliability, programmability, portability and 
administration) is a property of the whole system, and tradeoffs among them must also be 
considered, such as performance versus programmability. 
Each of these layers is an area for research by the productivity team, as well as an area for close 
collaboration with system designers. Insights about many kinds of bottlenecks, which are 
obstacles to real productivity, can be drawn into the design process. 

A significant challenge is that established boundaries resist change. A particular decomposition 
can become so embedded into the skills, practices, organizations, careers, and even culture that 
change becomes very difficult and expensive. This observation applies as much to the 
organizational context of the mission partners as it does to the organizational context in which 
computers are typical designed and built. 
HPCS productivity goals, however, demand change of this magnitude. Critical bottlenecks are 
likely to be found in boundaries whose design is obsolete; productivity breakthroughs require 
significant redesign at many levels. 

2.3 Quantitative productivity models 
Productivity-based evaluation criteria for design decisions are especially problematic for 
supercomputers, both in hardware aspects and application development. Commoditized 
computing affords relatively straightforward tradeoffs, such as when to add processors to a web 
server farm or how to predict software engineering costs in familiar domains [5]. By definition, 
supercomputing operates beyond the sweet spot of commodity computing (Section 2.1): 

• Hardware is expensive and quickly superseded by better, faster hardware. 
• Parallel programming, especially at large scale, is extremely difficult, poorly supported 

by tools, long-lived, and thus quite expensive. 
• Missions can be of critical importance. 

This section presents an informal view of quantitative drivers for HPC productivity. It is 
consistent with a more formal mathematical model developed by Sun’s productivity team [40].  

2.3.1 The basic productivity equation 
Basic economics defines Productivity as a dimensionless ratio of Value (or output) relative to 
Cost (of producing the output). 

P = V / C 
For instance, producing $100 worth of goods at a cost of $50 is described as having productivity 
of two. If the value of goods drops below the cost of producing them, then productivity is less 
than unity. Furthermore, the value of products, including scientific results, typically varies with 
time; for example, value may decrease due to competition, or it may increase because of rising 
demand and short supply, or it may drop precipitously when there are deadlines. Costs may also 
vary over time. 
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Supercomputing costs include application programming, porting, administration, hardware 
purchase, maintenance, space, and (increasingly) energy. Some costs are easy to understand and 
assign to projects, but others can be difficult to amortize or distribute precisely. 
Supercomputing value is much harder to quantify. For instance, fluid simulations are used to 
model the flow of materials into complex molds to ensure good distribution. Such simulations 
reduce the need to build and experiment with physical models. Similarly, simulations are used to 
model airflow, reducing the need for wind tunnel tests. The money thus saved could be taken as 
the value of the simulations, and manufacturers might provide a realistic estimate. By contrast, it 
is hopeless to determine the monetary value of research, where scientific publications constitute 
the main tangible product. Publication counts or citations could be substituted for the value of 
research, but some papers prove to be more valuable than others, and citation numbers are 
impossible to predict. 

2.3.2 Utilization as a proxy for productivity 
The supercomputing community traditionally backs away from these challenges, choosing 
instead to evaluate system designs with a proxy for productivity that can be measured with some 
certainty. Utilization, expressed as a percentage, measures the portion of the potentially available 
floating-point operations that a supercomputer application actually consumes during a span of 
execution. Among a collection of early papers by HPCS program participants, nearly every one 
characterized productivity gains as improvements to utilization [30]. 

This approach baffles the outsider; as a simple thought experiment, scenarios can be created 
where utilization falls in the presence of clear productivity improvements. The superficial 
problem is that utilization is a cost-based metric that takes no account of the value of 
computational results. By way of contrast, no owner of a personal computer gives a thought to 
unused computational cycles.  
The community’s persistent commitment to this metric derives from the singular nature of HPC 
in general: 

• Utilization can be measured objectively, consistent with the way that physical scientists 
the traditional consumers of supercomputing, conduct their own research. 

• Unlike general computing, supercomputing is dominated by numerical calculations. 
• The cost of operating hardware is disproportionately high. 
• The capability8 of a supercomputer is the paramount justification for its purchase. 
• Time to solution is understood to be more important than cost-effectiveness. 

An unstated assumption behind the use of utilization, however, is that comparisons rest at 
particular operating points in which there is very little change in the environment, called the 
context of use. This assumption holds for evolutionary improvement of the kind often 

                                                
8 The HPC community distinguishes between capability computing, for which the extraordinary resources 
of a supercomputer are required, and capacity computing, where it is the throughput of significantly 
smaller computations that matters; supercomputers typically alternate between the two modes of 
operation. 
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experienced by the supercomputer community. It does not hold in the face of the magnitude of 
change needed for a 10x productivity improvement. Such a change will necessarily affect the 
whole system: people, skills, practices, and organizations, as well as hardware and software. 

2.3.3 Toward value-based metrics 
These challenges suggest that it is not possible to produce a general quantitative model of 
productivity: value will vary according to a variety of factors including organizational needs, 
application domain, and time. However, it is possible to develop quantitative valuation 
frameworks. This is what the productivity team did during the program. Such frameworks 
require that stakeholders customize the valuation model with domain-specific parameters that 
can be difficult to determine. 

In the absence of a general characterization in the numerator, initial quantitative focus must be 
on the denominator, combined with a search for ways to keep the availability and utilization of 
computer equipment high. In other words, a first step toward improving productivity requires 
dramatically reducing costs for hardware, energy, computation runtime, software development, 
and service and maintenance. Even without precise quantitative valuation, considerable insight 
can be gained by searching for bottlenecks that prevent improvement in these factors (as reported 
in Section 3). 

2.4 Productivity at a wider scale 
Even as hardware costs drop and the notion of a small supercomputer becomes practical, 
supercomputing is still perceived by the larger community as too hard for “the rest of us” [1]. 
Just as DARPA desires to scale up supercomputers dramatically, others envision broadening the 
class of problems to which they can be applied in practice [20]. 
A ratio-based measure, such as the classical productivity formula discussed above, is silent on 
total output. In fact, scaling out might, in some scenarios, come at the cost of lower utilization, 
which the traditional HPC community would consider reduced productivity. On the other hand, 
such a shift would recapitulate the historical shift from mainframe computing to the desktop, 
migrating to computers whose utilizations would be unacceptable in mainframe shops. Once 
again, the challenge is to adequately value computer output, a topic finessed by an exclusive 
focus on utilization. 

On the other hand, if the skills needed to use supercomputers were reduced, for instance by 
requiring less-detailed programming, this would not only improve productivity by speeding up 
software development and increasing equipment utilization, but also increase total output. 
Bottlenecks of these sorts are also the topic of research covered in the following section. 
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3 Productivity bottlenecks in HPC 
Within the conceptual framework described in the previous section, the productivity team 
created a research program that would generate goals and requirements for a new kind of 
supercomputer: 10x more productive than the status quo. This is an extraordinary requirement, 
especially for such a poorly understood phenomenon, and it calls for dramatic breakthroughs. 
Two observations distinguished the team’s approach: 

• Ten times anything is disruptive. Under the best of circumstances, a 10x change 
invalidates existing models and assumptions. This is especially true of the incremental, 
utilization-based quantitative models favored by the HPC community. A disruptive, 
qualitative change is required, so the research program sought opportunities for such 
shifts; opportunities for which qualitative insight is as important as quantitative. These 
opportunities emerged through the identification of bottlenecks: aspects of the HPC 
environment that prevent dramatic breakthroughs in productivity. Bottlenecks may or 
may not be evident to practitioners, whose daily work embeds them in accepted, non-
reflective routines; a well-founded scientific inquiry was required. 

• Context matters. HPCS criteria imply that a supercomputer’s productivity can be 
understood only in the context of its use. The team’s conceptual framework for 
investigating both computer and context, depicted in Figure 5 on page 18, includes 
phenomena far beyond the expertise and traditions of the existing HPC community 
(phenomena that concern people, groups, organizations, and culture,) as well as issues 
closer to home that are often ignored, such as software engineering and programming 
language design. The inquiry must be interdisciplinary, and it must be conducted in situ. 

Section 3 describes the methodology, process, and selected findings from this search for 
bottlenecks in HPC application development. The bottlenecks can be validated with available 
data and, although difficult to quantify precisely, can be estimated to have very large effects on 
productivity. 
These studies by the productivity team focus on several of the upper levels depicted in Figure 5, 
which have historically received little attention. Extensive research by other teams was 
conducted at many system levels, including processor design, chip interconnect, memory 
models, and system software. The details of those studies are beyond the scope of this report, 
although the resulting design decisions, informed by productivity-based requirements, are 
described in later sections. 
Section 3.1 begins with a summary of the interdisciplinary methodology created for these 
studies. A three-stage adaptation of the scientific method provides a roadmap for the transition 
from qualitative to quantitative studies and helps avoid common mistakes made by researchers 
operating outside their fields of expertise, for example naively gathering precise data without an 
evidence-based theory in which to interpret and validate results. 

Section 3.2 describes a set of collaborative case studies conducted by teams from the HPCS 
vendors, mission partners, and HPCS-funded university projects. Each case study gathered 
baseline data about a representative HPC application development. Common themes extracted 
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from the data addressed quite explicitly some issues associated with the upper (contextual) layers 
of the conceptual framework. 

Section 3.3 introduces the expertise hypothesis, an anecdotal but substantial perception already 
present in the HPC community that (a) the productivity of HPC application development was 
collectively stuck at a point of diminishing returns, and (b) that the root cause has something to 
do with expertise [52]. Starting with this perception, the team reevaluated the collaboratively 
collected data, gathered more of its own, and created a working hypothesis about the role of 
expertise in HPC application development. 

The HPCS program called for collaborative development of workflows, described in Section 3.4, 
that would describe the tasks and procedures in HPC application development. The team 
discovered that the resulting workflows, while useful, could not help refine and validate its 
hypothesis: they contained more detail than could be validated with the available data, and they 
were silent on issues that were felt to be significant. 
Section 3.5 describes some of the analysis that helped refine and validate the team’s 
understanding of the expertise (skills) and effort (time) that goes into HPC application 
development. The resulting quantitative data also helped sort out those parts of the process that 
are essential to application goals from those parts that are accidents of the technologies being 
used.9 The team found that a substantial amount of effort and expertise were not fundamentally 
essential to the projects’ goals. These were cited as bottlenecks where dramatic improvement in 
productivity might be found. So attention was turned to three areas of software engineering to 
develop estimates of what improvements might be possible: 

• Software libraries (Section 3.6), which continue to save effort through code reuse, but 
offer little promise of a breakthrough in expertise requirements; 

• Programming languages and techniques (Section 3.7), where several data points suggest 
that a dramatic increase in productivity is possible; and 

• Development tools (Section 3.8), where a dramatic breakthrough is possible and the need 
for change is widely perceived. However, the solution lies beyond the resources or 
mission of any stakeholders other than funding agencies at the top level (mission) of the 
extended system model. 

In parallel with the productivity team’s investigation of programmability and portability 
requirements, another team gathered data and analyzed the administration requirement. Section 
3.9 summarizes their findings. 

A critical requirement for any potential breakthrough in productivity is that the HPC community 
must actually be able to adopt whatever technologies and practices are needed to break the 

                                                
9 Fred Brooks draws this distinction in his essay, “No Silver Bullet – Essence and Accident in Software 
Engineering,” and argues that modern software engineering has already achieved dramatic reductions of 
the accidental, leaving the unavoidably essential complexity of the problems that were supposed to be 
solved with software [6]. The team found that Brooks’ argument does not yet apply to HPC 
programming. 
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bottleneck. Section 3.10 explains how the unique characteristics of HPC environments constrain 
such adoption, some of which are bottlenecks identified in earlier sections. 

Finally, Section 3.11 summarizes findings about bottlenecks in HPC productivity that promise 
possible breakthroughs. These findings directly drove Hero’s design goals and requirements 
(Section 5) and their impact can be seen in the design work reported in Sections 7 through 13. 

3.1 Research methodology 
This expansive program of productivity research required a corresponding expansion of 
methodology conducted by an interdisciplinary team with experience in the social sciences, 
physics, numerical computation, and software engineering. The team committed to the soundest 
scientific basis possible, drawing on well-established research methodologies from relevant 
fields, many of which are unfamiliar within the HPC community (and are sometimes reinvented 
badly). This section summarizes the team’s methodology [54]. 

Social scientists have developed methods that are both verifiable and reproducible in many 
contexts, and which can do so with surprisingly few data points in some circumstances. 
However, the sheer number of methodological options made it crucial that each project begin 
with clear research goals to identify the most effective combinations of concepts, research 
designs, information sources, and methods. Table 1 summarizes a three-stage framework, based 
on the scientific method, that guides these goals; it is grounded in empirical data, validated by 
multiple approaches (triangulation), and applied to practicing HPC professionals who actually 
perform the work under study.10 
 

Table 1: Research framework 
Stage Goals Methods 
1. Explore and discover Develop hypotheses Qualitative 
2. Test and define Test and refine models Qualitative and 

quantitative 
3. Evaluate and validate Replicate and validate findings Quantitative 

 
The stages are necessarily sequential: each provides a foundation for methods in the next. This 
framework is broadly analogous to realizations of the scientific method used in many disciplines, 
although the correspondence can be obscured by differences among the phenomena being 
studied and the methods appropriate to their study. 

• Explore and discover. At the outset, researchers may not know the appropriate questions 
to ask or issues to address, let alone have a coherent theory of the phenomena being 
studied. The first stage is mainly qualitative, open-ended, and designed to produce 

                                                
10 It is possible to collect data much less expensively using students rather than professionals. 
Unfortunately, this presents threats to validity that cannot be assessed in early-stage research on poorly 
understood phenomena. This danger is acute in a domain where competence is widely understood to 
require years of experience [52]. 
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insights for hypothesis generation. Such insights can be considered explicit models of the 
phenomena, analogous to the paradigm in which scientific inquiry is generally 
undertaken and through which experimental data are interpreted. The most important 
techniques in this phase permit a researcher to identify and neutralize well-established 
assumptions, the so-called conventional wisdom of a community under study. This starts 
the essential process of distinguishing the conventional wisdom that is true from that 
which is not. 

• Test and define. Rigor is added in a second stage, using methods that produce additional 
data surrounding theories generated in the first. This provides feedback on insights, 
supplies concrete data for model refinement, and leads to deeper understanding of what 
can be measured and how those measurements can be interpreted. This is the necessary 
bridge between theory and experimentation. 

• Evaluate and validate. Finally, more focused and mostly quantitative techniques are 
precisely applied to collect data, interpret results, and validate outcomes. 

An important benefit of this framework is a reliable roadmap for moving from qualitative data 
collection and analysis, which are appropriate for discovery, to more quantitative data collection 
and analysis methods, which are appropriate to definitional and evaluative research. In particular, 
it addresses the challenge of determining exactly when, how, and why to use certain methods to 
draw out implications of experimental data. Table 2 summarizes many of the possibilities. 
A research program without such a roadmap runs a great risk of collecting data using later stage 
techniques, for example surveys and experiments, without sound hypotheses to inform 
experimental design; in such cases, conventional wisdom may fill the gap and obscure actual 
phenomena. 
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Table 2: Examples of research methods 
Stage Character Examples of Methods 

1. Explore and 
discover 

Open Ethnography 
Case study11 
Contextual observation 
Semi-structured interview 
Participation 
Document review 
Language patterning 

2. Test and define Focused Quasi-experimental study 
Concept mapping 
Structured interview 
Questionnaire 
Comparative study 
Focus group 
Semiotic analysis12 

3. Evaluate and 
validate 

Structured Social network analysis 
Survey 
Controlled experiment 
Product testing 
User experience simulation 
Human testing 
Quality measurement 

 

3.2 Collaborative case studies 
An important method for first-stage research is the case study [66], which draws on many 
techniques, including document reviews, observation, collection of contextual artifacts, self-
reporting, and interviews. In addition to its own research, the team participated in an extensive 
series of studies at mission partner sites, conducted in collaboration with representatives of 
national laboratories and other HPCS vendors. The stated objectives of these studies were to:  

• Identify critical success factors 
• Identify issues that must be addressed by hardware and software vendors to improve 

productivity of the code development process  
• Develop a reference body of case studies for the computational science and engineering 

community  
• Document lessons learned from the analysis and personal team interviews [24] [25] [26] 

[27] [28] [29] [48] [56] 

                                                
11 Italicized methods are those used by the productivity team during this research program. 
12 Semiotics is the study of how symbols and signs are given meaning and understood by people. 
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These studies collected quantitative data using a structured pre-interview survey and qualitative 
data using semi-structured interviews with individual stakeholders and in structured group 
sessions with code teams. Each study followed a standardized protocol: 

• Identify the project and sponsors. 
• Negotiate the case study with team and sponsors. 
• Complete the pre-interview questionnaire process. 
• Analyze the questionnaire and plan onsite interviews. 
• Conduct an onsite interview with the team. 
• Analyze the onsite interview and integrate with questionnaire. 
• Conduct follow-up to resolve unanswered questions. 
• Write a report and iterate with code team and sponsor.  
• Publish the report. 

The collaborators identified common themes [7]: 
• Verification and validation are very difficult in this environment. 
• A project’s primary language typically does not change over time. 
• The use of higher-level languages is low. 
• Developers prefer the flexibility of UNIX® command lines over integrated development 

environments (IDEs). 
• Externally developed software is a risk. 
• Performance competes with other important goals. 
• Agile methodologies are better accepted by scientific and engineering code developers 

than more traditional methodologies. 
• Multidisciplinary teams are important to a project’s success. 
• A project’s success or failure depends on keeping customers satisfied (in addition to 

sponsors). 

Baseline data collected by these studies provided valuable first-phase research data, much more 
than could be reported in published reports. In fact, the choice of what data should be analyzed 
and reported reflected a certain amount of preconception by participants that, in hindsight, 
overlooked important contextual data. This is not unusual in early-phase studies. 
An outcome from these studies was validation of the extended system model, which adds 
programmers, projects, organizations, and missions to the essential context of productivity. All 
of these appeared in themes mentioned in the research summary. 

3.3 The expertise hypothesis 
Although not reported in findings from the collaborative case studies listed above, the team 
noticed themes about potential bottlenecks emerging from interview data. For example, an HPC 
program manager commented on the difficulty of finding people with the right combination of 
skills to exploit existing machines. In addition, informal evidence showed that some 
supercomputer sites experience difficulty developing enough highly parallelized applications to 
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keep the machines busy in capability mode for substantial amounts of time. This is the mode of 
operation for which supercomputers are designed and which justifies their expense. 

These insights were consistent with early anecdotal evidence from DARPA and HPCS mission 
partners concerning an “expertise gap” that might lie at the heart of the HPC application crisis 
[52]. The team began looking more deeply into this question, among others, with additional first-
stage research: 

• Raw data collected during collaborative case studies was revisited and reinterpreted. 
• Additional rapid ethnographic assessments [60] were conducted, drawing on contextual 

observations and semi-structured interviewing methods at HPC workplaces during 
subsequent visits to mission partner sites. 

Patterns emerged that centered on expertise. In every study, at least one founding team member 
had been recruited for special knowledge of science; in each case the scientist was not an HPC 
programmer and may have had little or no experience using Fortran or C++. The scientist was 
required at the outset to undertake a significant effort outside the domain of science: either learn 
a programming language or build an effective working relationship with someone who already 
knew it. In either case, the educational process took considerable time before the individual/pair 
were judged to be productive. The role of project manager, typically assumed by another person, 
was to run interference by keeping the sponsor happy and obtaining computing resources. In this 
context, teams typically require four to six years to produce a working application. Success is 
commonly attributed to having the right mix of expertise. Teams succeeded only with the 
appropriate mix of knowledge in four broad areas of expertise:  

• Domain science 
• Numerical programming  
• Optimizing and scaling (parallelization) 
• Project management and resource provision 

Furthermore, the problems are so demanding that the mere presence of the necessary knowledge 
does not suffice: there must be overlap. In other words, every member of a successful team must 
have some expertise in more than one area and be skilled at communication and collaboration. 

It appeared that these patterns might explain why HPC expertise is so scarce. A hypothesis was 
developed postulating that overlapping, domain-specific expertise in at least four different areas 
is needed to exploit highly parallel machines. Very few people possess these skill sets, and as 
machines grow in size and complexity, the pool of experts narrows. 

Team approaches, as described, are felt to be the best strategy at the moment, but a variety of 
opinions were expressed about how development might become more productive. A common 
suggestion was that education for HPC programming should be improved. However, other data 
shows that it takes many years for programmers—even with the best education anybody could 
describe—to be considered fully productive. This is an example of conventional wisdom that, 
upon examination, could not be validated. 

The next research step was to craft a more focused study to test the hypothesis and to understand 
in more detail when and how the various areas of expertise were used; this took place in the 
research framework’s second stage, during which a variety of studies were undertaken to explore 
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several of the upper layers in the extended, interdisciplinary model of supercomputing (Figure 5 
on page 18). 

3.4 HPCS workflows 
A research outcome requested by HPCS program sponsors was the collaborative development of 
standard workflows, intended to identify tasks and procedures carried out by HPC programmers. 
HPC team members extracted an extensive list of activities from case study data (Section 3.2) 
and other sources, from which they proposed workflows describing the structure of standard 
tasks. The workflow in Figure 6 is one example; it is intended to characterize the development of 
large complex applications and highlight the many iterative paths [50]. 

 
Figure 6: Complex HPC workflow13 

 

The proposed workflows represent interesting and useful compilations of data from informant 
interviews, describing in considerable detail how they think about their work at the programming 

                                                
13 Figure reproduced with permission from “Large-Scale Computational Scientific and Engineering Code 
Development and Production Workflows” [50]. 
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and project layers of the extended system model. As working hypotheses for a research strategy, 
however, they are overspecified: that is, they contain more detail than can be validated at this 
early phase of research. Without additional data behind these workflow models, it is not possible 
to identify significant obstacles to productivity. Addressing the expertise hypothesis would take 
further second-stage research and require more details. 

3.5 Expertise, effort, and intellectual workflows 
An important hypothesis from first-phase research was that an important factor limiting HPC 
software development productivity is the level and range of expertise needed. A second-phase 
research goal was to validate the hypothesis concerning the different areas of expertise needed 
and seek significant bottlenecks whose removal might have a dramatic positive impact on 
productivity. 
In this phase, the strategy was to construct a workflow for HPC programming that, in contrast to 
HPCS workflows, would emphasize only generalized activities and the expertise needed to 
support them. This workflow could then be validated and estimates could be constructed, 
correlating the results with data from other sources. Candidate bottlenecks would appear as areas 
requiring considerable effort and/or expertise that could be seen as not essential to the scientific 
objective, but rather accidents of the technologies being used. 
The first step toward constructing an intellectual workflow was a set of observational studies 
using professional programmers. During these studies, a variety of data was collected, both 
quantitative (automated measurement of time spent interacting with programming tools) and 
qualitative (subject journaling and informal interviews). 

Hackystat, an in-process software engineering measurement and analysis tool [24], unobtrusively 
recorded hours of event traces from instrumented software development tools. A small excerpt, 
appearing in Table 3, exemplifies Hackystat data collected during a five-hour work session. It 
includes the session date, total time the programmer spent working with particular files and a 
detailed event log (first 10 minutes). Hackystat collects data from multiple streams on a server 
and can produce many kinds of activity reports and analyses spanning different time frames [23]. 
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Table 3: Examples of Hackystat detail 
Date Time in Each File Time /Activity Detail14 
16-Mar-2005 

 

 

 

 

 

 

chargee.f90 (0.4hrs) 
chargei.f90 (0.7hrs) 
field.f90 (0.1hrs) 
int_frac_parts (1.3hrs) 
module.f90 (0.4hrs) 
poisson.f90 (0.5hrs) 
pushe.f90 (0.2hrs) 
pushi.f90 (0.2hrs) 
setup.f90 (0.6hrs) 
smooth.f90 (0.2hrs) 
snapshot.f90 (0.1hrs) 
summation_notation.f9
0 (0.2hrs) 
transactional_memory_
example.f90 (0.2hrs) 

06:30 AM 2 06:30   ls  
06:30   history  
06:31   vid  
06:31   ls  
06:31   wc -l *.f90 
06:31   vim ~/ /diary 
06:32   jobs  
06:32   grep qtinv * 
06:32   vim chargei.f90 
06:34   vid chargei.f90 
06:35   jobs  
06:35   vim chargei.f90 
06:36   grep istep * 
06:36   vim chargei.f90 
06:37   grep jtion * 
06:37   grep kzion * 
06:38   vim pushi.f90 
06:39   jobs  
06:39   vid 06:40 AM 06:40   
ls  
06:40   jobs  
06:40   more main.f90  … 

 
Although Hackystat data is invaluable for its detail and objectivity, it is necessarily incomplete. 
For example, it does not account for time spent on the phone, walking down the hall to speak 
with a colleague, or just sitting and thinking. Figure 7 shows the total daily time (interactions 
with programming tools) captured by Hackystat for a professional HPC programmer over several 
weeks. It is understood in general software development that there are many important activities 
away from the edit-debug loop, and this is clearly the case for HPC programming, as well. 

                                                
14 Entries in the Time/Activity Detail column are commands typed by the user into a UNIX shell 
(command interpreter). For example, “ls” enumerates file names in a particular file system context, “wc –
l” counts the lines in file, and “vim” opens an editing session on a file. 
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Figure 7: Time per day spent interacting with programming tools 

 

Hackystat also cannot record why certain tools were used, for example whether using the 
telephone or a web browser concerns a requirements task, programming task, debugging, or 
whether the programmer is on task at all. The Hackystat data was complemented with qualitative 
data in near real-time: time-stamped journals written by the professional subjects who agreed to 
record personal narratives as they worked. Finally, additional qualitative data was collected 
during informal interviews. 

