
Fold line for front cover, back
cover edge moves depending on
thickness.

> Sun Microsystems Laboratories

Fold line for front cover, back
cover edge moves depending on
thickness.

Productive Petascale
Computing: Requirements,
Hardware, and Software

Michael L. Van De Vanter, Alan Wood,
Christopher Vick, Stuart Faulk,
Susan Squires, and Lawrence G. Votta, Jr.

TECHNICAL REPORT

Productive Petascale Computing:
Requirements, Hardware, and Software

Michael L. Van De Vanter, Alan Wood, Christopher Vick, Sun Microsystems,
Menlo Park, California

Stuart Faulk, University of Oregon, Dept. of Computer and Information Science,
Corvallis, Oregon

Susan Squires, Technology for Independent Living Centre, Trinity College Dublin,
Ireland

Lawrence G. Votta, Jr., Brincos, Inc., Sammamish, Washington

SMLI TR-2009-183 July 2009

Abstract:

Supercomputer designers traditionally focus on low-level hardware performance criteria
such as CPU cycle speed, disk bandwidth, and memory latency. The High-Performance
Computing (HPC) community has more recently begun to realize that escalating
hardware performance is, by itself, contributing less and less to real productivity—the
ability to develop and deploy high-performance supercomputer applications at
acceptable time and cost.

The Defense Advanced Research Projects Agency (DARPA) High Productivity Computing
Systems (HPCS) initiative challenged industry vendors to design a new generation of
supercomputers that would deliver a 10x improvement in this newly acknowledged but
poorly understood domain of real productivity. Sun Microsystems, choosing to abandon
customary evolutionary approaches, responded with two revolutionary decisions. The first
was to investigate the nature of supercomputer productivity in the full context of use, which
includes people, organizations, goals, practices, and skills as well as processors, disks,
memory, and software. The second decision was to rethink completely the design of
supercomputing systems, informed by productivity-based requirements and driven by
recent technological breakthroughs. Crucial to the implementation of these decisions was
the establishment of multidisciplinary, closely collaborating teams that conducted research

email addresses:
michael.vandevanter@sun.com
alan.wood@sun.com
christopher.vick@sun.com
faulk@cs.uoregon.edu
susan.squires@acelere.net
votta@alum.mit.edu

Sun Labs
16 Network Circle
Menlo Park, CA 94025

into productivity and developed the many closely intertwined design decisions needed to
meet DARPA’s challenge

Among the most significant results from Sun’s productivity research was a detailed
diagnosis of software development as the dominant barrier to productivity improvements in
the HPC community. The level of expertise required, combined with the amount of effort
needed to develop conventional HPC codes, has already created a crisis of productivity.
Even worse, there is no path forward within the existing paradigm that will significantly
increase productivity as hardware systems scale up. The same issues also prevent HPC
from “scaling out” to a broader class of applications. This diagnosis led to design
requirements that address specific issues behind the expertise and effort bottlenecks.

Sun’s design teams explored complex, system-wide tradeoffs needed to meet these
requirements in all aspects of the design, including reliability, performance,
programmability, and ease of administration. These tradeoffs drew on technological
advances in massive chip multithreading, extremely high-performance interconnects,
resource virtualization, and programming language design. The outcome was the design
for a machine to operate at petascale, with extremely high reliability and a greatly
simplified programming model. Although this design supports existing codes and software
technologies—crucial requirements—it also anticipates that the greatest productivity
breakthroughs will follow from dramatic changes in how HPC codes are developed,
changes that require a system of the type designed by Sun’s HPCS team.

© 2009 Sun Microsystems, Inc. All rights reserved. Sun, Sun Microsystems, the Sun logo, Solaris, OpenSolaris, Java, Java HotSpot, and NetBeans
are trademarks or registered trademarks of Sun Microsystems, Inc. or its subsidiaries in the U.S. and other countries. Information subject to change
without notice.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

Unlimited copying without fee is permitted provided that the copies are not made nor distributed for direct commercial advantage, and credit to the
source is given. Otherwise, no part of this work covered by copyright hereon may be reproduced in any form or by any means graphic, electronic,
or mechanical, including photocopying, recording, taping, or storage in an information retrieval system, without the prior written permission of the
copyright owner.

For information regarding the SML Technical Report Series, contact Mary Holzer or Nancy Snyder, Editors-in-Chief <Sun-Labs-techrep-
request@sun.com>.All technical reports are available online on our website, http://research.sun.com/techrep/.