Manual coding of the qualitative data yielded important insights in how to interpret the 
Hackystat data. For example, it confirmed that a great deal of the time away from instrumented 
tools, during which Hackystat records no data, is in fact on task: most often it was spent trying to 
understand difficult aspects of the work. 

Furthermore, some of the time spent with programming tools was actually used for executing 
small experiments, such as downloading and playing with code imported from elsewhere. Such 
experiments sometimes produced insight or answered questions, but the code written during 
these episodes was often discarded. Such periods should be recorded as part of an understanding 
phase, rather than coding, a distinction that cannot be drawn from Hackystat data alone. 
By triangulating data from many sources, such as Hackystat telemetry data, journals, interviews, 
and contextual information from the earlier case studies, it was possible to refine the team’s 
understanding of the work and the significance of expertise in carrying it out. An alternate model 
of the workflow was created, as shown in Figure 8, which emphasized generalized activities at a 
granularity more in keeping with available data. This model is divided into stages of different 
kinds of activities that require different skill sets. These activities are defined less in terms of 
concrete actions, as were those in the HPCS workflows (Section 3.4), and more in terms of the 
goals and intellectual activities relevant to the team’s hypothesis about expertise from first-phase 
research. In practice, stages overlap and iterate, with only a broadly sequential relationship. 
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Figure 8: HPC development stages and skill sets 

 
Then, activities were weighted with other available data. This included fine-grained data, such as 
the Hackystat logs for individual programmers, as well as very coarse-grained data from other 
sources. 

For example, collaborative case studies (Section 3.2) solicited estimates of total time spent on 
specific activity sets: categories created by interviewers at the beginning of the study. These 
categories, along with the results, are summarized in Table 4. They do not align with the stages 
identified in the workflow shown above in Figure 8, since the study’s methodology allowed the 
categories (models of the phenomena) to emerge from first-stage data. This is a clear example of 
how initial assumptions about phenomena under study can determine what type of data is 
collected. Interpreting the relationship between case study data and the workflow required 
additional analysis that drew on other contextual data. 
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Table 4: Total time spent on key activity sets in case study projects 

Project 
Analysis and 
Design Implementation Testing Maintenance 

Falcon 25%–35% 25%–35% 15%–30% 10%–30% 
Hawk 25% 40% 20% 15% 
Condor 15% 55% 15% 15% 
Eagle 25% 55% 15% 15% 
Nene 35% 45% 15%   5% 

 

Yet another source of data appeared in the form of project staffing timelines. Table 5 summarizes 
this data for one of the collaborative case studies. Management data allowed development to be 
divided into two broad categories: the first leading to a working serial application with the 
desired scientific properties; the second leading to a rewritten version of the same code that is 
parallelized and tuned for performance. The resulting application contained approximately 
134,000 lines of executable code [25]. As before, other analysis and contextual information 
helped estimate the relationship between this data and the workflow stages. 
 

Table 5: HPC application project timeline and staffing 
 Understand, Formulate 

Experiment, Prototype 
Code for HPC Summary 

Timeline 4 years 3 years 7 years 
Staff FTE 2 people 3 people  
Effort 8 person-years 9 person-years 17 person-years 

 

Among the many insights derived from these studies came validation of the workflow’s structure 
(Figure 8). In addition, estimates of the amount of resources and expertise required in each stage 
were developed. 
Finally, in order to validate such findings from the case studies and developer instrumentation, 
closed-form surveys (typical of third-phase research) were conducted across larger samples of 
mission partner teams using a standardized closed-answer questionnaire. Statistical analysis of 
the data supported the team’s conclusions in this area [55]. 
The team concluded that the estimates were more than precise enough to classify groups of 
activities that consume the most resources. These are: 

• Developing correct scientific programs: activities associated with translating an 
understanding of the scientific problem that must be solved (for example, a predictive 
weather model) into working code, often starting with or including code from other 
projects; this corresponds to the first three phases in the workflow.  

• Code optimization and tuning: activities associated with refining a serial version of the 
code to ensure correctness and achieve desired levels of accuracy and efficiency; this 
corresponds to the fourth and fifth phases in the workflow. 
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• Code parallelization and optimization: activities associated with parallelizing the code 
and tuning to achieve high machine utilization and rapid execution; this corresponds to 
the final phase in the workflow. 

• Porting: where a solution exists, this comprises activities associated with translating the 
existing solution to a representation appropriate for a new platform. This activity was not 
an explicit part of the studies conducted at that time, although its importance and 
relationship to the activities became clearer as the studies progressed. 

The data show that these activities are expensive, not only in total amount of effort (Table 5), but 
also in expertise needed. Three distinct skill sets, in addition to project management, are 
required:  

• Mastery of the application domain’s science 
• Scientific application programming 
• Tuning or optimization of programs for efficient execution on a particular parallel 

platform 

Annotations in Figure 8 summarize the skills needed at each stage of the workflow. Because 
these skills are scarce, this was a significant constraint on some of the projects studied. Finally, 
overlapping skills and effective collaboration are essential, raising the bar even higher. 
From this, two interrelated bottlenecks to productivity in HPC application development were 
identified. These obstacles were of sufficient magnitude that, if addressed, they would contribute 
significantly to the HPCS productivity goal: 

• Programming effort. Of the four activity groups that consume the most resources, only 
the first (developing correct scientific programs) is essential to the scientific objectives. A 
significant reduction in the need for the others would dramatically increase productivity, 
not only lowering cost, but also reducing time to solution. 

• Expertise. In general, human resources are not fungible—that is, expertise in one area 
does not imply expertise in another—so people cannot be arbitrarily reallocated to critical 
tasks. Currently, there is a shortage of experts skilled in scientific application 
programming and tuning for parallel platforms. Sarkar et al postulate an expertise gap in 
these areas, exacerbated by the increasing complexity of both scientific applications and 
parallel platforms [52], a gap validated by the team’s data [55]. A reduction of skill level 
needed for any activity group would dramatically increase productivity, not only by 
lowering cost and reducing time to solution, but also by increasing the number of HPC 
applications that could be produced with the available pool of experts. 

3.6 Code libraries and expertise 
A historically important approach to improving programming productivity in HPC and general 
programming communities has been the use of libraries: collections of well-documented and 
tested code that can be reused without intimate knowledge of their construction. A good library 
can reduce both the amount of effort and expertise associated with application development, 
making library construction a possible strategy for a productivity breakthrough. 
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In fact, a number of informants in the HPC community offered this prospect as a possible 
solution to the productivity problem. This view is highly plausible: libraries play a very 
important role in the history of HPC programming and will clearly continue to do so. However, 
one of the team’s experiments casts doubt on this particular conventional wisdom. 

Two experienced programmers were instructed to study one of the proposed benchmark 
applications15 under development by other groups in the HPCS research community. Each 
subject, working separately, was asked to port that application from its “executable 
specification” written in MATLAB [37] into the Java™ programming language [17]. Little 
further direction was given. One subject had HPC programming experience but was new to Java; 
the other was familiar with Java but new to HPC programming. Data were collected using 
journaling, occasional observation, interviews, and code inspections. 
Among the findings was that neither subject adopted any of the readily available libraries, even 
though that would have shortened their tasks significantly. Each subject did spend time actively 
seeking suitable libraries. However, in every instance, the subject had too little confidence in the 
choice to risk commitment to something they understood so little as the task itself. Both ended 
up completing the application port without supporting libraries. 

This outcome suggests that libraries, although they can reduce the level of effort needed in many 
cases, require a high level of expertise to be selected with confidence, used appropriately, and 
chosen early enough in a development task to make a difference. The conclusion was reached 
that libraries can reduce effort and, to a lesser extent, the need for expertise, but not with 
sufficient magnitude to create a productivity breakthrough. 

3.7 High-programmability code 
Another historically important approach to improving programming productivity in both the 
HPC and general programming communities has been the development of better programming 
languages and techniques. The team investigated the prospects for a significant productivity 
breakthrough in this area, drawing on the study’s experiments and case study data. The 
conclusion was that significant breakthroughs are possible. 

The experiments were conducted by an experienced professional HPC programmer. In addition, 
data collected from the mission partners was revisited for insight into the same questions. The 
results strongly suggest that significant improvement is possible with existing technologies and 
that more improvement could be gained through investment in improving currently available 
technologies, as well as developing new programming languages designed with these issues in 
mind. 

3.7.1 NAS benchmark improvement 
One experiment explored the character of HPC applications. In particular, the team investigated 
how applications written using conventional HPC programming models might be transformed 
into a style that would lead to more productive programming. This might be possible through 
application of software engineering techniques well understood in the general programming 

                                                
15 Scalable Synthetic Compact Application #2 (Graph Theory) [4]. 
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community, but considered inappropriate by HPC programmers because of their cost in runtime 
performance. 

To gather baseline data, a programmer rewrote well-known HPC code examples, including the 
NASA Advanced Supercomputing (NAS) parallel benchmarks [41] and a few others, with clarity 
and compactness of the code as paramount goals. The code was stripped of explicit Message 
Passing Interface (MPI) data decomposition and distribution, manual optimizations were 
removed, and the more expressive (and abstract) array syntax of Fortran 90 was adopted in place 
of the customary FORTRAN 77 operations. The programmer endeavored to align the code with 
the published specification as much as possible.16 The modified code turned out to be as much as 
ten times smaller and vastly easier to read and understand. 

The code excerpt in Figure 9, taken from the benchmark suite rewritten in the experiment, shows 
how improved abstraction can make code dramatically easier to read and understand than its 
conventional counterpart. A significant and somewhat unexpected result was that with thoughtful 
programming, language features available in Fortran 90 could be exploited to produce code that 
was visibly more aligned with underlying mathematics and free of language artifacts that were 
irrelevant to the problem. 

 

                                                
16 No useful measures or breakdowns of time and effort were recorded in this experiment; the focus was 
on the plausibility of code written in this nonstandard fashion, not on the cost of reengineering legacy 
code. In fact, the original experimental design did not even require rewriting the benchmarks into an 
existing language. 
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This experiment also produced a dramatic reduction in code size across the benchmark suite and 
some other examples, summarized in Figure 10. Approximately half of the size reduction was 
due to removal of explicit data decomposition and distribution, a result consistent with other 
studies on the contribution made by MPI to code size [9] [31]. 

 

 
Figure 10: Benchmark code improvement: size reduction [35] 

 

call resid(u,v,r,n1,n2,n3,a,k) 
callnorm2u3(r,n1,n2,n3,rnm2,rnmu,nx(lt),ny(lt),nz(lt)) 
old2 = rnm2 
oldu = rnmu 
do  it=1,nit 
    call mg3P(u,v,r,a,c,n1,n2,n3,k) 
    call resid(u,v,r,n1,n2,n3,a,k) 
enddo 
call norm2u3(r,n1,n2,n3,rnm2,rnmu,nx(lt),ny(lt),nz(lt)) 

(a) Original FORTRAN 77 

Each of the four iterations consists of the following two steps, 
r = v - A u   (evaluate residual) 
u = u + Mk r (apply correction) 
... 
Start the clock before evaluating the residual for the first time,  ...  
Stop the clock after evaluating the norm of the final residual. 

(b) Specification 

do iter = 1, niter 
  r = v - A(u)    ! evaluate residual 
  u = u + M(r)    ! apply correction 
enddo 
r = v - A(u)    ! evaluate residual 
L2norm = sqrt(sum(r*r)/size(r)) 

(c) High-programmability style with Fortran 90 

Figure 9: Improved code excerpt from NAS MG benchmark (timed portion) 
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It is well-understood in the software engineering community that software’s lifetime 
maintenance cost is very strongly correlated to code size, suggesting that this approach to HPC 
programming can produce significant reduction in effort over an application’s life cycle. 

3.7.2 NAS BT I/O code modification 
In a closely related experiment, an experienced HPC programmer was asked to add new 
functionality to an established benchmark (NAS block-tridiagonal or BT I/O). This exercise was 
part of the original benchmark specification and was reflective of the maintenance phase of an 
application’s life cycle. The starting point was the version of the benchmark rewritten in the 
previous experiment. The task was to add checkpoint-style I/O and perform the experiment 
several times, each time using a different programming model. To summarize the results from 
four of these experiments:  

• High-programmability style with Fortran 90: Exploiting simplifications made during the 
previous experiment, the important application state was contained in a single array, for 
which high-level Fortran 90 array operations are available. 

• Serial FORTRAN 77: Standard FORTRAN I/O for reading and writing the array contents. 
• MPI – simple: Parallel I/O with naïve use of the MPI I/O API. 
• MPI – optimized: Parallel I/O optimized use of the MPI I/O API, for example using 

collective I/O operations. 

The task required implementing four operations: setup, write, read and close. Table 6 shows the 
amount of code required for the task using each of the four programming models. The total lines 
of code (LOC) required for each model gives a rough measure of the code’s complexity and 
expected lifetime maintenance cost for this segment. 

 
Table 6: NAS BT I/O code modification - lines of code 

Programming Model Setup Write Read Close Total LOC 
High programmability with F90 1 1 1 1 4 
Serial FORTRAN 77 7 19 20 1 47 
MPI - simple 25 22 23 1 71 
MPI - optimized 144 12 13 1 170 

 

Two representative examples of the added code appear in Figure 11: the write operation, as 
written in both the high-programmability style with Fortran 90 and naïve MPI programming 
models, respectively. A complete listing of code from this experiment appears in Appendix 17. 
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 Figure 11: NAS BT I/O code modification - code samples  

3.7.3 Performance penalty 
When simplifying code, the HPC community’s first concern is the cost in performance, including 
parallel speedup. This concern is justified, but substantial grounds for hope were found. 
First, it was acknowledged that experiences vary tremendously. In the experiments, however, 
programmers found the performance shortfall of high-programmability applications to be rather 
tolerable. Approximately 2x performance loss was representative for most of the cases 
considered, even when scaling up to 100 threads. These results were achieved using commercial, 
automatically parallelizing compilers and large-scale, shared-memory hardware [35]. 

Many opportunities were found for on-going product improvements. For example, compilers 
could produce better performance and automatic parallelization such as faster algorithms for 
implementing array syntax and more-aggressive exploitation of concurrency. Much compiler 
development, however, is driven by benchmarks that are written in traditional styles, which 
stunts the development of a high-programmability application ecosystem. 
On the hardware side, better support for high-end shared-memory systems and latency hiding 
would help software developers deliver high parallel performance for high-programmability 
applications, compilers, and middleware. 

 
 
write(20) u   ! write entire array, including boundary cells 

 

(a) Write: high-programmability style with Fortran 90 

 
 
do cio=1,ncells 
     do kio=0, cell_size(3,cio)-1 
         do jio=0, cell_size(2,cio)-1 
             iseek=5*(cell_low(1,cio) + 
$                   PROBLEM_SIZE*((cell_low(2,cio)+jio) + 
$                   PROBLEM_SIZE*((cell_low(3,cio)+kio) + 
$                   PROBLEM_SIZE*idump))) 
 
             count=5*cell_size(1,cio) 
 
             call MPI_File_write_at(fp, iseek, 
$                  u(1,0,jio,kio,cio), 
$                  count, MPI_DOUBLE_PRECISION, 
$                  mstatus, ierr) 
 
             if (ierr .ne. MPI_SUCCESS) then 
                 print *, 'Error writing to file' 
                 stop 
             endif 
         enddo 
     enddo 
 enddo 

 

(b) Write: MPI - simple  
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On one hand, HPC conventional wisdom was confirmed: programming to minimize software 
development costs can be at odds with programming to maximize hardware performance. On the 
other hand, the great potential to reduce code volumes (nominally, 10x) and relatively tolerable 
cost in performance (nominally, 2x) was surprising. 

3.7.4 Case study data 
Analysis of raw data from the case studies provided additional validation of the significance of 
programming language on productivity. An alternate style of HPC code development was 
observed in use at some sites, using MATLAB in an early phase of development instead of 
traditional choices like Fortran and C++. The MATLAB programming language, although 
closely related to Fortran, is characterized by extensive use of higher level (more abstract) library 
functions that are specialized for the kind of scientific and numerical programming common in 
HPC applications. Although MATLAB did not offer parallel scalability at the time of those 
studies (efforts to correct this are underway), and although it incurred a considerable 
performance penalty when compared to serial (nonparallel) Fortran, many projects chose 
MATLAB over the alternatives. 
Two case studies were selected for comparison: one used MATLAB in early phases and one 
used Fortran. In both cases, serial programs developed in early stages were eventually rewritten 
into C++ for parallel scalability. The resulting C++ programs were of roughly comparable size. 
Table 7 summarizes aggregate staffing costs for these two projects. The “Code for HPC” phase, 
in which serial codes were rewritten for parallel scalability, incurred similar costs in both 
examples, confirming the notion that the two projects were in some way comparable. On the 
other hand, the earlier phases “Understand, Formulate, Experiment, Prototype,” in which a serial 
program was eventually produced that captured an understanding of domain and numerical 
solution methods, differed dramatically in cost between the two projects. 
 

Table 7: Case study development costs, two examples 
Project Domain Understand, Formulate 

Experiment, Prototype 
Code for HPC Costs 

Hawk Fluid 
Dynamics 

Time: 4 years 
FTE: 2 people 
Total: 8 person-years 
Language: F90 

Time: 3 years 
FTE: 3 people 
Total: 9 person years 
Language: C++ 

Time-to-solution: 7 years 
Effort: 17 person years 

Eagle Signal 
Processing 

Time: 1 year 
FTE: 1 person 
Total: 1 person-year 
Language: MATLAB 

Time: 3 years 
FTE: 3 people 
Total: 9 person-years 
Language: C++ 

Time-to-solution: 4 years 
Effort: 10 person years 

 

The results from these studies of programming languages and technologies appeared in a 
requirement for ongoing improvement in programming languages and their use (Section 5.1.4), 
including the development of experimental new languages such as Sun’s Fortress [2] (Section 
12.4). 
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3.8 Software development tools 
Another possible opportunity for productivity breakthroughs, almost by definition, concerned 
tools used by HPC programmers, identified as the Development Environment layer in the system 
model (Figure 5 on Page 18). These investigations produced findings as dramatic as those 
reported for programming languages and techniques in the previous section. In this area, 
however, the findings were consistent with the community’s conventional wisdom, at least to the 
extent that tools were a problem [62]. 
HPC programmers use many tools in common with wider computing communities, such as 
editors and source code control systems.17 However, they do not use IDEs, which have 
contributed greatly to productivity among C++ and Java programmers. Conventional wisdom 
holds that HPC programming languages and practices are not well supported by IDEs; no data 
was found to contradict this opinion. 

The tools that matter, the ones called out for complaint by HPC programmers, are those designed 
for the unique requirements of highly parallel, scientific computing, such as specialized 
compilers and performance analyzers. Common complaints included: 

• Tools are hard to learn. 
• Tools do not scale (in problem size or parallelism). 
• Tools differ across platforms. 
• Tools are slow to appear on new platforms. 
• Tool support is inadequate. 
• Tools are hard to test. 
• Tool availability is uncertain. 
• Tools are often too expensive for universities. 
• Tools are seen as a risk to project success. 

The last complaint, typically heard from project managers, was the most startling: rather than 
being seen as a source of productivity and opportunity for productivity growth, specialized HPC 
tools were seen as a risk to project success. Given the essential role played by tools in any kind 
of productivity, this situation was identified by the team for further investigation as a potential 
bottleneck. 

The most significant fact is that programmers perceive a problem, implicitly believing that they 
would be more productive if they had better tools. A 1997 technical report promoting HPC 
software standards began:  

Although the number and variety of high-performance computing (HPC) 
systems has grown dramatically over the last decade, the quality of system 

                                                
17 Data taken from case studies reported in Section 3.2 suggest that the HPC community’s use of general-
purpose tools is several decades behind the wider programming community, evidently because those 
tools, although useful, do not address dominant problems confronting HPC programmers. 
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software and tools remains far below the expectations of the user 
community. [47] 

More evidence of this belief and its intensity comes from several attempts by HPC practitioners 
to do something about the problem, most notably the now-defunct Parallel Tools Consortium 
[46]. Bitterness about those failures lingers. 
As the team dug deeper, revisiting earlier data and conducting additional unstructured interviews, 
they discovered that a surprising amount of effort was dedicated to tool development, effort that 
did not directly address the scientific problems at hand. Frustration about this situation was 
observed at the project and laboratory management levels. The effort showed up in several ways: 

• Retooling. A major scientific project lost a year’s progress when the optimizing compiler 
became unavailable; the supplier, a very small software company, was purchased by a 
large corporation that removed the compiler from the market. Also, useful tools 
sometimes emerge out of university or other research environments but become 
unavailable when the developer graduates, migrates, or otherwise moves on. 

• Relearning. HPC tools tend to be complex: they address difficult problems, and the small 
market size dictates against large investment in usability. Furthermore, some important 
tools are supplied by platform vendors and are thus unique. Learning to use new tools 
imposes a considerable delay when a programmer moves to a different environment. 

• Migrating. One software support group estimated that it typically takes one year before a 
new supercomputer becomes fully productive. This is a significant loss of value for 
machines with useful lives of four years. Reasons cited included: new platforms often 
arrive without critical software such as tools, new software is very buggy, and it takes a 
long time for programmers to become productive with new tools. 

• Negotiating. Some support groups reported pushing tool vendors toward open source, 
even when they were willing to pay for support. The reason given was neither financial 
nor ideological, but rather indemnification against loss of critical tools. 

• Reinventing. Several HPC groups reported developing their own tools, often duplicating 
functionality available in commercial tools, and putting the results into open source. The 
choice of open source serves both as indemnification, as mentioned above, and a way to 
share with other HPC programmers (the publicly funded laboratories had been doing this 
for many years before the formal existence of open source). 

Analysis of these data began with two general observations. The first is that in HPC 
environments, tools used to develop an application become an essential part of the application 
for its lifetime. Although this is also somewhat true in general computing environments, it is 
especially notable in the HPC environment where the cost and complexity of specialized tools, 
combined with the small market size and poorly funded consumers, makes the business 
environment for them extremely fragile. Unfortunately, HPC applications can depend on those 
specialized tools for 30 or more years. The problem’s shape became clear: adopting a tool, 
including a programming language, at a project’s outset amounts to placing a bet that the tool 
will be available and effective on all the platforms where the application will be ported over its 
lifetime. In other words, tools become a risk. 
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A second general observation concerned the apparent intractability of the tool problem, noted 
especially by participants in failed attempts at solutions. Data was reviewed that described the 
contexts in which the evident stakeholders operated: hardware vendors, researchers, independent 
tool companies, customers, voluntary collaborators, and community heroes. The conclusion: 

None of these stakeholders have the primary mission, resources, or 
longevity to produce what’s needed: to create a complete productivity 
infrastructure for the HPC community. [62] 

This means that the real issue is not an individual’s or group’s productivity, but rather the HPC 
community’s productivity as a whole.  
Opinions from informants about underlying causes of this problem or prospects for a solution 
were diverse and unconvincing. The analysis, based on the model described in Section 2.2.2 and 
using social science methodologies, identified a serious misalignment of responsibilities that 
crossed many layers of the extended system model (Figure 5): programmers, projects, 
organizations, and missions. In particular, it was observed that the need for high-quality 
specialized tools, experienced most painfully at programmer and project levels, was not 
acknowledged, understood, or funded at the mission level, which is the only level where 
sufficient resources and longevity were available to create general solutions [62]. This finding 
was consistent with, and explained the need for, recommendation 4 from the 2003–2004 
National Research Council study on the future of supercomputing in the United States: 

The creation and long-term maintenance of the software that is key to 
supercomputing requires the support of those agencies that are 
responsible for supercomputing R&D. That software includes operating 
systems, libraries, compilers, software development and data analysis 
tools, application codes, and databases [18] [emphasis added]. 

The analysis further identified critical characteristics of the software in the productivity 
infrastructure: common toolset, functionally complete, multiplatform, specialized, widely 
available, enduring, open to research and financially viable [62]. With such an infrastructure, the 
entire community’s productivity would improve. Individuals and groups would be more 
productive with better tools, less time would be spent on tool-related efforts and the pool of 
capable HPC programmers would grow. 

Although a significant breakthrough in this area was beyond the reach of any single participant 
in the HPCS program, this analysis informed tool requirements (Section 5.1.5) and Sun’s tool 
strategy (Section 12). 

3.9 Administration 
Sun’s comprehensive view of productivity led to the addition of administration to the HPCS 
program’s list of productivity factors (performance, robustness, programmability, and 
portability). The administration category includes general activities typically associated with 
making a supercomputer useful for its intended purpose: operations, administration, 
maintenance, and provisioning (OAM&P). These activities play a significant role in 
supercomputer productivity. Administration costs contribute significantly to the cost of running a 
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supercomputer, and effective administration can make a significant impact on the value derived 
by scientists and programmers. 

A separate team, working in collaboration with the core productivity team, conducted research 
into productivity factors associated with administration. Details of those results are beyond the 
scope of this report, but the findings that made an impact on Hero’s design are summarized here. 
Analysis of data gathered by the administration team revealed bottlenecks in two general areas: 
availability and effective resource utilization. 
Availability refers to the percentage of time that a machine is in operation and able to process 
user jobs. Productivity bottlenecks in this area include: 

• Manually restarting failed jobs after hardware failures have been diagnosed and 
corrected. 

• Diagnosing faults, in particular locating failed hardware components in a timely way, a 
problem likely to become acute as systems grow to petascale. 

• Performing software upgrades, especially urgent upgrades needed for security purposes, 
another problem likely to have a growing impact on availability as system size increases. 

Effective resource utilization covers the degree to which available computing resources are 
effective in helping users achieve their goals. It has several aspects: 

• Computing jobs vary considerably in type of computing resources needed: memory, CPU 
cycles, disk I/O bandwidth, or disk space. It is difficult or impossible to configure these 
resources precisely, without waste, in most systems; it is even more difficult to 
characterize the needs of certain applications in advance or on the fly as they change 
computational phases. 

• In addition to resource availability, job scheduling is sensitive to administrative concerns 
such as priority and urgency; well-defined scheduling policies are usually in place but are 
often manipulated by users to secure better responsiveness, sometimes by exercising 
political influence. 

• A difficult scheduling issue, unique to supercomputers, is the cost (in resources and 
availability) of switching from capacity mode into capability modes. An effective job 
scheduler operating in capacity mode may have a large number of jobs running 
simultaneously, with a wide distribution of completion times. Switching into capability 
mode requires clearing out capacity jobs so that the entire machine can be dedicated to a 
single computation. The transition can produce long delays (when jobs are allowed to 
complete) or unhappy users (when jobs are terminated prematurely). 

• A general concern in resource utilization is the ability of administrators to gather and 
visualize enough information to make effective, sometimes urgent decisions. 

Requirements informed by this analysis appear in Section 5.4 and some solutions proposed for 
Hero are in Section 11.4. 



Productive Petascale Computing  Page 46 of 139 

3.10 Technology adoption 
The findings reported so far represent a snapshot of the status quo in the supercomputing milieu 
across the many levels depicted in Figure 5 (on Page 18). As suggested earlier, a change of the 
magnitude proposed by DARPA (10x more productive) demands a fundamental shift in the way 
things are done, a change that likely pervades every layer of the system, from semiconductors to 
mission sponsors. Hero succeeds only if the community can make the transition, a steep 
challenge for a community whose software development practices appear to evolve at a glacial 
pace. 

The team investigated how the HPC community adopts new technology, drawing on many 
sources. It found that the pace of adoption for software technologies is indeed glacial but not 
completely static: 

• The structure and pace of technology adoption follow naturally from characteristics of the 
existing HPC environment (Section 2.1). 

• A technology adoption process exists and is best described in terms of three stages: 
established, emerging, and future. 

• Organizations typically engage in all three stages simultaneously, differing mainly in 
distribution of effort and mission-driven time constraints. 

A closer look at these three stages added a different dimension to the understanding of 
productivity, and in particular to bottlenecks in the adoption of any new technologies, no matter 
how promising. In particular, it became clear that successful adoption of Hero requires support in 
all three stages (Section 5.1.4). 

3.10.1 Established technologies 
Widely established HPC technologies have ubiquitous and reliable supporting software 
infrastructure, drawing on programmers’ expertise in FORTRAN 77, Fortran 90/95, C++, and 
MPI-1 [38]. Most of these applications already exist and use established technologies that will 
require support for at least 30 years into the future. 
The window of opportunity for software technology adoption comes mainly at the beginning of 
new projects. The cost of rewriting existing code is so great that projects seldom adopt new 
technologies once underway. Support teams experiment with new technologies in noncritical 
ways, but adoption takes place only if a new technology fits well, which means it offers 
immediate and substantial benefit, requires little or no code change, avoids the cost of 
reverification and revalidating and is expected to be widely supported into the indefinite future 
without substantial additional cost or fear of disappearance. This latter concern, based on painful 
experience, is increasingly addressed through reliance on open source software, not out of 
ideology but as a form of indemnification against the kinds of disasters that cause tools to be 
seen as risks (Section 3.8) [62]. 

3.10.2 Emerging technologies 
The limitations of established technologies are well understood: thoughtful members of the 
community believe that a transition to more productive technologies is necessary. Many HPC 
sites participate actively in the development of new technologies. 
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Even so, the window of opportunity at the beginning of new projects is exceedingly narrow. 
Project managers adopt new technologies only if they have great familiarity and high confidence 
in the future outlook for cross-platform standardization and support. Examples of emerging 
technologies include the three partitioned global address space (PGAS) languages - Co-Array 
Fortran [42], Unified Parallel C (UPC) [61] and Titanium [19], as well as MATLAB [37] and 
scripting languages. Some of these technologies have been emerging for 10 years. MPI-2 [39] 
also falls in this category, but it is mainly a transitional technology leading to PGAS languages. 
Time lines for technology adoption vary considerably, ranging from sites with no intention of 
abandoning established technologies in the foreseeable future (“MPI forever” is a ubiquitous 
sentiment in some organizations) to those already heavily committed to emerging technologies 
(“can’t live without MATLAB or UPC”). 

3.10.3 Future technologies 
A few members of the HPC community engage in research beyond the emerging technologies. 
However, most see these as irrelevant or too far out. Current examples of future technologies 
include the high-productivity computing systems (HPCS) languages (Chapel [8], X10 [22] and 
Fortress [2], see Section 12.4), as well as parallel versions of MATLAB. Even these visionary 
languages are expected to interoperate with existing and emerging technologies; examples 
include parallel MATLAB with MATLAB and Fortress with Fortran. 

3.11 Summary of findings 
This section summarizes findings concerning significant bottlenecks that constrain HPC 
application development in environments studied during the DARPA program, in particular the 
mission partners. The framework within which the findings were interpreted is the workflow in 
Figure 8, expressed in terms of skills (expertise) and tasks (effort) across several stages. 

Some of the findings were general; some described conventional wisdom about productivity that 
turned out to be inaccurate. However, some identified bottlenecks so significant that their 
resolution could move the community toward the 10x DARPA goal. These findings shaped the 
goals and informed the requirements described in following sections. 

General findings about HPC in the environments studied are listed below: 
• HPC programming is extraordinarily expensive as measured in labor cost, computational 

resources, and time to solution. 
• HPC programming is on an evolutionary path that will not lead to productivity 

improvements; the reverse may actually be true. 
• The level of skill and domain understanding among HPC programmers is very high. 
• Project success depends on good management in combination with skills in several areas: 

the scientific problem domain, numerical programming, optimization and scaling, or 
optimizing for highly parallel execution. 

• Productive HPC programmers are in short supply. 
• Software development tools specialized for HPC are often perceived as risks to project 

success, rather than generators of productivity. 
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A number of possible strategies were investigated, some originating in the community’s 
conventional wisdom, that did not represent opportunities for breakthroughs of the magnitude 
needed for DARPA’s goals: 

• Better education is always appealing, but the imagined advantage was not supported by 
the data. HPC programming is essentially a craft that is learned on the job. Even with a 
PhD-level education in science or engineering, it requires years of work to become highly 
productive in the current HPC programming environment [52]. 

• Bigger teams are not practical as a general strategy. Necessary skills are in short supply. 
The work requires overlapping skills and collaboration, which depends on collaborative 
relationships that take time to build and sometimes fail. Finally, scientific programming 
is essentially exploratory, which means that concurrent development is especially fraught 
with difficulty [50]. 

• Better code libraries would make a difference, but this strategy for code reuse has 
already been pursued for years. Good libraries reduce programming effort significantly, 
but they do not dramatically reduce the need for scarce expertise (Section 3.6). 

• Early workflow stages are focused on exploration of both science and numerical methods 
in the problem’s domain. This exploration is the essential part of a project; there is no 
reason to expect a breakthrough here. 

On the other hand, the focus on an expertise hypothesis led to bottlenecks where breakthroughs 
big enough to contribute to DARPA’s goals are possible: 

• Early workflow stages are constrained by the need to produce working serial codes; this 
requires considerable effort as well as scarce expertise in numerical programming, 
obtained through collaboration and/or multi-skilled personnel. Experiences reported by 
programmers and teams using higher level, more-abstract languages during early stages 
suggest that considerable advantage can be gained (Section 3.7.4). In fact, the greatest 
hypothetical breakthrough could come from allowing scientists to carry out this 
exploration purely in terms of the science and numerical methods, not programming. 

• Later workflow stages consist mainly of tasks not directly related to the science 
objective: optimizing serial codes, rewriting codes for parallel execution, tuning the 
parallel codes for scalability, and eventually porting. Any of these tasks, and the 
enormous expertise and effort they require, could in principle be partially automated or 
eliminated to great advantage. 

• Programming languages and techniques can have a dramatic impact on software 
development productivity (Section 3.7). Thoughtful use of existing languages such as 
Fortran 90 can produce benefit only with sufficient investment in high-quality compilers 
and guarantees of future portability (a tools problem). However, the languages available 
at this time, including emerging PGAS languages, do not support parallelism at the scale 
needed for petascale systems. As with early-stage tasks, aligning the implementation 
language abstraction with the domain of science would produce benefits, including 
reduction of effort through automation of low-level and platform-dependent tasks. 

• Programmers are frustrated by inadequate support software, especially the specialized 
development tools critical to HPC programming. This failure cannot be corrected, despite 
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persistent effort, at project and lab levels, nor is a solution with the reach of any single 
platform vendor (Section 3.8). A significant breakthrough is possible in this area, but the 
relevant funding agencies apparently lack the knowledge, wisdom, or priorities to do so. 
However, platform vendors can steer tool efforts in more productive directions. 

• Nowhere is the lack of advanced tool support more noticeable than in the need for 
validation and verification; although increasingly important [49], typical approaches are 
informal. 

Selected findings reported by the administration team (Section 3.9) are summarized below: 

• The scale of Hero’s hardware makes it more difficult to keep the machine functioning 
correctly and highly available. 

• The scale of Hero’s processing power increases the challenge of understanding and 
managing job processing. 

• The opportunities for significant productivity breakthroughs in administration are, in 
many ways, similar to those for programming languages and tools. Effective tools 
operating at petascale must enable system administration to be highly automated, so staff 
can make policy decisions at a more abstract level than is now supported. 

Finally, a summary of cautions—possible obstacles to achieving the potential productivity 
breakthroughs identified by the team: 

• The change needed to achieve DARPA’s challenge of 10x productivity improvement is 
dramatic and pervasive. The biggest obstacle to change is the evolution of the 
community’s expectations and practices. 

• A successful supercomputer must simultaneously support programming technologies in 
all stages of the adoption model (established, emerging, and future), with special 
attention to incremental migration (Section 3.10). 

• A successful supercomputer must rely on programming technologies (languages, 
compilers, performance analyzers, and many others) whose ubiquity, future availability, 
and ongoing evolution are not in doubt. These must be guaranteed by a stakeholder with 
the appropriate mission, budget, and longevity to convince project management that tools 
are no longer risks, but keys to a more productive future. 
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4 Strategic development goals for Hero 
As summarized in the preceding section, the key to increasing HPC productivity is to reduce the 
programming effort and level of expertise required to achieve a given level of machine 
utilization. The project systematically applied the engineering principles of abstraction and 
automation to remove these bottlenecks. Although these principles have been extensively applied 
in other domains, they have been largely eschewed by HPC programmers in favor of hands-on 
control over performance. However, it is precisely the exercise of this low-level control that 
leads to programming effort and expertise bottlenecks. 

A long-term goal must be to relieve HPC programmers from considering platform dependent 
details. The team’s studies of programmability demonstrated that explicitly parallelizing and 
optimizing applications for a given machine architecture can cause program size to grow by a 
factor of ten over a formulation that abstracts from such details (Section 3.7). Also, it is known 
that total software development time and effort rise super-linearly with code size [5]. 
Ideally, scientists and programmers would develop application programs using syntax and 
semantics close to the application domain, without regard for underlying machine architecture. 
However, empirical data shows that productivity on existing platforms is constrained by both the 
effort and expertise required to adapt solutions to particular parallel platforms (this includes 
coding, tuning, parallelization, and optimization). Current HPC environments fall short in 
providing effective abstractions; in fact, common parallel programming models such as MPI [38] 
and OpenMP [44] break abstraction by forcing users to explicitly manage process parallelism 
and communication. Moreover, when programs must be written with additional mechanisms to 
compensate for machine failures (for example, explicit checkpointing), another important 
abstraction is broken. 

The Hero design strategy is to create a virtual machine that hides platform details such as 
instruction sets, number of processors, and memory architecture. The virtual machine is also 
designed to be reliable, even if underlying hardware is not. If machine components fail, 
programs must continue to run, though perhaps with reduced performance. The virtual machine 
is not provided by any single component architecture, but necessarily results from a synthesis of 
hardware and software capabilities. 

A second strategic platform goal is to automate many labor-intensive tasks such as 
parallelization and optimization. Creating effective abstraction without sacrificing efficiency 
(especially machine utilization) requires automating many programming and optimization tasks 
that are now done by hand. Where the scientist or programmer’s interface abstracts away the 
details of hardware management, a development platform must provide capabilities to effectively 
automate significant parts of code parallelization, memory management, fault recovery, and 
other platform-dependent details that are now managed explicitly. 
These high-level goals are necessarily strategic because it may not be possible to fully satisfy 
them with current technology. Creating effective domain-specific abstractions (for example, in 
domain-specific languages) is an open area of research. So too is the technology needed to 
automate mapping of domain-specific constructs and other abstractions onto massively parallel 
platforms with high utilization and performance. Even if these research issues can be addressed, 
the cost of incorporating solutions in any particular platform is still unknown. 
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Nonetheless, it is important to identify and characterize these strategic platform goals. 
Addressing productivity problems in the long term requires meeting these goals. Preserving this 
as a possibility in any future platform means that interim solutions should be waypoints on a path 
toward those goals. This ensures that requirements and design are given sufficient forethought, 
so they can be adapted to accommodate future platform changes that address productivity needs. 
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5 Productivity requirements for Hero 
From the results of productivity studies with HPC stakeholders, reported in Section 3, and the 
strategic goals summarized in the preceding section, requirements were derived that address 
productive use of human and computer resources. These requirements include the need to reduce 
the effort and level of expertise required to develop, run, maintain, or port HPC application 
software. They also include the need to keep a supercomputer as busy as possible with useful 
computation because an underused, idling, or unavailable supercomputer is an unproductive use 
of significant capital expenditure. 

5.1 Requirements for programmability and portability 
Studies of HPC developers establish that two tasks consuming large amounts of time and effort 
are (1) translating a computational concept into a correctly operating, parallel program and (2) 
porting the program to a different machine [7] [25] [26] [27] [28] [29] [48] [56]. Moreover, 
developers cannot reduce development time by adding people to a project. For the foreseeable 
future, there will be a shortage of personnel with requisite skills. For these reasons, many of the 
greatest opportunities for productivity improvements will come from improving programmability 
and portability. 

5.1.1 Shared memory model 
The application development environment must provide some form of shared memory model. 
There is strong evidence (including this project’s own experiments, Section 3.7) that message 
passing and other forms of explicit memory management in parallel applications require a 
significant amount of programming effort and expertise. For example, some scientists claim that 
writing MPI code is the most difficult aspect of their work [56]. These studies also showed that 
MPI increases code size by a factor of 1.5 to 2.0, with a corresponding downstream burden on 
maintenance. The general consensus is that a shared memory model (that is, one in which the 
programmer does not need to consider where in memory data is stored) is much simpler to 
program.  

The difficulty is in providing a shared memory abstraction while also achieving adequate 
memory latency and bandwidth. HPC programmers invest time and effort in memory 
management precisely because different memory allocation strategies result in significant 
performance differences across different hardware platforms. Programmers will release direct 
control over memory management only when the system can provide a shared memory model 
that does not significantly retard execution efficiency. This requires advances in hardware 
implementation of parallel platforms and memory management provided by system software.  
Progress in these areas suggests this will be possible in new machines. For example, the Hero 
system was architected to provide memory bandwidth and latency sufficient to keep up with the 
processors for large address spaces, relative to the amount of data accessed by typical parallel 
computations. While such approaches do not remove all memory latency issues, they can reduce 
them below the threshold of concern for a large class of applications and enable effective support 
for legacy MPI applications. 
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5.1.2 Problem-oriented abstraction 
Adequately addressing the expertise gap [55] requires programming environments that support 
problem-oriented abstraction. Substantial effort throughout the development cycle is expended to 
manage the interface between application science and parallel programming. Since there is a 
community-wide shortage of developers who are conversant in both disciplines [52], this 
problem is expected to persist. In fact, the increasing complexity of new applications, coupled 
with the increasing complexity of supercomputer platforms, suggests that the expertise gap will 
only widen unless steps are taken to manage it. 

Since handoff and translation problems are inherent in the division of labor between scientists 
and programmers (Section 3.3), truly addressing this problem will require reducing the level of 
programming expertise needed—ideally to a point where domain experts can develop most of 
their own applications. Supercomputer platforms need to provide programming environments 
that support more problem-oriented abstractions, so developers can think and write applications 
in terms of the problem domain (rather than the parallel computing domain). 

While providing specific problem-oriented abstractions (such as programming constructs for 
weather simulation) is beyond the scope of any hardware vendor, such systems should provide 
core capabilities (extensible libraries, languages, performance analysis and prediction, interactive 
graphical visualization, automatic checkpointing, and so on) on which problem-oriented 
abstraction layers can be constructed. 

Verification and validation of scientific codes has also been identified as a significant bottleneck 
[49]. If programs are written at a higher level of abstraction, expressed in terms closer to the 
problem’s mathematics and structure, verification and validation is easier than when dealing with 
low-level implementation details, as the experiment in code rewriting showed (Figure 9). 

5.1.3 Portability layer 
Significant development effort is expended in porting applications to new machines. Because 
HPC applications can outlive multiple machine generations, they are often ported several times. 
To the extent that the application has been optimized to its current platform, that optimization 
must be undone, and the application must be optimized on the new machine. 
This problem can be addressed by providing a portability layer: an abstract machine layer that 
can run on different hardware, provide a uniform target for translators, and automate efficient 
mapping to the underlying machine. For example, the Hero approach is to provide a portable, 
intermediate abstract machine layer (as is done for the Java programming language [17]) 
optimized across a family of similar (single address space) hardware implementations. 

5.1.4 Programming language support 
Stakeholder perceptions differ on the requirements for programming language support. In some 
cases, there is a strong desire for platforms that support established languages, in particular 
Fortran and C++ with MPI. However, others feel that existing languages do not offer the 
capabilities to address language-related productivity issues (for example, the capability to 
provide adequate abstraction or automation). These stakeholders (including DARPA) are 
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currently supporting several efforts to develop new parallel programming languages, but it is 
clear that a range of language support is needed in the foreseeable future (Section 3.10). 

Specific requirements for established languages (Section 3.10.1) include backward compatibility 
as well as execution efficiency for applications written with MPI, OpenMP and MPI I/O. For the 
Hero architecture, this requirement was interpreted to mean that legacy applications written for 
distributed memory machines had to run with acceptable efficiency when mapped to Hero’s 
memory architecture. 
Emerging languages such as the PGAS family (Section 3.10.2) also had to be supported; these 
are not yet in widespread use, but consensus in much of the community suggests that this is the 
near-term trend. Sites differ in pace and timing when adopting these new languages, and 
effective interoperation with the older languages is understood to be a significant requirement for 
incremental adoption. 

Finally, there are efforts to develop new parallel programming languages that provide both a 
more effective parallel programming paradigm and more efficient implementation on new 
hardware architectures (Section 3.10.3). Each of the HPCS Phase II vendors has been developing 
some form of new programming language. Sun’s experimental language Fortress [2] (Section 
12.4) is strongly focused on abstraction and on language extensions tuned for particular kinds of 
applications. 

Some studies also suggest that significant productivity gains can be accomplished with better use 
of existing programming languages. This includes experimental rewriting of a standard 
benchmark into a high-programmability style using Fortran 90, which produced code that ran 
about half as fast using currently available language support (Section 3.7). It is likely that much 
of this loss could be regained through improved optimization techniques. Further, the effects on 
human productivity (for example, in maintenance or porting) may outweigh losses in runtime 
efficiency. None of this can be achieved, however, without increased investment in compilers 
and guarantees that high quality support will be widely available well into the future (a tools 
issue, discussed in the next section). 

5.1.5 HPC tools and libraries 
Although much of the development of HPC-specific tools and libraries may be conducted by 
third parties, their availability is a critical requirement if new supercomputer platforms are to 
have a major and continuing impact on productivity. The availability of good HPC tools has 
unfortunately been trending in the opposite direction, creating a perception that tools represent a 
significant project risk (Section 3.8). 

Tools that address key development areas include software configuration management tools, 
build tools, parallel debuggers, program monitors, profilers, and tools for detecting deadlocks 
and race conditions. Data visualizers are also needed to help interpret the output, and program 
state visualizers are important debugging aids.  

Despite the potential of tools, current developers are often unwilling to embrace them, because 
they are unsure whether the tools will be available on future platforms. In some cases, this also 
results in tools being developed and maintained in-house at considerable effort and expense.  
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An assessment of stakeholders’ tool needs suggests that a long-term tool strategy is required, 
based on collaborative development or open source, to ensure that tools can be ported to different 
machines even if the original developers have lost interest. A more complete analysis and set of 
recommendations appear elsewhere [62].  

Ongoing improvement in libraries supporting parallel programming constructs, as well as 
specific application domains, is also needed. Libraries have been demonstrated to save 
significant amounts of development time in HPC domains by providing reusable solutions for 
recurring problems. The development environment should provide libraries for common parallel 
vector and matrix operations, parallel versions of common data structures, as well as flexible 
visualizations of these data structures. It should also provide capabilities supporting user 
extensions that enable development of organized classes of domain specific objects. This can be 
viewed as a steppingstone toward a more problem-oriented development environment expressed 
at a more suitable level of abstraction. 

5.1.6 Continuous monitoring, measurement, and improvement 
Developers should be able to continue identifying and removing productivity bottlenecks after 
system delivery. Productivity bottlenecks act as a set of constraints on software development. A 
new platform that satisfies these requirements will remove many of the constraints discussed in 
this paper. However, the theory of constraints tells us that removing one process constraint will 
likely expose other constraints that were previously masked [15] (much as fixing the weakest 
link in a chain exposes the next weakest link). Continuous productivity improvement requires 
identifying and addressing new constraints as they become manifest. 

New platforms should support such continuous monitoring and improvement by offering support 
for collecting data on how individuals and teams of programmers spend their time on real 
development efforts. The studies mentioned in this paper (Section 3.5), as well as others in the 
HPCS program, used the monitoring tool Hackystat [24] to gather real-time data on developer 
activities. This work has shown that such tools can unobtrusively collect data needed to profile 
development activities by monitoring computer activities associated with programming, testing, 
and debugging. Such data can provide the basis for suggesting further productivity 
improvements such as better tools or programming methods. Additional research in this area is 
needed to understand exactly what data should be collected and how to facilitate its 
interpretation. 

5.2 Requirements for performance 
Performance is the raison d’être for supercomputers. Further, ever-increasing performance 
allows ever-larger problems to be solved in the available time. Performance can even be an all-
or-nothing criterion. For example, the results of a weather simulation are useless if its predictions 
arrive after the fact. Performance can thus influence productivity in two ways: first, by achieving 
a computational result quickly. If the result is achieved too late because of hardware or software 
that is too slow, the value of this result may be greatly reduced, perhaps to zero.  

The second contribution to productivity comes from making scientists more productive. 
Assuming that a parallel program has been developed and is being used in production mode, if 
scientists get their results back more quickly, they spend less time waiting or doing less-
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productive work. It is well established that interruptions in work are disruptive; a faster computer 
can return results sooner and shorten these disruptions, so work on the next problem can start 
sooner. Thus, a faster computer produces results of higher value and helps scientists use their 
own time more productively, as well.  

For supercomputer applications, performance is much more than just a simple measure of 
microprocessor floating point operations per second (FLOPS). DARPA has defined a set of HPC 
challenge benchmarks [36] that include measurements of FLOPS, memory bandwidth, bisection 
bandwidth, and remote memory access latency. In addition, with the increase in the cost of 
energy, measurements such as FLOPS per Watt have become very important in evaluating 
operations cost. 

5.3 Requirements for robustness 
Due to the large number of hardware components in a petascale system, the likelihood of a 
component failure is high. For example, reliability models for the Hero hardware, which consists 
largely of commodity components, predict the occurrence of several hardware faults per day. 
Since HPC applications typically run for hours, days, or even longer, multiple component 
failures during execution must be anticipated. Clearly, shutting down the entire system, repairing 
it, and restarting the interrupted applications causes unacceptably low productivity.  
Next-generation systems must be designed to continue computation in the face of component 
failure, a goal expressed as: 

Compute Correctly Through Failure 
First, in the event of component failures, unaffected components should continue to provide 
service, even as total system capacity and performance diminishes. Repair or replacement of 
failed components should be possible while the rest of the machine continues operating. 
Applications using the failed components should continue unabated. Second, applications using 
the failed component should not lose results computed prior to the failure. Many failures can be 
made transparent to the application by using redundancy or restarting failed processes. To protect 
against failures that cannot be made transparent, it must be possible to collect and store frequent 
checkpoints for applications at runtime, then restore an application to a safe state and resume 
computing, without compromising program execution time or overall system throughput. 

For example, Hero is designed to provide an automatic checkpointing facility, allowing 
applications to be rolled back and restarted at a checkpoint. It also provides facilities for 
monitoring the health of all components and proactively migrating computations away from 
components that are in danger of failing. The benefits of such approaches are discussed 
elsewhere [63] [65].  
By providing automated checkpointing, migration, and continued operation through failures, 
developers can be relieved from programming their own robustness features. The resulting codes 
will be smaller and less expensive to maintain. 

5.4 Requirements for administration 
Scheduling jobs of varying sizes and priorities on a supercomputer is complex, and it is 
becoming even more challenging as machines such as Hero grow to petascale (Section 3.9). This 
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task should be automated as far as possible because automation reduces administration costs and 
errors. Resource monitors and visualization should provide administrators, scientists, and 
programmers with up-to-date status and usage information at several levels of detail. 
Applications also should not waste resources. Many parallel applications exhibit a point of 
diminishing returns, where adding processors causes poor machine utilization or even an 
increase in computation time. In that case, it is more productive to allocate fewer resources and 
allow applications to run concurrently. This implies that the system should provide automated 
monitors for detecting and mitigating resource waste. It must also be possible to change the job 
mix quickly (for example, between large numbers of smaller jobs and fewer large jobs) as a 
response to project demands and priorities. Minimizing delay and idle resources while changing 
the job mix requires that the system checkpoint and suspend jobs quickly, and restart them 
without significant loss of progress. 

Efficient use of a supercomputer system also means that the machine must be configurable to the 
intended workload. Underutilized components are unproductive. The number of processors, 
memory per processor, number of I/O nodes, and number of various types of storage devices 
should be configurable on an as-needed basis. This is because data analysis and computation-
intensive applications differ in their processing, communication, and storage requirements. 
In particular, to support many different types of workloads at national laboratories and other 
supercomputer centers, the machine must be able to transition seamlessly between capability and 
capacity modes (Sections 2.3 and 3.9). Current supercomputers often run only in one or the 
other; for example, the newest, most capable machine often runs in capability mode while older 
machines run mainly in capacity mode. For a system the size of Hero, few applications are 
computationally intense enough to consume all its resources, so the machine must be able to 
satisfy other computing demands when the few large applications are not running. 
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6 From requirements to design 
The requirements set forth in the previous section call for an innovative system architecture and 
design. The challenge to innovate requires the synergy that results from combining individuals 
with expertise in multiple areas on every functional design team and having key design leaders 
participate in all design phases. This meant that the consequences of each design decision were 
evaluated from many perspectives and that the full benefit could be extracted from any particular 
innovation. For example, by including the lead designer for reliability, availability, and 
serviceability (RAS) in all key hardware and software decisions, and by enabling direct 
participation of hardware and software leads in the RAS team, RAS considerations permeated 
the entire design at every level. This ensured that the design requirements were met and key RAS 
features such as hardware virtualization could be supported in the most efficient possible way, 
using both hardware and software design components.  

Likewise, the direct participation of all design leaders for both hardware and system software 
features enabled the creation of a flexible and powerful global shared address space 
programming model, using both hardware and software components, while avoiding the 
excessive costs associated with global hardware cache coherence. The flexibility to implement 
any required feature in the most efficient manner by combining the best mechanisms from 
hardware and software technologies was crucial to the production of a revolutionary new design, 
not just a simple evolution of current designs. 

Section 6.1 describes the design process that allowed the team to break through organizational 
barriers and avoid obstacles to innovation. Section 6.2 illustrates the results of the process at a 
high level—how productivity goals were supported by innovations at all layers of the system, the 
subject of sections 8-12. Section 6.3 contains a detailed mapping of productivity goals to design 
requirements and of design requirements to enabling innovations. These mappings demonstrate 
the flow of productivity goals into the design. Later in this document, Section 13 returns to the 
theme of interdisciplinary design and provides a specific example of how the design process 
enabled the tradeoffs needed to create a feasible design in the presence of seemingly intractable 
requirements.  

6.1 System Exploration Model 
Sun developed a collaborative design approach for the HPCS Phase II program: the System 
Exploration Model. In contrast to other design approaches, which assemble existing or favored 
component architectures, the System Exploration Model started with the requirements and did 
not constrain the system architecture required to fulfill those requirements in any way. A cross-
functional team of component technology experts worked together to understand what is possible 
and used simulation and analysis tools to evaluate the possibilities. The output of the process was 
an optimized system design, jointly proposed and agreed to by the component technology 
experts. Sun's System Exploration Model is fundamentally a concurrent process, in contrast to 
sequential models where separately optimized components are merged into system-level designs 
and then packaged into products. 
The central management construct in the System Exploration Model is the system architecture 
team, which provides a central unifying role during the system exploration process. This team is 
cross-functional; it includes thought leaders from component teams and becomes an 
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interdisciplinary group of experts, addressing global objectives by stepping through learning 
stages that include:  

• Prior art investigation 
• Workload characterization 
• Assessment of key market and technology limiters and opportunities 
• Technology trend analysis 
• Component and system modeling 
• Design space exploration 
• Generation of straw man alternatives 
• Generation of system reference designs 
• Component, subsystem, and system-level prototyping 

The system exploration process is summarized in Figure 12. Component area experts begin by 
explaining the technology trends in their areas, rather than specific components or design 
attributes. For example, a microprocessor architect describes technology trends, such as 
multithreading, that allow microprocessors to continue on the trend prescribed by Moore’s law, 
rather than describing the operating frequency and floating-point pipeline of current 
microprocessors.  
Technology trends feed a sequence of progressively more detailed system models that permit the 
system architecture team to identify areas that may require innovation beyond current technology 
trends. For example, interconnect trends did not provide the internode bandwidth required to 
meet performance goals, so the innovations described in Section 9 were necessary. Models are 
often just simple component performance models, which would not have allowed the satisfaction 
of a wide range of productivity goals. Therefore, the HPCS Phase II program measurement and 
analysis frameworks were developed for end-to-end performance, productivity, robustness, and 
security projection, as well as system-level cost, power, thermal, and mechanical models. The 
modeling approach was hierarchical, based on detailed component-simulation models, which 
were then factored into system-level analytic and simulation models. These analyses became 
progressively more accurate as prototyping and implementation progressed. 

In addition to system models, a detailed understanding of the workload characteristics is 
essential. A system optimized for a particular workload such as random traffic may perform 
poorly under other workloads that have hot spots. The DARPA challenge benchmarks [36] 
provided a set of workloads that stressed the system design in multiple dimensions, including 
peak processor performance, memory access latency, and bisection bandwidth. The Hero system 
architecture had to satisfy the requirements of all workloads, rather than just being optimized for 
a single characteristic. 
With such a challenging set of requirements, the system architecture exploration shown in the 
center of Figure 12 was an iterative process, informed by workload simulation of proposed 
system alternatives. Component teams could make proposals, but the interplay of proposals with 
other components had to be evaluated in the context of an entire system to create an optimal 
system design, rather than a set of optimal component designs. For example, the memory 
subsystem had to satisfy system checkpoint requirements as well as microprocessor requirements 
for memory bandwidth and latency. This concept is somewhat foreign to product teams 



Productive Petascale Computing  Page 60 of 139 

accustomed to spending most of their time in detailed design rather than iterative system 
architecture, and management had to work hard to ensure that the architecture team remained 
focused on system optimization. 
  

 
Figure 12: System Exploration Model 

 

System-level metrics visibility keeps everything in perspective. The system exploration process 
identifies the system-level contribution of each component, the critical factors and risks, and the 
system metrics comparison of alternative system designs. It thus enables the derivation of 
optimal reference designs for each market segment. These quantified reference designs allow the 
product definition team to assess and define appropriate products as the program progresses. 
Ongoing visibility into system and component architectures provides program management with 
the basis for decision-making and flexibility in adjusting areas of focus and investment. 
The System Exploration Model (Figure 12) represents a pivot point in Hero’s design and this 
report. The productivity research and analysis described in Sections 2-5 produces design 
requirements, and the innovative designs described in Sections 7-13 satisfy those requirements. 
In practice, of course, the division between requirements and design is not nearly so cut and 
dried. There were many iterations and compromises that are not adequately described in this 
document, but whose existence is understood by anyone who has worked on a complex project. 
However, throughout the entire iterative process, the emphasis was on creating an entire system 
that achieved a 10x productivity improvement. 

6.2 Enabling innovations 
The Hero design rests firmly upon five technical foundations, described in more detail in 
following sections. At the processor level, extensive chip multithreading (CMT) provided an 
efficient way to keep all hardware resources busy performing useful computation (Section 8). At 
the interconnect level (Section 9), a combination of proximity communication and silicon 
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photonics enabled key hardware and software breakthroughs by providing new levels of 
bandwidth at low latency. Also at the interconnect level, the hardware and software supporting 
the global address space enabled not only simpler programming models and new system 
software and virtualization strategies, but also delivered simpler hardware designs for nodes 
(Section 10). At the system software level, creating the abstraction of a single, partially coherent, 
shared memory machine using virtualization allowed simpler OS designs while opening new 
opportunities for high-level programming (Section 11). Finally, at the tools and languages levels, 
technologies in the Fortress language [2], together with associated parallel tools, permitted full 
and efficient utilization of all the other innovations by users of the system (Section 12). 
These technical innovations were the result of the process outlined in the previous section. The 
linkage from overarching productivity goals to design requirements to technical innovations is 
shown in Figure 13 with details of the links in Section 6.3. These linkages provide traceability 
from the design back to the original productivity goals.  
The left side of Figure 13 shows the linkage from productivity goals to design requirements, 
while the right side shows the linkage from design requirements to enabling innovations in the 
design. For example, the design requirement labeled “Compute Correctly Through Failure” is a 
paramount requirement for satisfying the robustness goal, but it also serves the following goals: 

• Programmability: Eliminating the need for defensive programming improves application 
development productivity. 

• Performance: Minimizing fault tolerance overhead and recovery time from failures 
significantly increases how much time is spent performing useful computation. 

• Administration: Automating failure handling and recovery improves administrative 
productivity and reliability. 

As shown on the right side of Figure 13, several design innovations enable Compute Correctly 
Through Failure. The virtualization-based software stack allows reallocation of compute 
resources for efficient recovery; the global address space allows reallocation of memory 
resources for efficient recovery; and proximity communication and silicon photonics provide 
sufficient communication bandwidth to support system checkpointing effectively.  
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Figure 13: Innovations that enable achievement of productivity goals 

 

6.3 Requirements traceability 
Figure 13 illustrates high-level linkages among productivity goals, design requirements, and 
enabling innovations. The following tables explain the rationale for these linkages, which are key 
to requirements traceability. Table 8 traces productivity goals to design requirements, and Table 
9 traces design requirements to enabling innovations. Although the traceability is described as 
flowing from goals to innovations, the process to develop that flow is highly iterative as 
described in Section 6.1. 
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Table 8: Productivity goals to design requirements traceability 

Productivity 
Goals 

Design Requirements Rationale 

Programmability New Programming Models Address key bottlenecks around expertise and effort with programming 
models that are more abstract (less non-domain knowledge needed) and 
embody more automation (reducing level of effort). 

Programmability Standard Programming 
Models 

There is a huge legacy of HPC codes and skills, and the community will 
evolve slowly; there must be excellent support for legacy technologies as 
well as transitional steps toward new programming models such as 
OpenMP and PGAS. 

Programmability Compute Correctly Through 
Failure 

Guarding against system failure imposes a burden on application 
development in the expertise and effort needed to implement application 
checkpointing; computing correctly through failure eliminates this need in 
legacy and new programming models. 

Portability New Programming Models The abstraction of new programming models by definition excludes 
machine-specific programming requirements. 

Portability Standard Programming 
Models 

Even within legacy programming models, a more abstract execution 
model reduces the need for machine-specific optimizations. 

Performance Dramatic Improvements in 
Bandwidth, FLOP/Watt, 
Latency (Raw Performance) 

Internode bandwidth and latency are the key performance in current 
distributed memory machines. Energy costs are becoming a primary limit 
to scalability of the largest machines. 

Performance Compute Correctly Through 
Failure (Effective 
Performance) 

The amount of time performing useful computation is significantly 
increased by integrating system fault tolerance, minimizing both the 
overhead costs and recovery time from failures. 

Performance Efficient Mode Switching 
(Effective Performance) 

System checkpointing and hardware resource virtualization make it 
possible for jobs to be suspended, relocated, and reprovisioned 
efficiently; this makes possible much more efficient job management and 
increases total system throughput. 

Robustness Dramatic Improvements in 
Bandwidth, FLOP/Watt, 
Latency 

Bandwidth and latency improvements, combined with hardware 
virtualization technologies, enable dynamic node sparing for hardware 
fault recovery. 

Robustness Compute Correctly Through 
Failure 

Robustness in the face of inevitable hardware failure has become a 
critical productivity problem for massive high-end systems; the ability to 
compute correctly and continuously through failure is a requirement for 
increasing the scale of these systems. 

Administration Compute Correctly Through 
Failure 

Automated failure handling and recovery reduces the human cost of 
administration. 

Administration Efficient Mode Switching Allows more flexibility in machine configuration and job management. 
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Table 9: Design requirements to enabling innovations traceability 

Design Requirements Enabling 
Innovations 

Roles 

New Programming Models HPC Languages; 
Portable Tools 

A new generation of languages embodies the strategies of 
abstraction and automation. 

New Programming Models Virtualization-Based 
Software Stack 

Virtualization provides a higher level of abstraction at the 
system software layer, making it much easier to build 
modern programming languages and tools. 

New Programming Models Global Address 
Space 

A single address space is a key part of system 
virtualization, supporting simplified memory abstraction. 

Standard Programming 
Models 

HPC Languages; 
Portable Tools 

Portable tools make it possible to support legacy codes, 
skills, and practices. 

Standard Programming 
Models 

Virtualization-Based 
Software Stack 

Virtualization enables support of OpenMP on multi-node 
systems and efficient support of PGAS languages. 

Standard Programming 
Models 

Global Address 
Space 

Even within legacy programming models, a more abstract 
execution model reduces the need for machine-specific 
optimizations 

Dramatic Improvements in 
Bandwidth, FLOP/Watt, 
Latency 

Proximity; Silicon 
Photonics 

Proximity and silicon photonics address key hardware 
bottlenecks in providing high-bandwidth, low-latency, 
energy-efficient internode communication. 

Dramatic Improvements in 
Bandwidth, FLOP/Watt, 
Latency 

Massive 
Multithreading 

Reduces the intra-node cost of computation in energy 
efficiency and latency. 

Compute Correctly Through 
Failure 

Virtualization-based 
Software Stack 

Allows reallocation of compute resources for efficient 
recovery. 

Compute Correctly Through 
Failure 

Global Address 
Space 

Allows reallocation of memory resources for efficient 
recovery. 

Compute Correctly Through 
Failure 

Proximity; Silicon 
Photonics 

Provides the communication bandwidth needed to 
effectively support system checkpointing. 

Efficient Mode Switching  Virtualization-Based 
Software Stack 

Allows reallocation of compute resources for efficient 
suspension and resumption. 

Efficient Mode Switching  Global Address 
Space 

Allows reallocation of memory resources for efficient 
suspension and resumption. 
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7 Design overview 
This section provides an overview of the innovative design that was developed, based on the 
productivity research described in previous sections. Sections 8–12 provide more detail of 
hardware and software inventions that enable the design. Specifically: 

• Section 8: Massive chip multithreading, a processor architecture that provides the ability 
to saturate many on-chip cores, even in the presence of irregular high-latency memory 
operations. 

• Section 9: Proximity communication and silicon photonics, technical innovations that 
provide the massive system bandwidth required to support the productivity of a global 
shared-memory model. 

• Section 10: A system coherence model that supports legacy applications and enables new 
highly productive languages and programming models. 

• Section 11: System software that provides a robust computing environment across 
thousands of nodes. 

• Section 12: Development support for highly productive programming and Fortress, a new 
programming language that provides a higher level of abstraction more closely 
resembling scientific and mathematical expression. 

7.1 Hardware overview 
Figure 14 depicts a high-level view of the Hero system hardware architecture, which consists of 
a large number of interconnected compute and I/O nodes supporting a global shared-memory 
address space. Memory within each compute nodes is fully coherent; global shared memory with 
managed coherence (Section 10.1) is supported across all nodes in the system. Both the compute 
and I/O nodes are based on standard commercial components augmented with optical 
interconnect and special hardware, a scalability interface (SIF) that assists with remote memory 
operations. Compute nodes have extra memory bandwidth for higher compute performance, 
while I/O nodes provide external storage and network connectivity, including an interface to 
specialized analysis functions such as visualization.  
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Figure 14: Hero hardware architecture 

 

Compute and I/O nodes are interconnected by a multi-stage switching fabric, for example, a 
three-stage Clos network of Hero Switches.18 The edge switches and central switches shown in 
Figure 14 are both physically Hero Switches; they differ only in topology. An example path in a 
three-stage network is shown in Figure 15. A packet originating in the source node for a global 
load/store operation uses the SIF to manage remote memory access. The example packet 
traverses four optical links and three switches on its way to the destination node. Silicon 
photonics connects nodes and switches optically; proximity communication connects elements 
within the switch. These innovative technologies provide the low latency, high-bandwidth switch 
fabric necessary for high-performance remote memory operations among thousands of nodes.  

                                                
18 Clos networks [11] are a popular HPC switching fabric due to advantages such as high bisection 
bandwidth, low switching delays, high reliability, low-complexity deadlock avoidance, and efficient 
routing. The number of stages is the maximum number of switches that must be traversed to get from one 
node to any other node. Two nodes connected to the same switch need only traverse that switch, but a 
typical path among nodes shown in Figure 15 traverses two edge switches and a central switch. For a 
larger network, another set of edge switches could be inserted before the central switches to make a five-
stage network. Technically, the network described in this report is a folded Clos or fat-tree network [34], 
because the same edge switches are used for traffic entering and exiting the central switch. 
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Figure 15: Path from source to destination node 

 

7.2 Software overview 
Hero’s software architecture, shown in Figure 16, supports highly productive programming by 
leveraging global shared memory over a high-bandwidth, low-latency switch fabric, and by 
introducing a new multi-node execution environment, called a SuperZone, which is built on 
extensions to the OpenSolaris™ Zones technologies. Acting in concert, Hero hardware and 
software enable a new execution model that provides a global address space and coherence 
features that free programmers from low-level memory management. By eliminating the 
necessity to manage memory locality, Hero provides revolutionary improvements in 
programmability and supports all existing and emerging HPC programming models, including 
OpenMP, Autoparallelized Fortran, PGAS, and MPI. Additional productivity gains are provided 
by extensive fault tolerance features added throughout the Hero software stack and the advanced 
administrative model supported by the Administrative Environment. These features combine 
with the Hero File System to support the massive external bandwidth provided by Hero 
hardware. 

 



Productive Petascale Computing  Page 68 of 139 

 
Figure 16: Hero software architecture 

 

The Hero software stack comprises the following, described in more detail in later sections: 
• Fault Tolerant Hypervisor: Based on the current Sun4v hypervisor [45] with extensions 

for scaling and fault tolerance. It provides full device virtualization and support for 
automated checkpoint and restart. 

• Hero Solaris™: Based on the current OpenSolaris operating system [45] with extensions 
for multi-node semantics, multi-node execution, predictive self-healing, and automated 
checkpoint and restart. It supports multiple file systems (Hero File System, Lustre, ZFS, 
NFS, and pNFS) and a broad array of networking options. 

• Hero File System: An object-based parallel file system, implementing the T10 OSD 
standard with NFS and pNFS support. 

• Tools and Libraries: C, C++, Fortran, and UPC compilers, augmented with debugging 
and performance monitoring tools and supported by libraries tailored to the global 
shared-memory environment of Hero. 

• Administrative Environment: Based on the current OpenSolaris management suite, 
extended to handle global shared memory, larger node counts and Hero Switch fabric. 

For application development Sun created Fortress: a revolutionary new HPC programming 
language with a higher level of programming abstraction. Fortress is designed for high-
performance computing with high programmability, supporting new features such as 
transactions, specification of locality, implicit parallel computation, and the ability to integrate 
third-party libraries into Fortress as if they were designed integrally with the language. 
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8 Compute node: massive chip multithreading (CMT) 
Based on chip multithreading (CMT), described in Section 8.1, Hero’s compute node 
architecture keeps hardware resources busy even in the presence of stalls, high-latency memory 
operations, and other processing irregularities. It provides dramatic performance improvements 
for HPC codes with long cross-system memory latencies. Even more important for productivity, 
it frees programmers from hand-tuning applications to the machine’s exact processor and 
memory architecture each time the application ports to a new platform. As described in Section 
8.2, the compute node also provides hardware infrastructure for the global address space and 
execution model (Section 10). Finally, as described in Section 8.3, the use of commercial 
components minimizes cost. 

8.1 Chip multithreading (CMT) 
By the beginning of the HPCS program, it had become clear that improvements in 
microprocessor clock frequency, longer pipelines, and larger cache sizes would be insufficient 
for microprocessor performance to keep up with Moore’s Law. As a result, a new design 
approach that took advantage of increasing silicon transistor density to place multiple microcores 
on a single die was developed. This industry—chip multiprocessor (CMP) microprocessors—is 
made possible by semiconductor process improvements, and allows microprocessor performance 
to keep up with Moore’s Law. 
At the outset of the Phase II program Sun led the industry in massive chip multithreading (CMT) 
microprocessors. CMT microprocessors combine CMP microprocessors with multithreading 
(MT), in which hardware resources are dynamically allocated to whatever threads need them at 
the time. During the program, Sun shipped the Niagara processor with eight cores supporting 
four threads each. Sun has maintained the industry lead since the end of Phase II and is now 
shipping the Niagara 2 processor with eight cores supporting eight threads each [33]. 
Hero is based on a variant of the Rock microprocessor [32] [58], which implements a third-
generation checkpoint-based CMT architecture. In this context, a checkpoint is a copy of the full 
microprocessor register file. A checkpoint is stored when the executing thread encounters an 
unresolved data dependency due to a previous cache miss. Since the state of execution is 
preserved, the thread can continue to speculatively “execute ahead” by committing instructions 
in a different register file copy. In execute-ahead mode, the processor continues beyond 
operations with unknown operands (which are waiting for memory). It speculatively retires the 
instructions that can be executed, while it defers instructions with unknown operands for 
execution later. When memory operations return, the processor goes back and executes the 
deferred instructions. When all deferred instructions have been executed successfully, the 
speculative portion is committed and execution proceeds normally until a new execute-ahead 
opportunity arises. If the speculation fails, execution is rolled back to the state preserved in the 
checkpoint. Execution then resumes, now with many of the outstanding memory operands 
present in caches. If the store queue fills up during speculation, the Rock processor still 
continues the speculative execution to launch as many memory operations (prefetches) as 
possible, but without the ability to commit these speculative instructions later. This 
noncommitting speculation is referred to as scout execution. It is even possible to do 
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simultaneous scout execution, in which execution proceeds simultaneously at two different 
points of the same thread [58]. 

Rock’s checkpoint-based architecture allowed the development of an innovative out-of-order 
instruction pipeline. Instructions are not only executed out of order but also retired out of order. 
This resolves issues associated with standard out-of-order pipelines where instructions must be 
reordered prior to retirement, which requires complex content-addressable memories (CAMs) to 
hold out-of-order instructions. Because it is not limited by the size and power requirements for 
complex CAM structures, Rock’s pipeline enables much deeper speculation than conventional 
out-of-order architectures: thousands of instructions rather than 32 or 64, which improves single 
thread performance and CMT throughput. 

Another innovation in Rock’s checkpoint-based architecture is transactional memory [59]: the 
ability to perform a set of instructions as a single atomic unit. This means that either all 
instructions in the set (transaction) complete fully, or none of them complete. New instructions 
such as checkpoint and commit, as well as enhanced micro-architecture structures, enable the 
execution of transactions without expensive synchronization instructions. The checkpointing 
mechanism is used to checkpoint a thread’s state prior to starting a transaction and to restore it in 
case of transaction failure.  
Transactional memory enables multiple threads to simultaneously enter a critical code section 
and allows programmers to replace complex locks in applications with transactions. This greatly 
enhances parallel programming productivity because the system handles all low-level 
concurrency control issues and synchronizes concurrent access to shared memory by multiple 
threads. 

The use of CMT microprocessors strongly influenced the system design, because massive 
multithreading: 

• Uses all processor resources efficiently by providing multiple threads that can be freely 
interchanged on a core, enabling excellent performance/chip and performance/watt. 

• Improves performance by dedicating threads to events such as asynchronous system 
events and direct message handling, which avoids costly context switches and interrupt 
handling. 

• Provides concurrency control, making sure that the right operations are taking place at the 
right time, without interference or disruption, at high performance. 

• Provides the infrastructure that permits a novel software technique to minimize 
application jitter (Section 11.3.4). 

• Tolerates irregular application behavior (Section 8.1.1). 
• Allows the offloading of maintenance and I/O functions (Section 8.1.2) because the 

microprocessor hardware can be fully utilized running applications. 

8.1.1 Irregular application behavior 
To maximize performance, microprocessor hardware must be kept fully utilized. Stalls for 
context switches, cache misses, disk access, and the like significantly decrease performance. To 
keep the microprocessor busy when a stall occurs, CMT threads can be used both for speculation 
on a stalled task (Section 8.1) and for different tasks. Massive multithreading makes it possible 
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to saturate pipelines even in the presence of irregular, high-latency memory operations. It 
therefore tolerates irregular application behavior and long cross-system memory latencies, 
meaning that programmers do not have to structure their programs to avoid these issues, which 
has a potentially profound effect on application programmer productivity. 

Highly optimized HPC applications are carefully tuned to squeeze the last usable FLOP out of a 
pipeline, regularize memory access patterns, maximize locality, and carefully structure 
communication patterns to avoid latency. This improves application performance on current 
supercomputers optimized for peak FLOPS, but the programming required for manual tuning can 
grow the code’s size by an order of magnitude [35]. Massive multithreading supports efficient 
execution of applications with irregular behavior, enabling higher productivity programming by 
eliminating manual code optimization. It also minimizes the effort required in the software stack 
to mitigate irregular application behavior and the tools required to help programmers regularize 
application behavior. 

8.1.2 Offloading maintenance and I/O functions 
Maintenance and I/O processing could have been performed by compute microprocessors, 
perhaps using separate threads. However, massive multithreading provides a way to fully utilize 
CPU hardware for application processing, so maintenance and I/O functions were offloaded to 
other hardware. Application processing is performed on compute nodes, I/O functions are 
performed on I/O nodes and special application-specific integrated circuits (ASICs), and service 
processors are incorporated into nodes to perform maintenance functions. 
An I/O node (see Figure 17) similar to planned commercial products performs I/O functions such 
as disk and network access. The use of commercial components reduces costs and provides a 
familiar development platform for I/O software developers. Remote memory access is performed 
by an ASIC specifically designed for that purpose (Section 8.2). 
A dedicated service processor using an out-of-band network performs maintenance processing. 
The service processor network provides diagnostics and control to help the system detect, isolate, 
and recover from failures. A petascale system contains so much hardware and software that 
failures are frequent. This creates requirements for checkpointing and virtualization of hardware 
resources to permit the system to compute correctly through failures. 

8.2 Hardware support for global shared memory 
At the beginning of the HPCS Phase II program, memory coherence was thought to be an HPC 
application requirement, necessary to improve productivity by making the system easier to 
program. Although providing hardware memory coherence is relatively simple within a single 
compute node, hardware memory coherence across a large system demands great hardware 
complexity. Also, the non-uniform memory access (NUMA)19 nature of petascale computing 
would have made it perform very poorly. Due to the infeasibility of a purely hardware 
implementation, the team revisited the requirements; in particular, the actual coherence 

                                                
19 Memory accesses on a petascale computer are inherently non-uniform because messages from remote 
memory take a relatively long transit time, even at the speed of light. 
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requirements of applications (Sections 10.1 and 13). The team’s research demonstrated that 
global coherence is necessary only at certain points in a typical HPC application; for example, at 
the start and end of parallel regions. This central requirement became a fundamental basis of the 
design: global load/store semantics supported by a shared global address space with coherence 
barriers, known as global shared memory with managed coherence. 
The hardware requirements for global shared memory with managed coherence are much simpler 
than for full coherence. The Scalability Interface (SIF) ASIC was created to manage remote 
memory access and provide global addressability (Section 10.1). The SIF performs the function 
of a memory controller for all physical memory addresses that are not resident on the node where 
the CPU issuing the memory request resides. It forwards remote memory requests—including 
remote prefetch and remote compare and swap operations—that are performed by the node’s 
processors or I/O devices. This requires translation of the address to a global memory address 
and creation of a transaction that is forwarded to the appropriate compute node. The SIF also 
services memory and I/O requests from remote processors. SIF functionality helps hide the 
latency penalty of random access fetches across the system interconnect and saturates the system 
interconnect bandwidth with random loads and stores. 

The SIF handles remote memory requests by using internal address tables to forward each 
request to the node where the actual physical memory resides (see Section 10.2.1). The presence 
of these additional translation tables also permits the system to virtualize memory space by using 
virtual node IDs. This permits the system to remap physical memory from one node to another, 
after an application restart, for example. This mechanism enables graceful handling of node 
failures and enhances the system configuration flexibility. These features all contribute to the 
primary goal of improving productivity by supporting the requirements described in Section 5. 
Active messages are an asynchronous mechanism in which a message is delivered to a remote 
node and then executed on a thread in the receiving node. Active messages were implemented 
for Hero because they allow instructions to be sent to the node with the data for execution, 
reducing data transfer and improving performance. They also improve MPI message 
performance by implementing a hardware mailbox facility. The SIF provides a user space 
interface to hardware that generates, receives, and locally dispatches active messages. It also 
implements support for buffering active messages, end-to-end flow control, and dispatch 
management to the processor.  

8.3 Compute and I/O nodes 
To minimize development and production cost, Hero’s compute and I/O nodes are designed for 
similarity with Sun’s standard commercial products. Hero components, such as microprocessors 
and memory controllers, are the latest-generation components used in commercial products. The 
mechanical, power, and cooling infrastructure is essentially identical to standard commercial 
nodes. 

A high-level diagram of Hero’s compute and I/O nodes appears in Figure 17. Each node is a 
standard cache-coherent symmetric multiprocessing (SMP) machine with a CMT 
microprocessor, shared L3 cache, memory controllers, and dual inline memory modules 
(DIMMs). Each node contains a SIF (Section 8.2) and a fiber optic interface for internode 
communication (Section 9). In order to accommodate local and remote memory bandwidth 
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requirements for HPC applications, the Hero compute node has more memory controllers and 
internode communication capability than the I/O node. The Hero I/O node includes PCI Express 
(PCIe) network connectivity for the storage, network, and visualization interfaces shown in 
Figure 14 (on Page 66). The service processor is not shown in either node. 

 

 
Figure 17: Hero nodes 
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9 Interconnect: proximity communication and silicon photonics 
For the many HPC applications that can consume the compute resources of an entire petascale 
system (the so-called capability codes), fast node-to-node access is critical for performance, both 
for memory access and computational results. Even massively threaded microprocessors 
eventually stall when remote access latencies are large. Without fast remote access, programmers 
revert to hand-tuning applications to minimize remote communication (Section 3.10.1). The 
productivity benefits of a globally shared memory architecture are lost if remote access is so 
slow that it requires programmers to expend significant effort maximizing locality. 

Fast remote access requires a high-bandwidth, low-latency interconnect among compute nodes. 
Low latency frees programmers from using programming models that are based on latency 
hiding. High bandwidth effectively contributes to low latency by reducing contention for 
network resources; it also provides the infrastructure necessary for system checkpoints, essential 
components of the RAS strategy. 
As the HPCS Phase II program began, Sun was developing two new technologies for fast 
interconnect: proximity communication (Section 9.1) and wavelength division multiplexing 
(WDM) silicon photonics (Section 9.2). Both provide enormous bandwidth and low latency, 
which enable higher productivity execution and programming models (Section 10). Proximity 
communication and WDM silicon photonics are naturally complementary technologies: 
proximity communication provides high-bandwidth, on-module connectivity, and WDM silicon 
photonics provides high-bandwidth, off-module connectivity. Together, they make it possible to 
build very large systems with uniformly high bandwidth.  

9.1 Proximity communication 
Proximity communication [14] [21] uses capacitive coupling to enable low latency, high-
bandwidth communication between pairs of neighboring chips. As shown in Figure 18, metal 
plates on separate chips create a chip-to-chip capacitor when the chips are placed in close, face-
to-face proximity. The sending side drives one capacitor plate, inducing a small voltage swing on 
the receiving capacitor plate; there is no physical connection between the two chips. Because 

 

 

Figure 18: Proximity communication using capacitive coupling 

Proximity communication sends signals 
between a face-up chip and a face-down 
chip using capacitive coupling. The  
face- up chips are payload chips, such as 
microprocessors, switches, and caches. In 
order to communication between two 
payload chips, a face-down chip, called a 
bridge, is placed on top of neighboring 
payload chips. A signal sent by a payload 
chip to a neighboring payload chip crosses 
two proximity hops and a bridge chip. 
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capacitive coupling enables high signal density, proximity communication offers much higher 
performance and consumes significantly less power and area when compared to traditional 
interconnects that depend on direct physical contact, such as bonding wires, printed circuit board 
traces, and solder balls.  

The advantages of this technology arise because the plates on each chip are small: 20 to 30 
microns on a side. By comparison, typical C4 solder balls are spaced at least 200 microns apart. 
This density advantage dramatically increases chip-to-chip bandwidth for the same area and 
significantly reduces power cost compared to current serialized I/O technology. Alternately, the 
bandwidth advantage can be used to transmit data that is wide, parallel, and running at the chip's 
frequency, rather than narrow, serial, and overclocked. This avoids the latency, complexity, area, 
and power overhead of using serializer/deserializer (SerDes) circuits to communicate between 
chips, while providing the same or greater bandwidth than SerDes-based I/O at far lower area, 
energy, and cost. 
Proximity communication presents a number of packaging challenges that were the subject of 
extensive investigation during the HPCS Phase II program. To send data reliably at full 
bandwidth, plates on the face-to-face proximity connections must be aligned in the X-, Y- and Z-
dimensions within one-third of a plate’s length [21], for example, eight microns for a 24x24-
micron plate. They must remain within these bounds in the face of thermal expansion and 
vibration. The primary mechanical alignment mechanism is the use of sapphire microballs that 
rest in pyramidal pits on the bridge and payload chips, as shown in Figure 19. The pits are 
lithographically etched into the silicon during wafer manufacturing, and the balls are placed in 
the pits during assembly. The ball and pit mechanism, along with other mechanical innovations 
[57] [67], keeps chip alignment well within required tolerances. The inset in Figure 19 is a 
scanning electron micrograph picture of a sapphire microball embedded in an etched silicon pit 
fabricated by Sun. 
 

 
Figure 19: Balls and pits used as a proximity communication alignment mechanism 
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9.2 WDM silicon photonics 
The essential internode interconnect technology is wavelength division multiplex (WDM) silicon 
photonics, which performs transmission, amplification, detection, modulation, and switching of 
multiple wavelengths (colors) of light on silicon. Each wavelength can carry a separate signal, 
allowing multiple data packets to traverse a single fiber concurrently and resulting in much 
higher bandwidth than current technology. The use of silicon photonics and fiber optic cables 
offers significant cost, latency, bandwidth, range, and reliability advantages over copper. 
Several basic building blocks are needed to build optical transceiver cores into a CMOS die. 
These include fiber coupling interfaces, waveguides, wavelength multiplex/demultiplexers, 
optical modulators, and optical detectors. Luxtera, an HPCS Phase II partner, had these 
components and demonstrated the prototype shown in Figure 20 at the 2005 Supercomputing 
Conference (SC|05). This chip has fibers directly attached to the center and can communicate via 
proximity communication to other chips. Silicon photonics packaging is described in [51] and 
[67]. 

 

 
Figure 20: Packaged silicon photonics chip 

 

9.3 Hero Switch 
The Hero Switch incorporates both proximity communication and silicon photonics. It minimizes 
remote access latency, maximizes bisection bandwidth, and allows configurations to scale to 
thousands of nodes. It consists of a two-dimensional grid of switch chips, like the 4x4 grid 
shown in Figure 21, interconnected via proximity communication. Each switch port is 
implemented using a fiber optic pair connected to the switch chip using silicon photonics. Up to 
eight fiber optic pairs can attach to a switch chip. Each switch chip contains a small low-latency, 
cut-through routing switch that steers packets to one of its neighboring switch chips or to one of 
the optical fiber pairs connected to the switch chip. A data packet enters the switch via fiber 
optics and is routed along a minimum distance path in the proximity communication grid of 
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switch chips to its fiber optic exit to another switch or node (see Figure 15). WDM silicon 
photonics provides high-bandwidth, low-latency communication among switches and nodes. 
Proximity communication provides high-bandwidth, low-latency communication within the 
switch.  

 

 
Figure 21: Example of a Hero Switch 

 

As described in the next section, a high port count switch is advantageous to minimize the 
number of switch hops that a packet must traverse, which minimizes remote access latency. By 
using a large grid of switch chips, the Hero Switch can be almost arbitrarily large. For the 4x4 
grid shown in Figure 21, the Hero Switch can support 64 ports with four fiber pairs (4x4 chips x 
four ports per chip) or 128 ports with eight fiber optic pairs. With a larger 8x8 grid and eight 
fiber optic pairs, the Hero Switch can accommodate 512 ports. The port speed is 8x Quad Data 
Rate (QDR), which is 8-GB/s in and 8-GB/s out, matching the fiber optic link’s data rate. Thus, a 
512-port Hero Switch has a total bandwidth of 4-TB/s in and 4-TB/s out. An on-chip 
interconnect technology such as SerDes cannot provide the bandwidth and latency necessary for 
such a switch, but proximity communication can. With a few nanoseconds per hop [57], the 
worst-case latency for proximity communication hops through even an 8x8 switch is a few tens 
of nanoseconds.  
A lightweight routing protocol is needed to take advantage of the low latency switch fabric 
afforded by proximity communication and silicon photonics. The switch fabric protocol defines 
the switch entrance and exit ports selected to route packets from a source compute node to a 
destination compute node (called source-routing because the ports are preselected at the source 
node). In the three-stage Clos network (Section 7.1), it defines three sets of entrance/exit fibers: 
two for the edge switches connecting to nodes and one for a central switch that connects edge 
switches (Figure 15). The switch fabric protocol minimizes latencies and always selects a 
shortest path through the switch fabric.  



Productive Petascale Computing  Page 78 of 139 

The internal switch provides low-latency, high-bandwidth wormhole routing20 throughout the 
grid of switch chips. It is deadlock-free by design and provides multiple paths to route around 
failures. When a packet arrives via a particular fiber in a Hero Switch, it is routed through the 
switch as follows:  

• The exit fiber is retrieved from the packet destination source routing;  
• The path from entrance fiber to exit fiber through the switch chip grid is determined by 

table lookup (the table can be updated to reflect topology changes such as partial failures 
and can contain multiple paths for fault tolerance and load balancing); 

• A header with the proximity communication path through the switch chip grid is 
prepended to the packet (the header is a series of directions through the grid, for example: 
go east, then south, then east, then exit on fiber); 

• The packet immediately begins wormhole routing to the exit fiber using the first 
switching command in the prepended packet header (meaning that it selects a proximity 
communication or fiber optic exit from the switch chip); and 

• Upon reaching the switch chip containing the exit fiber, the packet header is stripped, and 
the packet is sent out the exit fiber. 

9.4 System configurations 
By using proximity communication as a chip-to-chip interconnect, a very high port-count Hero 
Switch can be built without a significant latency penalty. A large switch can connect to many 
compute nodes and other switches, allowing the switch fabric topology to be flattened, which 
minimizes the number of switching stages. For example, a 3-stage Clos network could connect 
thousands of compute nodes using this switch. This is important because each switching stage 
adds latency and increases switch hardware cost. Minimizing the number of switch hops also 
provides a smooth latency curve in the switch fabric to minimize the impact of locality.  
A high-level system architecture using the switch fabric is shown in Figure 22 (same as Figure 
14, repeated for convenience). Local compute nodes can communicate through a single edge 
switch, while central switches provide access to the entire system.  

This hardware architecture can efficiently scale to thousands of nodes for many different 
network topologies. Table 10 lists the number of nodes that can be supported for different size 
switches in various Clos network configurations. Nodes with multiple ports can also be 
connected to multiple networks (sometimes called rails); for example a node with four ports 
could be connected to four different Clos networks, increasing the maximum number of nodes 
and switches shown in Table 10. Traversing a switch adds latency, so reducing the number of 
switching stages also reduces remote memory access latency. The Hero Switch is a single-stage 
switch that can scale to 512 or more ports, far in excess of port counts for current single-stage 
switches. 

                                                
20 Wormhole routing/switching is an efficient flow control mechanism that allows the packet’s head to 
leave a switch chip before the tail arrives. Thus, a packet could be spread across a number of switch chips 
in the grid, creating a worm-like image.  
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Figure 22: Hero system architecture 

 
 

 
Table 10: System configuration examples using a Clos network 

Ports per 
Switch 

Number of 
Stages 

Number of 
Switches 

Maximum Number of 
Node Ports 

Maximum Number of Nodes 
with 4 Ports Each 

16 1 1 16 4 
16 3 24 128 32 
16 5 320 1,024 256 
64 1 1 64 16 
64 3 96 2,048 512 
64 5 5,120 65,536 16,384 
512 1 1 512 128 
512 3 768 131,072 32,768 

 



Productive Petascale Computing  Page 80 of 139 

10 Execution model 
An execution model describes how hardware architecture directly supports one or more 
programming models. It describes what the machine sees, as opposed to what the programmer 
writes. As shown in Figure 23, the execution model is at the boundary between hardware and 
system software layers, while the programming model is at the boundary between system 
software and development environment layers. 

 

 
Figure 23: Execution versus programming models  

 
The Hero execution model (Section 10.1) does not support all programming models, but it does 
provide a global address space and other key features that support established HPC programming 
models (Section 3.10.1) and enable newer, higher productivity programming models (Sections 
3.10.2 and 3.10.3). The execution model, global shared memory with managed coherence, is 
sufficiently abstract that it can be ported across platforms and sufficiently powerful to virtualize 
hardware resources. It supports a simplified memory abstraction that frees programmers from 
managing memory locality. The Hero execution model provides an execution environment that is 
familiar, meaning that it looks, feels, and acts as though Hero is a single SMP machine. In 
essence, it is an abstraction that allows programmers to concentrate on algorithms instead of 
resource management. 

10.1 Global shared memory with managed coherence 
Memory coherence was initially thought to be an HPC application requirement. However, a 
purely hardware implementation of memory coherence across a system of this size is not feasible 
(Sections 8.2 and 13.1). This led the team to revisit the requirements and, in particular, to 
analyze in more detail the actual memory requirements of applications expected to run on Hero. 
Typical HPC applications alternate between serial and parallel regions, with the vast majority of 
time and computation spent in parallel regions in order to take advantage of a supercomputer’s 
huge compute resources. The global memory state must be universally visible and consistent 
when transitioning from parallel to serial region and vice versa, but not in between. Also, the 
transitions are expected to be infrequent. The team considered how Hero’s hardware architecture 
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could support these transitions, while also satisfying the requirement for a shared memory model 
(Section 5.1.1). 

Three features of Hero’s hardware architecture determine what execution models it can support 
directly: 

• Global addressability: Every CPU can directly address and access any memory location 
in the system using standard load/store instructions. This access is made efficient by a 
high-bandwidth, low-latency interconnect. Its efficiency depends upon the virtual 
memory support described in Section 10.2.  

• Remote load/store semantics have specific ordering properties. Individual nodes impose 
total store ordering (TSO) on all stores from local processors to local memory. In 
addition, all remote stores are seen in program order by the issuing thread. However, 
other threads may see stores out of program order.  

• Cache coherence: Each node locally supports full hardware cache coherence. There is no 
support for full hardware cache coherence at the multi-node system level, which would 
be complex and expensive. However, there is combined hardware and software support 
that enforces full coherence at designated program points using a special barrier 
mechanism, a coherence fence, which is explored more fully in Section 10.3. Hero’s 
ability to enforce full coherence at designated points in a program is called managed 
coherence. 

The extent to which these three features satisfy the requirements of four common parallel 
programming models is summarized in Table 11. The programming models are cache-coherent 
shared-memory, OpenMP [44], partitioned global address space (PGAS) [19] [42] [61] and 
message passing interface (MPI) [38]. The cache-coherent shared-memory programming model 
is not a formal standard, but is used to represent the commonly understood set of properties 
provided by most SMP machines and relied upon for correct program execution using a form of 
threaded concurrency. The other three programming models are current HPC programming 
models. 

Table 11: Programming model requirements 

 Cache-Coherent 
Shared-Memory 

OpenMP PGAS MPI 

Global 
Addressability 

Required Required Required Local 

Remote 
Load/Store 
Semantics 

Required* Required* No** No*** 

Cache Coherence Full Global Fence^ Fence^ Fence^ 

* - Full remote load/store semantics are required, because no messaging semantics are available 
** - Remote load/store semantics are convenient but not required, because messaging semantics 
are available 
*** - Remote load/store may improve the implementation’s simplicity and performance  
^ - Coherence required at explicit locations where a coherence fence may be inserted 
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The cache-coherent shared-memory programming model is not directly supported by Hero 
hardware due to a lack of full global cache coherence and global store ordering guarantees, but 
direct support for this programming model is not a requirement. However, it is a requirement to 
support the other three programming models and future highly productive programming models 
(Section 5.1.4). The OpenMP model is directly supported by hardware due to system-wide direct 
addressability and direct processor load/store support, along with global coherence fences for 
transitions between parallel and serial regions. Auto-parallelized Fortran, the high-
programmability style with Fortran 90 demonstrated in HPCS Phase II research [35] (Section 
3.7), offers a model effectively identical to OpenMP, so it is also directly supported. PGAS and 
MPI models are also directly supported by Hero hardware, as shown in Table 11. The 
productivity gains targeted in the DARPA program require the high-programmability style 
presented in HPCS Phase II work (Section 12.3), which is fully supported by the Hero system.  

The determination that global coherence is necessary only at certain points in a typical HPC 
application became a fundamental basis of Hero’s design. This execution model is called:  

Global shared memory with managed coherence—global load/store semantics 
supported by a shared global address space with coherence fences. 

This execution model is feasible to implement and directly satisfies the shared memory model 
(Section 5.1.1) and programming model support (Section 5.1.4) requirements. 

10.2 Virtual memory 
The execution model provides a foundation for global shared memory access, and the high-
bandwidth, low-latency interconnect enables global shared memory. However, in order to 
provide efficient, system-wide load/store access, the Hero system must also provide efficient 
mechanisms for virtual memory, address translation, and memory protection. 

The system software on each node owns and manages that node’s local memory, with shared 
memory mappings across nodes negotiated by system software on the respective nodes. All 
nodes have the same view of the entire shared memory region. However, different nodes can 
have different page mappings for a memory region, such as where shared code is replicated 
locally for performance. Node-local memory mappings are private. 
A single SMP machine has three different address space views: the usual physical address space 
for physical memory, the (process) virtual address space to which application programmers 
write, and the (system) virtual address space that system programmers care about. The system 
virtual address space translates from virtual addresses in applications to physical memory 
locations and manages constructs such as page tables and swap space. In order to make Hero a 
familiar environment with standard shared-memory programming semantics for application and 
system programmers, it was necessary to make the same three distinct address spaces appear to 
programmers as though they are on a single machine, even though the spaces are actually spread 
across many nodes. 

• Each Hero node has its own standard physical address space. The system physical 
address space is the usual combination of all node physical address spaces; that is, all of 
system memory.  
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• The multi-node process virtual address space describes system memory from the view of 
a single process. This address space is usually spread across portions of many different 
nodes throughout the system. There are as many of these spaces on the system as there 
are processes that run on multiple nodes. As usual, portions of a virtual address space 
may reside in memory, while other portions may reside in other storage such as a disk. 

• The global system virtual address space describes a view of the entire Hero system 
memory, represented as tuples of <virtual node id : virtual offset>. Virtual node id 0 is 
reserved for the local node, so there is no overlap between the global system virtual 
address space and the local physical address space of a node. This space provides each 
process with a single view of global memory, facilitating shared-memory programming 
semantics as described below. 

As an example of Hero memory address space mapping, Figure 24 shows the address spaces for 
a Hero system that is physically partitioned into two sets of nodes. These partitions have their 
own separate physical and virtual address spaces, so global and system in the above definitions 
really mean “within a partition.” Although there are some administrative constructs to manage 
the assignment of nodes to partitions, application and system programmers view a partition as a 
system. Therefore, for the remainder of this document, the Hero system is described as though it 
were a single partition, and the terms global and system are used in their natural sense. 

There are k processes and m nodes in Partition A. The mapping of processes to nodes is many to 
many; any process can be mapped to any set of nodes. The global system virtual address space 
manages the many-to-many assignment. In Figure 24: 

• Process 1 is assigned to nodes 1, 2, and m. 
• Process 2 is assigned to a set of nodes located between nodes 2 and m, disjoint from 

Process 1. 
• Process k is assigned to nodes 1 and 2. 

The facilities that allow processes to overlap and share nodes are described in Section 11.2. 

 

 
Figure 24: Hero memory address space mapping 
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Figure 25 shows details of the address space mapping for a single multi-node process virtual 
address space that uses memory in three nodes. The physical address space in a node is divided 
into private memory (Node Reserved Page in Figure 25) and memory available to processes 
(Home Node Data Space, Global Shared Text Page, and Global Distributed Data Space in Figure 
25).  
 

 
Figure 25: Hero memory address space mapping details 

 
The four memory structures shown in Figure 25 are defined as follows: 

• The node uses the Node Reserved Page to run its OS and other private memory 
allocations and does not share it with other nodes. 

• The Home Node Data Space contains data that resides only in the home node (Node 2 in 
Figure 25). The home node is the node in which the process originated, that is, the node 
that received a system call from the process. The home node manages global memory 
mapping (Section 11.3.1). 

• The Global Shared Text Page contains data that all nodes need for the multi-node 
process, such as application code. The page is replicated on all nodes to improve 
performance by minimizing page mapping over the network. Global Shared Text Page 
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data should not be modified because broadcasting global updates would significantly 
hurt performance.  

• The Global Distributed Data Space contains data, such as application data, that is not 
replicated and is distributed across separate nodes.  

The multi-node process virtual address space is the customary user virtual address space, for 
example 64 bits. Because 64 bits is a very large address space, some portions would be mapped 
into memory, some portions would be mapped into disk or other remote storage, but most of the 
address space would be unmapped. The global system virtual address space is an innovation that 
resides between physical memory and the multi-node process virtual address space; it acts as a 
single federated view of global memory for the multi-node process. It enables shared-memory 
programming semantics by unifying all process data spread across the nodes. 

10.2.1 Address translation 
To make Hero a highly productive programming environment, programmers must be able to use 
standard load/store semantics and interfaces, for example, by simply writing a load instruction 
and a memory reference. The Hero virtual memory system transparently performs the address 
translation and handles the request locally or remotely, depending on where the requested data is 
located.  
The key innovation for transparent remote address translation is the scalability interface (SIF) 
ASIC (Section 8.2). The SIF sits on a node’s memory bus and acts like a local memory 
controller, but actually connects to the Hero interconnect fabric and provides an interface to 
remote memory. When a memory access is requested, the processor’s memory controller 
performs its normal functions, but produces an address in the global system virtual address space 
of the form <virtual node id : virtual offset>. If the virtual node id is 0, the memory address is on 
the local node and is handled normally by the local node memory controller. If the virtual node 
id is greater than 0, the memory address is on a remote node, and the SIF acts as a memory 
controller for the remote memory request. 

The SIF contains tables for mapping a remote virtual address into a physical node id and a virtual 
offset for the remote node corresponding to the virtual address. The SIF on the local node 
forwards a memory request to the indicated remote node; a receiving SIF on the remote node 
also uses table lookups to translate the virtual offset into a physical page id and a physical offset. 
The request is then forwarded to local memory controllers on the remote node to be satisfied in 
the normal fashion. Finally, the remote SIF returns the result to the SIF on the requesting node. 

Figure 26 illustrates address translation for a remote memory request, for example, a store 
operation. The memory controller sends a virtual address to its local CPU translation look-aside 
buffer (TLB)21, which accesses local memory if the virtual address maps to a local physical 
address. In this example, however, the operation is a remote request, and the CPU TLB sends the 
virtual address to the SIF, which uses its route table to determine an appropriate remote node and 
then routes the request to that node. The SIF on the remote node acts as a TLB in translating the 

                                                
21 A translation lookaside buffer (TLB) is a CPU cache used to improve the speed of virtual address 
translation. 
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virtual address to a physical address and then forwards the memory request to the memory 
controller on the remote node to perform the indicated operation. 

 

 
Figure 26: Address translation for remote memory request 

 

10.2.2 Memory protection 
Memory protection for remote memory access is a two-phase operation. At the node where the 
memory request is made, a local memory controller checks the protection bits for the requested 
page. If that check fails, the error is handled normally. If the check succeeds, the memory request 
is passed to the remote node containing the physical memory, as shown in Figure 26. Then, at the 
SIF on the remote node, an additional check is performed to see if the incoming memory request 
is from an approved node. This prevents nonparticipating rogue nodes from corrupting memory 
on a remote node. Such faults are reported asynchronously, but should happen only for cases 
where the OS of the node that made the memory request is either malicious or corrupted. 
To create a multi-node process memory allocation, the local OS on each remote node requests a 
mapping from the home node (the node where the process originated). Each remote node maps 
its memory and notifies the home node of mapped addresses. Each remote node also updates its 
memory protection table in its SIF to indicate that all nodes involved with the multi-node process 
are legal sources for memory accesses on this node. When the mapping takes place, all nodes 
involved with the multi-node process establish a common mapping; the control domains for each 
node assigns pages for that mapping, with protection information for the local process ID 
corresponding to the global process initiating the mapping. 
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10.3 Synchronization mechanisms 
Synchronization mechanisms are used to implement managed coherence. The standard HPC 
synchronization mechanism is a barrier: a construct that enforces the property that all threads 
must enter the barrier before any thread leaves the barrier. The coherence fence is a special form 
of barrier with the following additional property: all stores from all threads must complete and 
become visible to all threads before any thread exits the fence. The coherence fence is the 
synchronization mechanism used to enforce coherence at designated points in the application—
for example, before and after a parallel execution region. A simple implementation flushes all 
dirty cache entries and invalidates all cached data before any thread leaves the fence. To 
implement the coherence fence, Hero supports remote cache flush and cache invalidate 
operations. 
When an application arrives at a coherence fence, the application calls the system software, 
triggering a notification to all nodes on which the application is running. When all application 
threads have arrived at the fence, the system software initiates a flush-and-invalidate operation 
on every CPU where the application is running. When those operations complete, the system 
software returns from the fence and allows threads to continue execution. The entire application 
is in a fully cache-coherent state at the point where execution resumes. A coherence fence can 
have a significant performance impact, but HPC applications are expected to use this construct 
infrequently. 
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11 System software 
To support productivity at petascale, Hero software provides a familiar environment for 
applications and system software, allowing programmers to write software as if for a single SMP 
machine when they are actually controlling thousand of nodes in a supercomputer. Resource 
virtualization is the key enabling technology; it provides the essential flexibility and scalability 
necessary to create such an environment. It permits Hero software to support both high 
programmability and legacy applications, scaling from single nodes to very large, multi-node 
systems. System resource virtualization permits programmers to write logical constructs without 
concern for managing physical resources, and it allows the system to change the physical 
resources dedicated to an application. It is a very powerful abstraction that enables efficient 
mode switching (such as transitions between capability and capacity modes) and hardware 
reconfiguration transparent to the applications (such as resource reallocation due to a hardware 
failure). 
Software for the Hero system, summarized in Figure 27, consists of Hero system software and 
the Hero development environment. The Hero system software includes the fault tolerant 
hypervisor, Hero Solaris™ OS [45], Hero file system, and Administrative Environment. The 
Hero development environment includes compilers, parallel and serial debuggers, and other 
programming tools, as well as a variety of performance, I/O, and other libraries and visualization 
software. This section describes the Hero system software, starting with a description of its basic 
structure and features in Section 11.1. The remainder of Section 11 describes key enabling 
technologies that cross system software structural boundaries and work together to support multi-
node applications. Section 12 describes the Hero development environment. 
 

 
Figure 27: Hero system software 
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11.1 System software stack 
Running a single OS across a system the size of Hero is infeasible—scheduling is a bottleneck, 
kernel algorithms break, 32-bit counters overflow, and so forth. Therefore, the system software 
approach is to run the software needed for node resources and home node functionality on every 
node, but to run the software needed for multi-node application and system functionality only on 
a small, replicated subset of nodes. This approach mitigates some of the most severe scaling 
challenges for system software by minimizing system-wide services; it maximizes robustness by 
providing extensive redundancy of functionality throughout the system. 

Every node hosts instances of a fault tolerant hypervisor, the Hero Solaris OS, and 
Administrative Environment services modules. Only a subset of nodes hosts instances of the 
Hero File System service modules and system-wide Administrative Environment service 
modules. These components collaborate to provide a multi-node application execution 
environment that supports highly productive programming models, while also providing 
independent system support for each node in the Hero system. 

The following subsections describe the hypervisor and operating system, which run on every 
node, as well as portions of the file system and administrative components, which run on a subset 
of nodes. Sections 11.2 and 11.3 describe system software functionality that provides the multi-
node application execution environment. System-wide administrative functions are described in 
Section 11.4. 

11.1.1 Fault tolerant hypervisor—virtual machine support 
The fault tolerant hypervisor provides the foundation for Hero system software. It is based upon 
the current OpenSolaris Sun4v hypervisor, with extensions to provide fault tolerance and 
scalability features. It provides full hardware device virtualization to insulate software layers 
from hardware failures. The fault tolerant hypervisor also provides state replication for its own 
state in order to improve overall robustness in the face of hardware faults. It supports migration 
of virtual machines (OS instances and everything running on top of the OS instances) within a 
node and across node boundaries and provides support for checkpointing virtual machines. 
Virtual machine migration and checkpointing are both essential elements of Hero’s global fault 
tolerance strategy. 

11.1.2 Hero Solaris™ OS 
The Hero operating system is based on OpenSolaris, enhanced with features to increase 
robustness and with a limited set of multi-node semantics for applications. OpenSolaris is an 
open source project based initially on Sun’s Solaris 10 code base [45]. OpenSolaris is a version 
of the UNIX System V operating system, with a long track record of excellence in the areas of 
robustness and support for concurrency; it is used extensively on both SPARC® technology-
based and X64-based systems in a wide variety of commercial, industrial, government, and 
scientific applications. 
Hero Solaris includes new robustness features that extend the current OpenSolaris Fault 
Management Architecture to support predictive self-healing over a multi-node system and to 
support a new, automated checkpointing technology. Multi-node semantics in Hero Solaris 
(Section 11.2) supports memory management, process and thread management, as well as file 
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and network I/O across multiple nodes. This support is built on the OpenSolaris Zones and 
BrandZ technologies [45]. The intent is that Hero Solaris features will be released under open 
source as part of the OpenSolaris environment. 

11.1.3 File system 
The Hero File System utilizes object-based storage as defined by the T10 object-based storage 
device (OSD) standard. Object-based storage helps meet performance and scalability 
requirements by distributing space allocation and layout decisions to storage devices and by 
eliminating the need for locking to handle multiple writers to a file. Block disk and tape devices 
are supported in the Hero File System by using object storage servers. Hero also supports legacy 
file systems, including Lustre, NFS, and Parallel NFS (pNFS), along with standard OpenSolaris 
file systems such as ZFS. 

11.1.4 Administrative Environment 
The Administrative Environment is at the boundary of the Hero system software and Hero 
development environment; it includes tools that help manage the system and improve application 
execution. The Administrative Environment provides standard administrative functions—
including active management of thousands of physical nodes, resource allocation and scheduling, 
resource utilization tracking, firmware management, power sequencing, operating system install, 
update and boot, host virtualization (including host-level fault management), and network 
management. It can define groups of nodes flexibly, as well as implement management activities 
and policies in a hierarchical manner. 

An important abstraction for a system of Hero’s size is the use of automated policy-based 
resource management, including administrative control over the weight assigned to different 
resource management policies. The Administrative Environment supports automatically 
triggered system/application checkpoints, automatic policy-based preemption, and automated 
triggering of resource reassignment using various policies at different levels of sophistication. 
During application execution, the Administrative Environment provides troubleshooting tools for 
log viewing and event tracking, as well as a telemetry data mining service that analyzes historical 
system data to identify patterns, trends, and anomalies in system behavior over time. These 
include visual tools to help the administrator monitor systems and track historical system data, as 
well as view, search, and associate multiple log files from multiple systems. 

11.2 Multi-node support 
All layers of Hero system software work together to create a multi-node set of computational 
resources for Hero applications. The fault tolerant hypervisor virtualizes hardware resources. 
Hero Solaris and the Hero file system provide multi-node containers (SuperZones) in which 
applications execute. The Administrative Environment presents the SuperZone as a single logical 
computational unit to the application. 

11.2.1 Zones 
Zones are an operating system abstraction for partitioning systems, allowing multiple 
applications in a single operating system instance to run in isolation from one other. This 
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isolation prevents processes running within a zone from monitoring or affecting processes 
running in other zones, accessing each other's data, or manipulating underlying hardware. Zones, 
together with the hypervisor, also provide an abstraction layer that separates applications from 
physical attributes of the machine where they are deployed, such as physical device paths and 
network interface names. 
BrandZ is an OpenSolaris framework that extends the OpenSolaris Zones infrastructure to create 
branded zones that contain non-native operating environments. The term “non-native” is 
intentionally vague, as the infrastructure allows for the creation of a wide range of operating 
environments. Each operating environment is provided by a brand that plugs into the BrandZ 
framework. A brand may be as simple as an environment with standard OpenSolaris utilities 
replaced by their GNU equivalents, or as complex as a complete Linux user space. Hero Solaris 
includes two innovative extensions to the OpenSolaris BrandZ zones framework that make a 
multi-node execution environment possible: Unification Zones and SuperZones. 
Unification Zones (UZ in Figure 28) are branded zones where the brand supplies a limited set of 
system calls and services with multi-node semantics. Multi-node support is provided through 
interposition of the brand on system calls, kernel upcalls, and signals. Operations requiring the 
participation of more than one node invoke interzone communication mechanisms that allow 
Unification Zones on multiple nodes to fulfill the request cooperatively. 

SuperZones are multi-node sets of computational resources established by the Administrative 
Environment. They act as containers for multi-node applications. A SuperZone is instantiated by 
notifications to system software on each node in the SuperZone, and the establishment on each 
node of a Unification Zone where the multi-node application’s elements may execute. A 
SuperZone may include Unification Zones on one or more nodes and could even comprise all 
resources in a system. Figure 28 illustrates an example mapping of Unification Zones, each 
running within a node, to a SuperZone running across multiple nodes. The mapping is extremely 
flexible: a node could have multiple Unification Zones all contained in the same SuperZone. 
Note that the Unification Zone and SuperZone do not extend into the hypervisor layer, because 
they do not interpose multi-node semantics on hypervisor calls, although the hypervisor provides 
physical resource abstraction for Unification Zones. 
 

 
Figure 28: Mapping Unification Zones (UZ) to SuperZones 
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Unification Zones and SuperZones support allocation and mapping of both local and remote 
memory, as shown in Figure 29. This permits applications to allocate data structures that are too 
large to fit on a single node, or distribute a data structure across a group of nodes. To maximize 
performance predictability, the SuperZone attempts to distribute remote allocations evenly across 
nodes assigned to the application. 
In Figure 29, the SuperZone comprises Unification Zones residing in nodes 1 through N, and 
multi-node process data structures are distributed across those nodes. Application code and 
process context are also replicated in those nodes. Communication at hypervisor and OS levels 
(shown by arrows between Hero Solaris and the hypervisor on each node in Figure 29) is 
necessary to establish a SuperZone. 

 

 
Figure 29: Application data distribution throughout a SuperZone  

 

To create a SuperZone, a node—usually the node in which a system call occurred (Node 2 in 
Figure 29)—is selected as the process home. This home node replicates the process context to 
other nodes in the SuperZone (Section 11.3.1). It determines that a multi-node memory 
allocation is requested and spreads the mapping of the requested memory (application code and 
data) over nodes in its SuperZone. Then, it communicates the proposed mapping to each 
Unification Zone in the SuperZone, requesting that they map their portion of the request. Upon 
receiving successful responses from all Unification Zones, the proposed mapping is committed, 
and the newly mapped memory is available for use by the application. Similar techniques are 
used to support process and thread management in a SuperZone. 
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11.2.2 File and network I/O support 
Hero Solaris provides two basic types of file and network I/O support—a single-system view or 
single-node view. The SuperZone construct provides applications with a single view of the Hero 
system, meaning applications see a single IP address and a global name space. This allows 
programmers to use standard file and network I/O constructs and programming techniques. 
Because each node runs Hero Solaris, applications also have a single-node view using a 
Unification Zone on a node for independent file and network I/O access. This could be useful for 
improved device performance or legacy application support. In either case, I/O support is 
provided through I/O nodes (Section 8.3). A virtual Ethernet interface connects compute nodes 
and I/O nodes over the Hero interconnect to provide a robust communication channel for legacy 
and external communication. 
Two principal forms of support are provided for network I/O. To allow legacy codes to run 
mostly unmodified, network I/O can be executed using standard interfaces; traffic is routed to the 
SuperZone’s home node and the TCP/IP stack is executed there. This provides a single central IP 
address for the SuperZone and gives the application—and any outside entity communicating 
with it—the appearance that the application is running on a single system for the purposes of 
network I/O. Alternatively, Hero Solaris supports network I/O using one or more IP addresses 
per Unification Zone, with local TCP/IP stacks. This alternative model enables high degrees of 
parallelism in the network I/O arena and is well suited to PGAS and MPI programming models. 
Hero tools and libraries on each node also support standard local networking. 
Similarly, for file I/O, Hero Solaris provides an interface for legacy single-system semantics—
using the home node for naming—and a more parallel interface where files are accessed 
independently from each node in the SuperZone. The system supports a flexible layout, with no 
need for direct attached storage at every node, and the capability to isolate the file system 
software from application software. To support legacy semantics of various I/O facilities, each 
Unification Zone in a SuperZone provides a global context mechanism that allows process 
context for a multi-node process to be replicated across all nodes in the SuperZone. This enables 
fast name lookups in a multi-node name space and makes it possible to provide multi-node 
applications with the appearance of global name spaces for a variety of purposes. 

11.2.3 Robustness features 
In support of increased system availability, extended OpenSolaris™ Fault Management 
Architecture facilities allow Hero to provide a form of federated fault management. This extends 
current Sun predictive self-healing technologies to multi-node systems like Hero by providing 
facilities for aggregating fault information across multiple nodes and handling faults above the 
node level. Federated fault management enables multiple Hero Solaris instances to participate in 
the prediction, diagnosis, and healing of system faults. The Fault Management Architecture 
saves process state redundantly and restarts processes on failure, making it internally fault 
tolerant. This state replication mechanism will also be used to provide fault tolerance for other 
Hero system software. In addition, Hero Solaris provides mechanisms that support automated 
system checkpoints, described in greater detail in Section 11.3.3. 
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11.3 Runtime environment 
As mentioned above, the SuperZone provides the core abstraction for running multi-node 
applications on Hero. It is a set of one or more Unification Zones that provide high-
programmability applications the limited appearance of a single system. From the perspective of 
the Administrative Environment, the SuperZone is a multi-node set of hardware and software 
resources that can execute a multi-node application. It is the fundamental unit of logical resource 
partitioning for the Hero system and serves as the basic unit for automated system checkpointing. 
It is important to differentiate between the standard notion of a single-system image and the 
single-system view provided by Hero. A single-system image provides applications with a single 
view of all system services. In a multi-node system, this usually means that a single OS image 
runs across the entire system. Hero’s single-system view, instantiated as a SuperZone, provides 
applications with a single view of all computational resources—memory, files, and I/O—but it 
does not provide a single view of all system services. For example, there is neither global 
console nor global visualization support. Individual nodes must stream data separately to 
visualization engines, rather then sending a single stream controlled by a SuperZone. 

11.3.1 Multi-node application support 
Within a SuperZone, the Administrative Environment can initiate the execution of a multi-node 
application. Examples of such applications include a high-programmability application written in 
Fortran, automatically parallelized, and an OpenMP Fortran program. Programming tools mark 
these as multi-node applications, which instructs the Administrative Environment to initiate such 
an application in a SuperZone. 

To create a SuperZone, a multi-node process is created on the home node and then propagated to 
other nodes. In Figure 30, Node 2 is the home node and it creates a process in response to a 
system call. The system software creates a process on each Unification Zone in the SuperZone 
(Nodes 1-N in Figure 30) and replicates the multi-node context from the home node to each of 
these processes. This allows the system to create the appearance of multi-node name spaces 
without forcing identical naming across the entire system. Using the mechanisms shown in 
Figure 29, the application can allocate local and remote memory, including very large allocations 
that do not fit on a single node. The home node propagates system calls, as well as signals and 
Kernel upcalls, to other nodes in the SuperZone. For example, it can propagate a call to open a 
file with a file handle. Internode communication may be at the hypervisor level as well as the OS 
level if hardware is involved, such as when a network port is requested. 
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Figure 30: Multi-node job creation from the application point of view 

 
After establishing the SuperZone, the application can allocate and use memory, including large 
allocations that span multiple nodes. Figure 31 shows an example of memory allocation from the 
application’s point of view (see Figure 29 for the physical memory allocation view). The shaded 
area in the Unification Zones is actively being used for application data by load/store operations; 
the unshaded area in the Unification Zones on the right and left is allocated to the multi-node 
process, but not currently used. Each Unification Zone is contained in a single node and is in a 
cache-coherence domain. The SuperZone is an aggregation of Unification Zones and is a 
managed-coherence domain (Section 10.1). The multi-node process virtual address space shown 
extending to the right in Figure 31 is usually much larger than the SuperZone, but most of it is 
never allocated (for example, a 64 bit virtual address space). 

 

 
Figure 31: Multi-node memory allocation from the application’s point of view 
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Threads are used throughout the SuperZone to execute parallel regions in the application. Each 
thread has full access to all memory allocated by the application, but allocations that are neither 
too large nor marked as remote are made locally for improved latency and performance. Because 
the semantics of these programming models requires that parallel regions have no memory 
dependencies, all threads can execute both local and remote load/store operations; cache 
coherence need not be maintained. At the end of a parallel region, code generators insert a 
coherence fence operation to preserve programming model semantics (see “managed coherence,” 
Section 10.1). Multi-node applications have access to the special file and network I/O facilities 
described in prior sections. 
Hero also supports multi-node applications using MPI or PGAS programming models. These 
applications can be run in a SuperZone or as normal processes on individual nodes. Running in a 
SuperZone permits the communication and I/O libraries that implement the programming model 
to utilize full multi-node capabilities, including remote allocation and remote load/store 
operations. Running as normal processes on individual nodes and communicating using cluster-
like messaging libraries, applications can still benefit from Hero’s low-latency, high-bandwidth 
interconnect. 

11.3.2 Legacy software support 
Hero supports legacy software in several ways. Individual Hero nodes are standard SMP systems 
with full hardware cache coherence and many hardware threads. These nodes directly support 
applications written for SMP systems, when compiled for the OpenSolaris environment. Hero 
also supports MPI and PGAS programs compiled using Hero programming tools and using 
libraries provided with the system. As detailed in later sections, Hero offers a variety of 
communication and performance libraries to support legacy and high-programmability 
languages. 

11.3.3 Automated system checkpointing 
Checkpointing is the storing of an entity’s state for use in error recovery or other resource 
remapping. Hero checkpoints can be defined at the application, node, or system level. 
Application checkpoints are a standard HPC defensive programming technique, but their creation 
consumes valuable programmer resources and adds complexity to applications. Hero offers 
standard support for application and node checkpoints; but Hero Solaris, along with its 
programming tools, libraries, and Administrative Environment, also supports a new technology 
for automated system checkpointing. This new facility enables Hero to recover quickly from 
failures by remapping failed hardware resources to other hardware and restarting from the most 
recent checkpoint. It can also be used by operators to temporarily suspend applications when a 
critical need for compute resources arises. The same automated checkpointing facility applied at 
the application level can obviate the need for programming application checkpoints. 

To facilitate system checkpoints, Hero’s code-generation tools automatically insert special code 
(safepoints) into Hero applications at locations where it is safe for the application to stop, as 
determined by global data-flow and control-flow analysis. At a safepoint, it is possible to take a 
snapshot of the entire machine’s state or to checkpoint a subset of the machine, such as an 
application running in a SuperZone. Safepoints inserted into the Hero MPI library and other 
libraries can accomplish the same goal. 
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The checkpoint mechanism is based on the Java HotSpot™ Virtual Machine (VM) mechanism 
[43] used to stop the VM for garbage collection. The Administrative Environment sets policies 
for the frequency or conditions for checkpointing, It notifies the Hero Solaris image on each 
node at what time and for which threads a checkpoint is requested. Hero Solaris sets a flag that 
notifies each thread to stop execution when reaching a safepoint. Each thread stopping at a 
safepoint notifies the OS that it is stopping (the OS may be a guest OS running on a single node, 
rather than Hero Solaris). After all threads have stopped, the OS notifies the Administrative 
Environment that the node is ready to checkpoint. After all requested nodes have stopped, the 
Administrative Environment initiates a snapshot of the state of all nodes (or a subset, such as a 
SuperZone) and coordinates storage and tracking of the snapshots. The hypervisor on each node 
manages replication of the virtual node or guest OS state and notifies the Administrative 
Environment that the state has been saved. Upon notification of successful state saves for each 
node, the Administrative Environment notifies the OS images on each node to continue 
execution and notifies Hero Solaris images to restart all their threads. 

When a fault occurs, the Administrative Environment can restore a SuperZone’s checkpoint onto 
a set of nodes that is different from the set originally running the application. This new set of 
nodes must have the same cardinality as the original set, as well as access to the same external 
resources. Hero’s virtualized I/O and nonlocal file system support provides an extremely flexible 
tool for efficiently performing this hardware remapping. In addition, these mechanisms are 
available to the Administrative Environment so it can provide facilities to migrate running 
applications off and back onto the system, resulting in a very flexible utilization of the large pool 
of resources represented by a Hero system. 

Figure 32 shows the creation and restoration of a SuperZone checkpoint. The machine state from 
each Unification Zone in Nodes 1 through N is saved to memory at a safepoint, then sent to disk 
as a background task while the application continues to run. Alternatively, the safepoint can be 
sent directly to disk. This requires less memory, but causes a longer application stall [65]. When 
a node fails, the checkpoint can be recovered from memory or disk and mapped to a new set of 
nodes, in essence redefining the set of nodes contained in the SuperZone. In Figure 32, Node 1 
fails and is replaced by Node N+1. Hero Solaris establishes communication with Node N+1 to 
reconstitute the SuperZone, prior to mapping data from Node 1 into Node N+1. 
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Figure 32: Automated checkpoint creation and recovery 

 

11.3.4 Application isolation 
A challenging problem encountered by applications on very large systems is application jitter, a 
performance degradation that occurs when large numbers of concurrently executing threads 
attempt to synchronize too frequently. The entire application must wait until the slowest thread 
reaches the synchronization point. Typically, the threads are actually running the same code; in 
theory, all threads should reach the synchronization point simultaneously. However, 
asynchronous behaviors in the system cause context switches or other stalls in some threads. 
This can lead to significant performance degradation, as shown in Figure 33. A common solution 
to this problem is to minimize these events and make them synchronous, causing the OS to 
queue up events until a timer elapses. Then, all CPUs stop executing application threads, in order 
to handle the event queues. 
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Figure 33: Application jitter 

 

As shown in Figure 33, Hero approaches application jitter in a different fashion. Hero uses space 
sharing instead of time sharing, relying on its many execution threads, abundant memory, and 
bandwidth resources. All asynchronous system events can be handled by OS threads running on 
a dedicated microcore. With handler threads on a dedicated microcore, application threads are 
not preempted and continue to run. In addition, since each microcore has its own L1 cache, 
application threads do not suffer from the nondeterministic effects of periodic L1 cache 
pollution. Further, since Hero has more threads (integer execution units) than floating point units, 
the performance impact of the space-sharing approach caused by resource consumption is 
minimized. In the worst case, where a full microcore must be dedicated to handling events on 
each node, this represents a very small percentage of the compute resources in a system with 
hundreds or thousands of nodes. Hero can also support the traditional time-sharing approach to 
minimizing jitter, if needed. 

11.4 Administrative support 
Automation and virtualization (a form of abstraction) throughout the Hero software stack enable 
much more effective management of system resources than has been historically possible for 
machines at extreme scale. The Administrative Environment leverages the Hero system’s 
fundamental properties to address traditional bottlenecks. These mechanisms are managed by 
tools that are designed to reduce staff burden and increase overall system utilization. 
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As with the system software, the intent of the administrative software is to create a familiar 
management environment for system operators. For example, the decision to run a complete 
version of Hero Solaris at every node, rather than attempting a single system image approach, 
means that many existing tools for managing large, multi-node OpenSolaris systems can be 
easily adapted for Hero. This same decision also makes developing new administrative tools 
simpler than other approaches such as managing the system’s extreme scale through hierarchical 
decomposition. 
The Administrative Environment can produce very high application completion rates because of 
resource virtualization, predictive self-healing mechanisms, and automatic system checkpointing 
for dealing with hardware failures. Automated failure recovery reduces software development 
costs associated with application-level checkpointing and eliminates administrative costs 
associated with restarting large jobs. 

In much the same way as it handles failures, the Administrative Environment leverages 
underlying resource virtualization to support job configuration with minimal operator 
intervention. These underlying system services enable a dynamic job roll-in/roll-out mechanism 
that can suspend, relocate, and restart applications under automatic control in the name of 
improved overall system resource utilization. For example, large overheads associated with 
draining job queues when switching between capacity and capability modes can be replaced by 
highly dynamic job management that adapts to changing workloads without loss of resource 
utilization. 

Job scheduling procedures can be highly automated in the Administrative Environment. In fact, 
they must be automated to allow administrative staff to manage job streams at the scale 
supported by a machine of this size. Because job and resource management are efficient and 
dynamic, job scheduling can be implemented as a hybrid of highly automated scheduling based 
on relatively static policies, as well as contingent scheduling based on management decisions, 
job progress, and other externalities. 

Finally, the Administrative Environment can access system performance data at every level of 
the stack, which supports monitoring of nearly every aspect of system performance. Such 
continuous feedback creates an environment of ongoing improvement of resource utilization for 
designing application software, job management algorithms, and policy management. 
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12 Development support: languages, tools, skills 
From the perspective of technology change (Section 3.10), Hero is a transitional system. It is 
designed to carry the HPC community through a fundamental shift in the way software is 
created, applied, and maintained. This is a difficult but necessary shift, without which the 
dramatic productivity gains anticipated by the HCPS program cannot be realized. 
This shift starts with the status quo: an extremely skilled community with a decades-long legacy 
of applications that were extraordinarily expensive to develop and are increasingly expensive to 
maintain as computing platforms evolve. Much of the expense associated with these applications 
derives from concerns that are not essential to the scientific problems being addressed, but are 
instead related to the details of specific machine architectures (for example, distributed memory 
models and parallelism) and to external contingencies (for example, application-level 
checkpointing as a defense against frequent system failure). 

The end point of this shift is a computational environment in which the execution model is 
abstract enough that it can survive many machine generations and coherent enough that a great 
many computational requirements can be automated. In this environment, tools can be 
constructed that permit problems to be solved in terms of the scientific mission and relevant 
mathematics. Furthermore, the execution model and development tools are portable across 
platforms and across time, which amplifies the value of the skills of people using them. 

12.1 Legacy applications and languages 
Hero is an ideal platform for technology migration. The global shared memory model, including 
system-wide load/store (Section 10.1), combined with services provided by Unification Zones 
and SuperZones, enables the system to directly support established distributed programming 
models such as MPI (Section 11.3.2). The same characteristics also provide excellent support for 
emerging PGAS languages and ultimately, for high-programmability programming models. 
Applications based on established technologies, such as Fortran or a mixture of Fortran and 
C/C++ (Section 3.10.1), can be run in a SuperZone as though in a very large shared-memory 
processor. Software ensures the memory coherence required by the language. Parallelism can be 
introduced by the compiler or with OpenMP directives. In this model, data and thread placement 
are entirely under the control of runtime software with guidance from compiler directives. Object 
code for access to a remote memory location is identical to that for local memory, so code can be 
loaded and run on any portion of the system, from a single node to a SuperZone. 

The emerging PGAS family of languages (Co-Array Fortran [42], UPC [61], and Titanium [19], 
Section 3.10.2) represents an intermediate step in HPC programming language evolution, since 
these languages continue to express data sharing and placement explicitly. Hero architecture is 
heavily influenced by the design of PGAS languages, and consequently allows them to be 
implemented directly rather than through a communication library. Access to shared variables is 
accomplished by direct addressing, while collective and barrier operations are performed using 
active messages. Any operation that requires coherence is somewhat inefficient, but such 
operations are likely to be infrequent because they are mostly used for debugging and other 
special cases. PGAS implementations can also run using Hero as a standard cluster. The 
transformation between SuperZone model and cluster model can be handled at load time using 
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historical data and a binary optimizer, although this involves more substantial changes to object 
code than incorporating specialized libraries. 

12.2 Standard development tools 
The transition to new computing platforms depends crucially on tool support. For many of the 
reasons mentioned in the previous section, existing software development tools can run in a Hero 
SuperZone, which presents a complete Hero Solaris execution environment on a (virtual) shared-
memory processor. 
For example, existing OpenSolaris compilers share a common infrastructure that provides highly 
effective optimization, code generation, and tool support. They all support the following: 

• Auto-parallelization of computational loops 
• OpenMP support 
• Cross-file interprocedural optimization, including automatic inlining 
• Debugging support 
• Post-link optimization 
• Automatic tuning system for choosing optimizations 
• Feedback-directed optimization 
• Compiler commentary to guide performance tuning 

Additional support necessary to ensure memory coherence across node boundaries (managed 
coherence, Section 10.1) is supplied automatically by compilers in the form of additional support 
libraries that are transparent to programmers. Ongoing performance and scalability improvement 
in legacy application support derives from continuing work in refinement of support libraries and 
increasing sophistication in collaboration between tools and virtual software operating 
environments. 
Standard support for debugging in the transitional Hero environment comes from two sources. 
The Sun™ Studio dbx debugger provides multithreaded debugging within a node or a 
SuperZone; it offers the expected debugger features, including the following: 

• Conditional breakpoints 
• Watch points (variable change) 
• Runtime checking (stray memory reference) 
• Fix and continue (modify a function and keep running without restarting) 

The dbx debugger works well with any shared memory model, including OpenMP and auto-
parallelized programs. The second debugging resource comprises existing debugging tools for 
distributed memory programming that can also be easily adapted to run on the Hero MPI 
compatibility platform. 

12.3 Highly productive programming 
A highly productive programming model requires application codes that are:  

• Domain-focused 
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• Inherently independent of underlying hardware and software architectures 
• Free of difficult, error-prone distractions such as optimization, decomposition, 

parallelization, and checkpointing 

As with more general software engineering challenges, the key strategies are abstraction and 
automation. 

In the HPC community, examples can be found of programming technologies that move in this 
direction, though none are sufficient to achieve the necessary revolution in productivity: 

• MATLAB from Mathworks [37] and Mathematica from Wolfram Research [64] offer 
languages and development environments with a focus on programming at higher levels 
of abstraction, but at considerable compromise in scaling and performance. 

• Auto-parallelizing compilers, such as those supported on OpenSolaris, successfully 
automate some kinds of shared memory parallelism within some scale limitations. 

• The PGAS family of languages automates some communication aspects of distributed 
memory programming when compared with MPI, but with very little additional 
abstraction. 

Experience with all of these emerging technologies is promising in the areas of abstraction and 
automation, although they are not as widely used as one might expect. For example, the 
experiments mentioned in Section 3.7 involved rewriting a family of HPC standard benchmarks 
from MPI into a high-programmability style using tools that have been available for years. Code 
size dropped by an order of magnitude, and a currently available auto-parallelizing compiler for 
OpenSolaris produced execution times only 2x greater than the original in many cases, up to 
about 100 processors [35]. Adoption of such technologies has been slow for reasons discussed in 
Section 3.10. 

Hero is designed to enable much more progress in these directions than has been possible on 
current and evolutionary systems. At its most basic level, Hero repairs fundamental 
computational abstractions that have been abandoned in the name of expensive manual tuning 
for performance. Those missing abstractions include: 

• Single, global address space 
• Virtualized, and thus interchangeable, hardware resources such as processors 
• System-level ability to compute correctly through failure 

Restoring each of these abstractions reduces the complexity of developing software, which in 
turn makes it possible to accelerate progress of automation in such crucial areas as parallelization 
and data layout. This encourages a new generation of highly abstract, possibly domain-dependent 
languages that can achieve necessary scaling and performance. 

12.4 Fortress 
Experiments in the design of such languages are underway. For example, Fortress provides a 
higher level of abstraction that more closely resembles scientific and mathematical expression, 
allowing scientists to program in a familiar notation and easily express inherent algorithm 
parallelism [2]. A powerful library mechanism addresses the automation of tedious and error- 
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prone coding tasks such as array partitioning. This includes features that support concurrent 
execution such as parallel “for” loops and reduction operators such as summation (Σ), as well as 
atomic and transactional blocks. Early implementations of Fortress run on contemporary 
systems, but growing Fortress into its full potential involves extensive automation similar to that 
for which Hero is designed. Importantly, the Fortress effort is an open source project designed to 
draw on expertise and insights from a wide community of stakeholders. 
Many Fortress language features are designed specifically with productivity in mind. For 
example: 

• Fortran 90–style array operations reduce programming errors by reducing the amount of 
notation needed to express common patterns of computation on arrays (experiment 
reported in Section 3.7.2). 

• Syntax designed to approximate traditional mathematical notation as closely as possible, 
with attention paid to how an integrated development environment (IDE) can further 
reformat code into traditional mathematical style, promises to make verifying scientific 
programs less error-prone (experiment reported in Section 3.7.1). 

• Built-in numeric types designed to align with mathematics used in scientific problems 
include floating-point numbers of many sizes, imaginary and complex numbers, intervals 
of real numbers, signed and unsigned integers of fixed size, integers of unlimited size, 
and rational numbers with no size limits on numerators or denominators. 

• Automatic dimensional analysis that statically detects programming errors missed by 
ordinary type checking. 

• Extended aggregate types expressed using mathematical syntax and concepts, including 
arrays, vectors, matrices, tensors, sets, multisets, lists, maps, and hash tables. 

• Powerful reduction operations over aggregates and over arbitrary parameterized 
expressions reduce programming errors. 

• All operations, including control structures, fundamentally designed for parallelism. 
• Transactional memory constructs promise to make programs more robust in the presence 

of failure than using locks. 
• User-definable data distributions give programmers more control over data placement, 

including dynamic redistribution. 
• Automatic storage management relieves programmers of the need to track and explicitly 

deallocate memory. 
• Fortress code interoperates with other commonly used programming languages. 

Furthermore, Fortress is fundamentally an extensible language. Extensions, implemented by the 
Fortress language mechanism, play two significant productivity-related roles. First, the library is 
where core functionality, including mediation between code and hardware resources, is 
implemented. At this level, many powerful HPC functions can be implemented, including syntax 
and type extensions, fine-grained control over parallelism, special purpose solvers, contract and 
invariant checking, automatic testing support, and many more. Second, extensibility invites the 
creation of libraries whose purpose is to create domain-specific programming languages with 
concepts, syntax, types, and solvers that are highly specialized for particular problem classes. 
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12.5 Portability: applications, tools, and skills 
As the productivity team studies revealed, the lack of portability that represents such a 
significant perceived bottleneck in the HPC community is not just a matter of application and 
architectural features, but also includes tools and programming skills. 

Hero is designed to address the familiar aspects of portability, as discussed in the previous 
section. High-programmability code is by definition abstract, eliminating confounding 
requirements that are not essential to the problems being solved: data decomposition, 
parallelization, and checkpointing. This makes the code highly portable only if other elements of 
the environment are also portable: tools and the skills acquired by programmers using those 
tools. 

A good example of this phenomenon is an ongoing preference in the HPC community for 
FORTRAN 77 over Fortran 90/95. Project managers report that this choice is dictated by lack of 
confidence that high-quality Fortran 90/95 compilers will be available on all future platforms for 
20 to 30 years, the anticipated lifetime of successful HPC applications. 

This phenomenon extends to many other kinds of development tools, where valid concerns about 
future availability conspire to make software development tools be seen as risks to project 
success, rather than a pathway to productivity (Section 3.8). In fact, there is no path to a 
productivity revolution without tools, and in particular without portable tools that make people 
and skills portable, as well [62]. This observation is based on data from the productivity studies 
reported earlier and it applies to a wide variety of technologies that support HPC programming: 
languages, compilers, libraries, analyzers, and many more. 

Part of Hero’s design includes embracing cross-platform open source development tools in as 
many areas as possible. This means that HPC programming skills, once acquired, become as 
portable as high-programmability applications. In addition, a shared, standard tool suite is 
subject to ongoing research and improvement in performance, scalability, and correctness, rather 
than the ongoing “wheel reinvention” now experienced by the HPC programming community. 
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13 The interplay of design decisions 
This section provides an example of how the design process described in Section 6 was used to 
ensure that the design described in Sections 7-12 satisfied Hero requirements. The requirement 
with the most pervasive influence on Hero’s design was the need to support both new and 
existing HPC programming models. Although the ultimate architectural solution is described as a 
straightforward combination of new technologies and innovations, this solution was the product 
of a multiyear effort that included many false starts and design tradeoffs. It required a complete 
reconsideration of supercomputer design, with a focus on the three design tenets described in the 
introduction: focus on whole system properties, rethink system layers, and leverage new 
technologies. 

The Hero design objective was to create a system that would satisfy the DARPA 10x 
productivity improvement challenge. Productivity requirements indicated that the best way to 
achieve this goal was to create the façade of a single system environment by using abstraction 
and automation. This would allow application developers, system programmers, and operations 
personnel to use familiar tools and processes to program and operate a petascale system almost 
as easily as if it were an SMP machine. Within such an environment:  

• Highly productive programming models could eventually replace MPI. 
• The system could achieve a significant fraction of its rated maximum performance 

without extensive tuning. 
• The level of effort required to develop and maintain applications could drop by an order 

of magnitude. 

Unfortunately, the most obvious ways to create this single-machine façade ran straight into a 
wall of technological limitations. This created the dilemma described in Section 13.1—finding 
an alternative that was technologically feasible while retaining the important productivity 
advantages of a single-system environment. Fortunately, new technologies were becoming 
available in the Hero time frame that helped solve this issue. These technologies and additional 
design constructs developed during the HCPS Phase II program are described in Section 13.2. 
Finally, Section 13.3 describes how new technologies were integrated into a single-system view 
that satisfies DARPA productivity requirements. 

13.1 The dilemma 
The team’s initial assumption was that supporting a highly productive HPC programming model 
would require a fully cache-coherent, SMP-style machine with a single OS instance running 
across the machine to provide a single-system image. Hardware engineers set about designing 
the coherence mechanism, while the performance modeling team worked on performance 
estimates. Cache coherence for hundreds of nodes, even with Hero’s high-bandwidth and low-
latency interconnect, proved a daunting challenge. Detailed engineering work revealed that full 
cache coherence across the entire machine would fail to meet several system constraints, most 
notably cost, time to market, and performance. In addition, the complexity of a single-system 
image on a petascale system was vexing, and there were serious doubts about its robustness. 
Distributed shared memory (DSM) was explored as an alternate way to implement a petascale 
SMP-style machine. A review of the literature, combined with analyses of several possible 
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schemes, showed that this solution would fail to achieve adequate scalability and performance. 
Scalability issues arose from the need to track entries for all pages on all nodes in the system. A 
petascale memory system would require mapping tables that consume a substantial fraction of 
each node’s memory. Furthermore, bandwidth utilization and latency of page updates would 
create significant issues at extreme scale. 
Caught between the productivity-based requirement for a new programming model and the 
inadequacy of prior shared-memory schemes, the team revisited the productivity data and 
analyses that informed this requirement. A more detailed analysis (Section 10.1) revealed that 
the actual requirement was weaker than full system-wide cache coherence. The productivity 
bottleneck could be broken by providing a combination of global addressability and the ability to 
make the machine fully coherent at well-defined points in the computation (see Table 11). This 
would permit a programming model extremely well aligned with OpenMP parallelism, the 
PGAS family of languages, and new high-programmability languages, without the cost or 
complexity of full hardware cache coherence or DSM’s performance and scaling problems.  

13.2 Technology enablers 
Although the analyses showed that global cache coherence was not required, new hardware and 
software constructs were still needed to enable global addressability and global virtual memory 
capability (global shared memory), along with mechanisms to support the limited form of cache 
coherence required (managed coherence). This required many innovative hardware capabilities 
that became available in the Hero time frame and led to the development of many other hardware 
and software mechanisms. These innovations and their roles in supporting global shared memory 
with managed coherence include the following: 

• Programmers are reluctant to use global shared memory on a large system, due to long 
cross-system memory latencies that cripple performance. The Hero massive chip 
multithreading (CMT) microprocessor (Section 8.1) keeps hardware resources busy even 
in the presence of stalls, high-latency memory operations, and other processing 
irregularities. This provides dramatic performance improvements for HPC applications 
with long cross-system memory latencies and makes global shared memory feasible. 

• Productivity benefits of a globally shared memory architecture will be lost if remote 
access is so slow that it requires programmers to expend significant effort maximizing 
locality. The Hero high-bandwidth, low-latency system interconnect (Section 9) provides 
the fast remote access among compute nodes necessary to enable highly productive, 
global shared-memory programming. 

• The SIF ASIC (Section 8.2) provides hardware support for a fully shared global address 
space, with extra features to improve the performance of legacy applications and 
virtualization support for robustness. It performs the memory controller’s function for all 
physical memory addresses not resident on the node where the request originated. The 
SIF makes address translation for remote memory accesses transparent to the application 
(Section 10.2.1), which allows the application to use standard shared-memory semantics 
for remote accesses. In addition, SIF functionality helps hide the latency penalty of 
random access fetches across the system interconnect. 
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• The typical Hero system application consumes the resources of many nodes, so its 
process virtual address space spans many nodes. The innovative global system virtual 
address space (Section 10.2) resides between physical memory and the multi-node 
process virtual address space. By unifying all process data spread across nodes, it acts as 
a single federated view of global memory for the multi-node process, so that shared-
memory programming semantics can be used. 

• The SuperZone software mechanism (Section 11.2) is a key technology for producing a 
system-wide application environment without the complexity of either fully cache-
coherent SMP hardware or a single-system image across the entire machine. A 
SuperZone is a multi-node set of computational resources that acts as a container for a 
multi-node application. It comprises a set of Unification Zones: containers that reside 
only in a single node but have built-in multi-node semantics. Multi-node support is 
provided through the interposition of these multi-node semantics on system calls, kernel 
upcalls, and signals. Operations that require the participation of more than one node 
invoke interzone communication mechanisms in the SuperZone. 

• A coherence fence (Section 10.3) is a synchronization mechanism used to enforce 
managed coherence: memory coherence at designated points in the application. The 
coherence fence is a special form of memory barrier that makes sure all stores from all 
threads must complete and become visible to all threads before any thread exits the fence. 
A simple implementation flushes all dirty cache entries and invalidates all cached data 
before any thread leaves the fence. To implement the coherence fence, Hero supports 
remote cache-flush and cache-invalidate operations. The application is fully cache 
coherent when it exits a coherence fence. 

13.3 A single-system view 
Hero’s hardware and software mechanisms, notably the ones described in the previous section, 
collaborate to create a single-system view for application software. This view supports the Hero 
execution model (shared global memory with managed coherence) and provides the architectural 
support necessary for a highly productive programming environment. Figure 34 shows how the 
Hero system architecture supports a single-system view using the following layers: 

• The interconnect layer provides fast access to remote memory. 
• The node layer provides transparent address translation for remote memory using SIF and 

processing resources that hide cross-system memory latencies. 
• The fault tolerant hypervisor (FTH) layer supports the creation of Unification Zones 

(UZs) and SuperZones by providing robust access to hardware resources. 
• The Hero Solaris OS layer provides UZs that interpose on standard system calls to 

provide multi-node semantics for operations such as memory allocation and mapping. 
Note that there can be multiple OS instances in the OS layer (two are shown in Figure 34) 
because a guest OS could be running an application in a Hero node, although it would not 
participate in a SuperZone. 

• In the zone layer, the SuperZone, stitched together from individual UZs on each node, 
provides a virtual execution environment (or container) for program execution. The 
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application sees only the SuperZone, even though it is actually running as local threads 
on many nodes. 

The SuperZone mechanism, using the SIF to provide global addressability, presents a single 
view of the system to applications, while enabling independent operating systems on individual 
nodes. UZs also provide mechanisms for sharing information such as file handles across the 
SuperZone without requiring each node to map files to the same ID. Interposition allows the 
global ID to be mapped to the appropriate local ID on each node. This gives applications 
transparent access to the system’s full memory and I/O resources without the complexity and 
overhead of a single OS managing the entire system. Thus, Hero satisfies programming model 
productivity requirements without full system cache coherence and without a single-system 
image. 
 

 
Figure 34: Application single-system view 

 

Figure 34 illustrates the complex interdependence of Hero architectural features necessary to 
satisfy DARPA’s 10x productivity goal. Such a design could not have been created without an 
integrated design team that focused on whole-system properties and completely redesigned 
system layers in order to exploit new technologies. 
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14 Conclusions 
Recognizing that increasing hardware performance is no longer sufficient to drive the 
productivity gains needed by the HPC community, the DARPA HPCS Phase II challenge was to 
develop petascale computing systems that deliver at least 10x more productivity. Sun’s response 
to that challenge was to study the entire nature of supercomputer productivity, identify 
productivity bottlenecks, and use the results of these studies to guide the design of a 
revolutionary supercomputer that could achieve the desired productivity improvement. 
Although the HPCS community has traditionally regarded productivity as either a hardware or 
programming issue, Sun’s analyses revealed that real productivity is a system-wide problem. It is 
not a property of isolated aspects of hardware or software processes, but of the way these work 
together over time, meaning that productivity must be considered as a whole-system property. 
Considering productivity as a system-wide problem led to systematic analyses of supercomputer 
productivity in its full context: this includes people, organizations, goals, practices, and skills in 
addition to processors, disks, memory, and software. 

Sun’s analyses identified a wide range of productivity bottlenecks in system hardware and 
software, system administration, software development practices, and runtime environments. 
Viewed as a systems problem, however, two overarching issues stand out: expertise and effort. 
The expertise bottleneck reflects the fact that developing software for current HPC systems 
requires expertise in several distinct, complex disciplines and that such expertise cannot be 
acquired without long experience. The effort bottleneck reflects the fact that development, 
parallelization, verification, validation, porting, and maintenance of HPC applications are now 
largely manual tasks for which the development platform, execution, and administrative 
environments provide little effective assistance.  

These analysis results illustrate why conventional approaches (such as increasing hardware 
performance) have failed to solve the productivity problem. This is summarized in the Hero 
system strategic goal: to provide a system that significantly reduces the development effort and 
level of expertise required to achieve a given level of machine utilization. Though simple in its 
expression, this goal implies paradigm shifts in the capabilities provided by supercomputers and 
in the skills and practices required to develop and deploy HPC applications. This goal demands a 
productivity-driven, top-to-bottom reevaluation of supercomputer hardware and software design. 
To implement this strategy, Sun created an interdisciplinary, highly collaborative design process. 
The productivity team, of which the authors were members, combined expertise in computer 
hardware, system software, software engineering, computational science, and cultural 
anthropology. Following Sun’s iterative System Exploration Model, design teams worked in 
collaboration with one another and with the productivity team to make critical design tradeoffs. 
Hero’s design drew heavily on emerging technologies, such as those in the areas of chip 
interconnect and resource virtualization, to make possible an innovative memory architecture for 
high-productivity programming. 
The Hero design represents a systematic application of two strategic design principles: 
abstraction and automation. At the user level, this implies providing languages, tools, and a 
runtime environment that abstract from machine details and allow scientists to write and 
maintain programs in terms of problem domains (for example, fluid mechanics). At the system 
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and software layers, this implies tools for automating routine tasks such as memory management, 
parallelization, and job control. At the hardware layer, this implies new approaches to memory 
management, localization, and reliability. 
Gordon Bell once said: “The fastest, most reliable and least expensive components of a computer 
system are those that aren’t there.” It could also be said that the fastest, most reliable, and least 
expensive code is that which doesn’t need to be written. Sun’s approach was to eliminate 
programming tasks that scientist-programmers may be insufficiently prepared to perform and 
that distract from their most important goal: advancing science. 
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17 NAS BT code modification experiment 
An experienced HPC programmer was asked to add new functionality to one of the benchmarks 
(NAS BT I/O) rewritten in the experiment described in 3.7.2, as might be done during the 
maintenance phase of an application’s life cycle. The task was to add checkpoint-style I/O in 
several different programming models: 

• High-programmability style with Fortran 90: Exploiting simplifications made during the 
previous experiment, the important state is contained in a single array for which high-
level array operations are available. 

• Serial FORTRAN 77: Standard FORTRAN I/O for reading and writing array contents. 
• MPI – simple: Parallel I/O with naïve use of the MPI I/O API. 
• MPI – optimized: Parallel I/O optimized use of the MPI/IO API, with collective I/O 

operations. 

The task required supporting four operations: setup, write, read, and close. Table 12 (repeated 
from Section 3.7.2) shows the amount of code required for the task, using each of the four 
programming models. The total lines of code (LOC) required for each model give a rough 
measure of the code’s complexity and the expected lifetime maintenance cost for this segment. 

Table 12: NAS BT I/O code modification - lines of code 
Programming Model Setup Write Read Close Total LOC 

High-programmability w/F90 1 1 1 1 4 
Serial FORTRAN 77 7 19 20 1 47 
MPI - simple 25 22 23 1 71 
MPI - optimized 144 12 13 1 170 

 
The code for each of these styles follows. 

17.1 High-programmability style with Fortran 90 

Setup 
open(20,file="btio.dat",status="unknown",form="unformatted") 

Write 
write(20) u   ! write entire array, including boundary cells 

Read 
read(20) u    ! read entire array, including boundary cells 

Close 
close(20) 
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17.2 Serial FORTRAN 77 

Setup 
      if (node.eq.root) record_length = 40/fortran_rec_sz 
      call mpi_bcast(record_length, 1, MPI_INTEGER,  
     >                root, comm_setup, ierr)  
 
      open (unit=99, file=filenm,  
     $      form='unformatted', access='direct',  
     $      recl=record_length) 

Write 
 do cio=1,ncells 
     do kio=0, cell_size(3,cio)-1 
         do jio=0, cell_size(2,cio)-1 
             iseek=(cell_low(1,cio) + 
$                   PROBLEM_SIZE*((cell_low(2,cio)+jio) + 
$                   PROBLEM_SIZE*((cell_low(3,cio)+kio) + 
$                   PROBLEM_SIZE*idump)))  
 
             do ix=0,cell_size(1,cio)-1 
                 write(99, rec=iseek+ix+1)  
$                      u(1,ix, jio,kio,cio),  
$                      u(2,ix, jio,kio,cio),  
$                      u(3,ix, jio,kio,cio),  
$                      u(4,ix, jio,kio,cio),  
$                      u(5,ix, jio,kio,cio)  
             enddo 
         enddo 
     enddo 
 enddo 

Read 
   do cio=1,ncells 
     do kio=0, cell_size(3,cio)-1 
         do jio=0, cell_size(2,cio)-1 
             iseek=(cell_low(1,cio) + 
$                   PROBLEM_SIZE*((cell_low(2,cio)+jio) + 
$                   PROBLEM_SIZE*((cell_low(3,cio)+kio) + 
$                   PROBLEM_SIZE*ii)))  
 
 
             do ix=0,cell_size(1,cio)-1 
                 read(99, rec=iseek+ix+1)  
$                      u(1,ix, jio,kio,cio),  
$                      u(2,ix, jio,kio,cio),  
$                      u(3,ix, jio,kio,cio),  
$                      u(4,ix, jio,kio,cio),  
$                      u(5,ix, jio,kio,cio)  
             enddo 
         enddo 
     enddo 
   enddo 

Close 
close(unit=99) 
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17.3 MPI - simple 

Setup 
      integer ierr 
 
      iseek=0 
 
      if (node .eq. root) then 
          call MPI_File_delete(filenm, MPI_INFO_NULL, ierr)  
      endif 
 
      call MPI_Barrier(comm_solve, ierr)  
 
      call MPI_File_open(comm_solve,  
     $          filenm,  
     $          MPI_MODE_WRONLY + MPI_MODE_CREATE,  
     $          MPI_INFO_NULL,  
     $          fp,  
     $          ierr)  
 
      call MPI_File_set_view(fp,  
     $          iseek, MPI_DOUBLE_PRECISION, MPI_DOUBLE_PRECISION,  
     $          'native', MPI_INFO_NULL, ierr)  
 
      if (ierr .ne. MPI_SUCCESS) then 
          print *, 'Error opening file' 
          stop 
      endif 

Write 
 do cio=1,ncells 
     do kio=0, cell_size(3,cio)-1 
         do jio=0, cell_size(2,cio)-1 
             iseek=5*(cell_low(1,cio) + 
$                   PROBLEM_SIZE*((cell_low(2,cio)+jio) + 
$                   PROBLEM_SIZE*((cell_low(3,cio)+kio) + 
$                   PROBLEM_SIZE*idump)))  
 
             count=5*cell_size(1,cio)  
 
             call MPI_File_write_at(fp, iseek,  
$                  u(1,0,jio,kio,cio),  
$                  count, MPI_DOUBLE_PRECISION,  
$                  mstatus, ierr)  
 
             if (ierr .ne. MPI_SUCCESS) then 
                 print *, 'Error writing to file' 
                 stop 
             endif 
         enddo 
     enddo 
 enddo 

Read 
   do cio=1,ncells 
     do kio=0, cell_size(3,cio)-1 
         do jio=0, cell_size(2,cio)-1 
             iseek=5*(cell_low(1,cio) + 
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$                   PROBLEM_SIZE*((cell_low(2,cio)+jio) + 
$                   PROBLEM_SIZE*((cell_low(3,cio)+kio) + 
$                   PROBLEM_SIZE*ii)))  
 
             count=5*cell_size(1,cio)  
 
             call MPI_File_read_at(fp, iseek,  
$                  u(1,0,jio,kio,cio),  
$                  count, MPI_DOUBLE_PRECISION,  
$                  mstatus, ierr)  
 
             if (ierr .ne. MPI_SUCCESS) then 
                 print *, 'Error reading back file' 
                 call MPI_File_close(fp, ierr)  
                 stop 
             endif 
         enddo 
     enddo 
   enddo 

Close 
call MPI_File_close(fp, ierr) 

17.4 MPI - optimized 

Setup 
      integer ierr 
      integer combined_ftype 
      integer mstatus(MPI_STATUS_SIZE)  
      integer sizes(4), starts(4), subsizes(4)  
      integer cell_btype(maxcells), cell_ftype(maxcells)  
      integer cell_blength(maxcells)  
      integer info 
      character*20 cb_nodes, cb_size 
      integer c 
      integer cell_disp(maxcells)  
 
       call mpi_bcast(collbuf_nodes, 1, MPI_INTEGER,  
     >                root, comm_setup, ierr)  
 
       call mpi_bcast(collbuf_size, 1, MPI_INTEGER,  
     >                root, comm_setup, ierr)  
 
       if (collbuf_nodes .eq. 0) then 
          info = MPI_INFO_NULL 
       else 
          write (cb_nodes,*) collbuf_nodes 
          write (cb_size,*) collbuf_size 
          call MPI_Info_create(info, ierr)  
          call MPI_Info_set(info, 'cb_nodes', cb_nodes, ierr)  
          call MPI_Info_set(info, 'cb_buffer_size', cb_size, ierr)  
          call MPI_Info_set(info, 'collective_buffering', 'true', ierr)  
       endif 
 
       call MPI_Type_contiguous(5, MPI_DOUBLE_PRECISION,  
     $                          element, ierr)  
       call MPI_Type_commit(element, ierr)  
       call MPI_Type_extent(element, eltext, ierr)  
 
       do  c = 1, ncells 
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c 
c Outer array dimensions ar same for every cell 
c 
    sizes(1) = IMAX+4 
           sizes(2) = JMAX+4 
           sizes(3) = KMAX+4 
c 
c 4th dimension is cell number, total of maxcells cells 
c 
    sizes(4) = maxcells 
c 
c Internal dimensions of cells can differ slightly between cells 
c 
           subsizes(1) = cell_size(1, c)  
           subsizes(2) = cell_size(2, c)  
           subsizes(3) = cell_size(3, c)  
c 
c Cell is 4th dimension, 1 cell per cell type to handle varying  
c cell sub-array sizes 
c 
    subsizes(4) = 1 
 
c 
c type constructors use 0-based start addresses 
c 
           starts(1) = 2  
           starts(2) = 2 
           starts(3) = 2 
    starts(4) = c-1 
 
c  
c Create buftype for a cell 
c 
           call MPI_Type_create_subarray(4, sizes, subsizes,  
     $          starts, MPI_ORDER_FORTRAN, element,  
     $          cell_btype(c), ierr)  
c 
c block length and displacement for joining cells -  
c 1 cell buftype per block, cell buftypes have own displacment 
c generated from cell number (4th array dimension)  
c   
    cell_blength(c) = 1 
           cell_disp(c) = 0 
 
       enddo 
c 
c Create combined buftype for all cells 
c 
       call MPI_Type_struct(ncells, cell_blength, cell_disp,  
     $            cell_btype, combined_btype, ierr)  
       call MPI_Type_commit(combined_btype, ierr)  
 
       do  c = 1, ncells 
c 
c Entire array size 
c 
           sizes(1) = PROBLEM_SIZE 
           sizes(2) = PROBLEM_SIZE 
           sizes(3) = PROBLEM_SIZE 
 
c 
c Size of c'th cell 
c 



Productive Petascale Computing  Page 124 of 139 

           subsizes(1) = cell_size(1, c)  
           subsizes(2) = cell_size(2, c)  
           subsizes(3) = cell_size(3, c)  
 
c 
c Starting point in full array of c'th cell 
c 
           starts(1) = cell_low(1,c)  
           starts(2) = cell_low(2,c)  
           starts(3) = cell_low(3,c)  
 
           call MPI_Type_create_subarray(3, sizes, subsizes,  
     $          starts, MPI_ORDER_FORTRAN,  
     $          element, cell_ftype(c), ierr)  
           cell_blength(c) = 1 
           cell_disp(c) = 0 
       enddo 
 
       call MPI_Type_struct(ncells, cell_blength, cell_disp,  
     $            cell_ftype, combined_ftype, ierr)  
       call MPI_Type_commit(combined_ftype, ierr)  
 
       iseek=0 
       if (node .eq. root) then 
          call MPI_File_delete(filenm, MPI_INFO_NULL, ierr)  
       endif 
 
 
      call MPI_Barrier(comm_solve, ierr)  
 
       call MPI_File_open(comm_solve,  
     $          filenm,  
     $          MPI_MODE_WRONLY+MPI_MODE_CREATE,  
     $          MPI_INFO_NULL, fp, ierr)  
 
       if (ierr .ne. MPI_SUCCESS) then 
  print *, 'Error opening file' 
         stop 
       endif 
 
 call MPI_File_set_view(fp, iseek, element,  
     $  combined_ftype, 'native', info, ierr)  
 
       if (ierr .ne. MPI_SUCCESS) then 
  print *, 'Error setting file view' 
         stop 
       endif 

Write 
 integer mstatus(MPI_STATUS_SIZE)  
 integer ierr 
 
 call MPI_File_write_at_all(fp, iseek, u,  
$            1, combined_btype, mstatus, ierr)  
 if (ierr .ne. MPI_SUCCESS) then 
     print *, 'Error writing to file' 
     stop 
 endif 
 
 call MPI_Type_size(combined_btype, iosize, ierr)  
 iseek = iseek + iosize/eltext 
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Read 
  integer mstatus(MPI_STATUS_SIZE)  
  integer ierr 
 
  call MPI_File_read_at_all(fp, iseek, u,  
$           1, combined_btype, mstatus, ierr)  
  if (ierr .ne. MPI_SUCCESS) then 
     print *, 'Error reading back file' 
     call MPI_File_close(fp, ierr)  
     stop 
  endif 
 
  call MPI_Type_size(combined_btype, iosize, ierr)  
  iseek = iseek + iosize/eltext 

Close 
call MPI_File_close(fp, ierr) 
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18 Glossary 
One lesson of the interdisciplinary research that characterized Sun’s participation in the HPCS 
program is that there is no single common vocabulary among participants, an issue that is 
exacerbated by a focus on very advanced technologies. The following list describes common 
terms used in the research and design leading to Hero. 
Active messages: asynchronous mechanism in Hero that delivers a (executable) message to a 
remote node for execution on a thread in the receiving node 
Administrative Environment (AE): software layer at the boundary of the Hero system software 
and the Hero development environment; it provides tools that help manage the system and tools 
that help improve application execution 

Applications: computer programs that are most directly related to the objectives in using a 
computer—for example, simulating fluids or molecules—in contrast to other computer software 
such as middleware or system software; referred to in the HPC community as codes 
Application jitter: performance degradation that results when system software disrupts even a 
few threads or processes in an application with tight synchronization 
Application-specific integrated circuit (ASIC): complex integrated circuit customized for a 
particular use 
BrandZ: in OpenSolaris, extends the OpenSolaris Zones infrastructure to create Branded Zones; 
zones that contain non-native operating environments [45] 

Cache coherency: consistency of data when its value is no longer stored in a single location 
(main memory), but is replicated and cached throughout a large system for performance reasons 

Cache-coherent shared memory (CCSM): commonly understood set of properties provided by 
most SMP machines and relied upon for correct execution of programs using a form of threaded 
concurrency 
Capability mode: in HPC, using a large computing resource for few large jobs, each of which 
demands the large resource; cf. capacity mode 
Capacity mode: in HPC, using a large computing resource for many small jobs, none of which 
demands such a large resource for itself; cf. capability mode 
Checkpointing: storing an entity’s state (for example, thread, application or system) for use in 
error recovery or other resource remapping 
Chip multiprocessor (CMP): placing multiple microcores on a single die 

Chip multithreading (CMT): combining CMP microprocessors with multithreading 
Co-Array Fortran: an emerging PGAS language based on FORTRAN [42], see partitioned 
global address space  <http://www.co-array.org/> 
Code, codes: what the HPC community calls programs, cf. Applications 

Coherence fence: a special barrier mechanism that enforces full coherence at designated points 
in a program 
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Content-addressable memories (CAM): special type of computer memory designed to search 
its entire memory in a single operation 

Cultural Anthropology: systematic study of culture, a complex phenomenon that includes 
interrelated economic systems, political systems, social organizations, and belief systems; 
applied in this research to understanding the context in which supercomputers are used 
Defense Advanced Research Projects Agency (DARPA) <http://www.darpa.gov/> 

Development environment: collection of software tools, libraries, and other structure to support 
software development  

Distributed shared memory (DSM): system implementation in which each node of a cluster 
has access to a large shared memory, in addition to each node's limited, nonshared private 
memory 
dbx: standard Sun Studio debugger, used for multithreaded debugging within a Hero node or  
SuperZone 
Execution model: hardware architectural support for a programming model 

Exploratory programming: in software engineering, describes a kind of software development 
where requirements are not given a priori, but whose development is part of the development’s 
goal (observed in this report to describe scientific programming characteristic of the mission 
partners) 

Fault Management Architecture: OpenSolaris technology that aggregates fault information 
and performs prediction, diagnosis, and healing [45] 

Fault tolerant hypervisor: in OpenSolaris, the lowest software layer, supports the creation of 
Hero Unification Zones and SuperZones by providing robust access to hardware resources; see 
OpenSolaris, Unification Zones, SuperZones 
Floating point operations per second (FLOPS), also FLOP: measure of computer 
performance 
FORTRAN 77: serial, universally supported version of Fortran 

Fortran 90, Fortran 95: modernized versions of Fortran 
Fortress: Sun’s new programming language, provides a higher level of abstraction more closely 
resembling scientific and mathematical expression [2] 
<http://projectfortress.sun.com/Projects/Community> 

Global addressability: a program’s ability to read or write any memory location in a large, 
physically distributed computer system with the same simple instructions, whether or not that 
location is local to the instruction’s issuance  
Hackystat: tool that collects data from multiple streams on a server and can produce many 
different kinds of activity reports and analyses spanning many time frames [23] 
<http://code.google.com/p/hackystat/> 

Hero: Sun’s revolutionary petascale supercomputer, designed to meet DARPA’s HPCS 
requirements 
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Hero Solaris: the Hero operating system, based on OpenSolaris and enhanced with features to 
support increased robustness and a limited set of multi-node semantics for applications, 
including SuperZones and Unification zones; see OpenSolaris, SuperZones, Unification zones 
High Performance Computing (HPC)  
High Productivity Computing Systems (HPCS): DARPA program [12] 
IDE: integrated development environment 

I/O: input/output; often referring to network or storage devices 
Interconnect: a mechanism for passing electrical signals among computer chips 

Jitter: see application jitter 
Life cycle: refers to the steps in creating and maintaining a product or application 

LOC: lines of code; approximate measure of the code’s complexity 
Luxtera: Sun partner during HPCS Phase II; see silicon photonics <http://www.luxtera.com/> 

MATLAB: programming language characterized by extensive use of higher level (more 
abstract) library functions that are specialized for the kind of scientific and numerical 
programming common in HPC applications [37] <http://www.mathworks.com/> 
Message passing interface (MPI): application programmer interface for distributed memory 
programming that uses message-oriented communication between computational nodes together 
with protocol and semantic specifications for how its features must behave (the predominant 
HPC parallel programming model today) [38] [39] <http://www.mpi-forum.org/docs/docs.html> 
Microcore: core set of computing resources such as a floating point pipeline; a chip 
multiprocessor (CMP) usually contains several microcores that may share some resources such 
as caches 

Mission partners: organizations that plan to use the HPCS-produced supercomputers, including 
the U.S. Departments of Energy and Defense 

Multi-node: multiple nodes in a single system, zone or domain 
Multiprocessor: multiple processors on a single chip (CMP) 

Multithreading: ability to execute multiple software threads on a single microcore, sharing the 
microcore computing resources 

NAS: NASA Advanced Supercomputing division 
NAS BT: NAS parallel benchmark using a block-tridiagonal solver to simulate fluid flow 

NAS BT I/O: NAS parallel benchmark based on NAS BT but adding an I/O component 
NAS CG:  NAS parallel benchmark using a conjugate-gradient method to solve a sparse linear 
system 
NAS MG: NAS parallel benchmark testing the performance of a multigrid solver 
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NAS parallel benchmarks (NPB): set of programs designed by NASA’s Advanced 
Supercomputing division to help evaluate performance of parallel supercomputers 
<http://www.nas.nasa.gov/Resources/Software/npb.html> 
Nonuniform memory access (NUMA): computer memory design where memory access time 
depends on the memory’s location relative to the accessing processor 
OpenMP: existing and ubiquitous HPC shared-memory parallel programming model based on 
Fortran and C/C++ language, using explicit directives to specify concurrency [44] 
<http://www.openmp.org/> 

OpenSolaris: open source version of the Solaris Operating System [45] 
<http://www.opensolaris.org> 

Parallel programming: developing software that will, at execution time, be characterized by 
many computational processes taking place concurrently 

Partitioned global address space (PGAS): family of emerging languages for HPC 
programming (Co-Array Fortran [42], Titanium [19] and UPC [61]), characterized by explicit 
expression of distributed-memory parallelism as per-node private memory, combined with 
globally shared memory 

Petascale: adjective that loosely refers to the ability to perform a quadrillion (1015) operations 
per second 

Port, porting: migration of an application from one computing platform to another, often 
requiring substantial modification in the HPC community 

Productivity (DARPA HPCS program goals): ability to develop and deploy high-performance 
supercomputer applications at acceptable time and cost [30] 

Productivity (economics): value divided by cost of goods or services produced 
Productivity (supercomputer): holistic metric of a computer’s usefulness, taking into account its 
real value to end users and all the costs associated with acquiring, maintaining, and using it 
Programming model: programming language together with its execution, memory, and 
parallelism semantics as exposed to the programmer; cf. execution model 
Proximity communication: Sun’s technology that uses capacitive coupling (extreme proximity 
without direct physical interconnection) between pairs of neighboring chips to enable very low-
power, low-latency, high-bandwidth communication [14] [21] 

Reliability, availability, serviceability (RAS) 
Remote load/store: operations to load data from or store data to remote memory locations in a 
large, physically distributed computer system 
Safepoints: locations in a program where it is safe for the program to stop, as determined by 
global data flow and control-flow analysis 
Scalability interface (SIF): special-purpose ASIC in Hero that provides hardware support for a 
fully shared global address space 
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Scale: in HPC, refers to the degree of parallelism achieved by an application, expressed as the 
number of processors that can be used effectively; as a verb, to modify an application to achieve 
a higher degree of parallelism 
Silicon photonics: technology that performs transmission, amplification, detection, modulation, 
and switching of light on silicon; WDM silicon photonics switches multiple wavelengths (colors) 
of light on silicon [51] [67]; see Luxtera 

Single-system image: provides applications with a single view of all system services, which 
usually means that there is a single OS image running across the entire (multi-node) system; cf. 
single-system view 
Single-system view: provides applications with a single view of all computation resources—
memory, files, and I/O, but does not support all system services; cf. single-system image 
Space sharing: running multiple jobs concurrently on a large computer, each one on a physically 
disjoint portion of the system; cf. time sharing 
SuperZone: a software construct in Hero Solaris:  stitched together from individual Unification 
Zones (UZs) to provide a virtual execution environment (or container) for program execution 
Switch: hardware component of a chip interconnect that routes signals from source to destination 

Switching fabric: topological arrangement of a set of switches to interconnect all compute and 
I/O nodes 

Symmetric multiprocessing (SMP): multiprocessor computer architecture where two or more 
identical processors (or microcores) connect to a single shared main memory; usually implies 
cache coherence 
System Exploration Model (SEM): Sun’s HPCS Phase II process for concurrent, highly 
collaborative design 
Time sharing: running multiple jobs on a large computer by having them take turns accessing 
computational resources; cf. space sharing 
Titanium: an emerging PGAS language, based on the Java programming language [19]; see 
partitioned global address space 
Total store ordering (TSO): guarantee that all load/store operations from a given processor (or 
microcore) appear in memory in the same order they were issued by the processor 
Transactional memory: a program’s ability to perform a set of instructions as a single atomic 
unit [59] 
Unification Zone (UZ): Hero Solaris software construct in a Hero node that interposes on 
standard system calls to provide multi-node semantics for operations such as memory allocation 
and mapping 

UPC: an emerging PGAS language, based on the C programming language [61]; see partitioned 
global address space <http://upc.gwu.edu/> 
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Utilization: also machine utilization; a proxy metric for productivity commonly used in the HPC 
community, defined as a percentage of potentially available floating point operations consumed 
by an application during execution 
Validation: checking that an application achieves its intended objective, for example, correctly 
simulating some physical phenomenon 
Verification: checking that a computer component (for example, a software program) behaves 
according to its design, correctly implementing a prescribed algorithm 
Wavelength division multiplexing (WDM), see silicon photonics 

Workflow: description of possible tasks and their sequences in the use of a computer system 
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Performance in High-End Computing (P-PHEC), Austin, Texas, February 12, 2006. 

Richard Kendall, Douglass Post, Susan Squires, and Jeff Carver, Case Study of the Eagle Code 
Project, Los Alamos National Laboratory, Report LA-UR-06-1092, 2006. 
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Declan Murphy, Thomas Nash, Lawrence Votta, Jr., and Jeremy Kepner, “A System-wide 
Productivity Figure of Merit,” CTWatch Quarterly, 2(4B), November 2006 B. 
<http://www.ctwatch.org/quarterly/articles/2006/11/a-system-wide-productivity-figure-of-
merit/> 

Jeffrey C. Carver, Richard P. Kendall, Susan Squires, Douglass E. Post, “Software Development 
Environments for Scientific and Engineering Software: A Series of Case Studies,” Proceedings 
of the 29th International Conference on Software Engineering, IEEE Computer Society, 
Washington, DC, pp. 440-559, May 20–26, 2007. 

Richard Kendall, Jeffrey C. Carver, David Fisher, Dale Henderson, Andrew Mark, Douglass 
Post, Clifford E. Rhoades Jr., Susan Squires, "Development of a Weather Forecasting Code: A 
Case Study," IEEE Software 25(4), July–August 2008, pp. 59-65. 

19.2 Hardware 
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Computer with Proximity Communication,” Proceedings of the 13th Symposium on High 
Performance interconnects, pp. 13-22, August 17–19, 2005, HOTI, IEEE Computer Society, 
Washington, DC.  
Robert Drost, R. D. Hopkins, Ron Ho, Ivan Sutherland, "Proximity communication," IEEE 
Journal of Solid-State Circuits, 39(9), pp. 1529-1535, September 2004. 
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communication," Digest of Technical Papers. ISSCC. 2004 IEEE International Solid-State 
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Robert Drost, R. D. Hopkins, Ivan Sutherland, “Proximity Communications,” IEEE Custom 
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Proceedings 10th International Symposium on Asynchronous Circuits and Systems, pp. 240-249, 
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John E. Cunningham, “CMOS Integration of Capacitive, Optical, and Electrical Interconnects," 
Proceedings International Interconnect Technology Conference (IITC), pp. 78-80, June 4–6, 
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Technical Papers, IEEE International Solid-State Circuits Conference (ISSCC), pp. 368-9, 
February 2007. 
Jo Ebergen, Alex Chow, Bill Coates, Justin Schauer, R. D. Hopkins, "An asynchronous high-
throughput control circuit for proximity communication," 12th IEEE International Symposium 
on Asynchronous Circuits and Systems, 2006. pp. 9-33, March 13–15, 2006. 
Alex Chow, R. D. Hopkins, Ron Ho, Robert Drost, "Measuring 6D Chip Alignment in Multi-
Chip Packages," 2007 IEEE Sensors, pp.1307-1310, October 28–31, 2007. 
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John E. Cunningham, Daniel Beckman, Xuezhe Zheng and Ashok V. Krishnamoorthy, “Scaling 
VCSEL performance for 100Terabits/s Systems,” (invited paper) Proceedings of the SPIE, 
Volume 6124, pp. 204-214, 2006. 
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