Productive Petascale Computing Page 3 of 139

Table of Contents
1  Introduction ...7 
2  Characterizing productivity in High-Performance Computing (HPC)....................................11 

2.1  Unique characteristics of HPC ...11 
2.2  Design models and strategies ...12 
2.3  Quantitative productivity models ...19 
2.4  Productivity at a wider scale...21 

3  Productivity bottlenecks in HPC ...22 
3.1  Research methodology ...24 
3.2  Collaborative case studies ..26 
3.3  The expertise hypothesis ..27 
3.4  HPCS workflows ..29 
3.5  Expertise, effort, and intellectual workflows..30 
3.6  Code libraries and expertise ...35 
3.7  High-programmability code ...36 
3.8  Software development tools ...42 
3.9  Administration ..44 
3.10  Technology adoption ..46 
3.11  Summary of findings ..47 

4  Strategic development goals for Hero ...50 
5  Productivity requirements for Hero...52 

5.1  Requirements for programmability and portability ..52 
5.2  Requirements for performance ...55 
5.3  Requirements for robustness ..56 
5.4  Requirements for administration ..56 

6  From requirements to design ...58 
6.1  System Exploration Model ...58 
6.2  Enabling innovations ..60 
6.3  Requirements traceability ...62 

7  Design overview ..65 
7.1  Hardware overview...65 
7.2  Software overview..67 

Productive Petascale Computing Page 4 of 139

8  Compute node: massive chip multithreading (CMT) ..69 
8.1  Chip multithreading (CMT)..69 
8.2  Hardware support for global shared memory ...71 
8.3  Compute and I/O nodes ..72 

9  Interconnect: proximity communication and silicon photonics ..74 
9.1  Proximity communication ..74 
9.2  WDM silicon photonics..76 
9.3  Hero Switch ..76 
9.4  System configurations ..78 

10  Execution model ..80 
10.1  Global shared memory with managed coherence...80 
10.2  Virtual memory...82 
10.3  Synchronization mechanisms ...87 

11  System software...88 
11.1  System software stack ..89 
11.2  Multi-node support ...90 
11.3  Runtime environment ...94 
11.4  Administrative support ...99 

12  Development support: languages, tools, skills ..101 
12.1  Legacy applications and languages ..101 
12.2  Standard development tools..102 
12.3  Highly productive programming ..102 
12.4  Fortress ...103 
12.5  Portability: applications, tools, and skills ...105 

13  The interplay of design decisions ..106 
13.1  The dilemma ...106 
13.2  Technology enablers...107 
13.3  A single-system view..108 

14  Conclusions ...110 
15  Acknowledgements ...112 
16  References ...113 
17  NAS BT code modification experiment ..119 

Productive Petascale Computing Page 5 of 139

17.1  High-programmability style with Fortran 90..119 
17.2  Serial FORTRAN 77 ..120 
17.3  MPI - simple ...121 
17.4  MPI - optimized..122 

18  Glossary ...126 
19  Sun HPCS Phase II publications ...132 

19.1  Productivity ..132 
19.2  Hardware ..133 
19.3  Software..135 
19.4  Performance analysis ..137 
19.5  RAS architecture...138 

20  About the authors...139 

List of Figures

Figure 1: Typical large-scale computational science and engineering (CSE) project life cycle ...12 
Figure 2: Simple layered model of a computer system ...13 
Figure 3: Software engineering perspective on workflows ...15 
Figure 4: Anthropological perspective on HPCS mission partners ...17 
Figure 5: Interdisciplinary view of a whole HPC system..18 
Figure 6: Complex HPC workflow..29 
Figure 7: Time per day spent interacting with programming tools ...32 
Figure 8: HPC development stages and skill sets..33 
Figure 9: Improved code excerpt from NAS MG benchmark (timed portion)38 
Figure 10: Benchmark code improvement: size reduction [35] ..38 
Figure 11: NAS BT I/O code modification - code samples ..40 
Figure 12: System Exploration Model...60 
Figure 13: Innovations that enable achievement of productivity goals...62 
Figure 14: Hero hardware architecture ..66 
Figure 15: Path from source to destination node...67 
Figure 16: Hero software architecture ...68 
Figure 17: Hero nodes ...73 
Figure 18: Proximity communication using capacitive coupling..74 

Productive Petascale Computing Page 6 of 139

Figure 19: Balls and pits used as a proximity communication alignment mechanism..................75 
Figure 20: Packaged silicon photonics chip ..76 
Figure 21: Example of a Hero Switch ...77 
Figure 22: Hero system architecture..79 
Figure 23: Execution versus programming models ...80 
Figure 24: Hero memory address space mapping ...83 
Figure 25: Hero memory address space mapping details ..84 
Figure 26: Address translation for remote memory request ..86 
Figure 27: Hero system software...88 
Figure 28: Mapping Unification Zones (UZ) to SuperZones ..91 
Figure 29: Application data distribution throughout a SuperZone..92 
Figure 30: Multi-node job creation from the application point of view..95 
Figure 31: Multi-node memory allocation from the application’s point of view..........................95 
Figure 32: Automated checkpoint creation and recovery..98 
Figure 33: Application jitter ..99 
Figure 34: Application single-system view ...109 

List of Tables

Table 1: Research framework..24 
Table 2: Examples of research methods ..26 
Table 3: Examples of Hackystat detail ..31 
Table 4: Total time spent on key activity sets in case study projects ..34 
Table 5: HPC application project timeline and staffing ..34 
Table 6: NAS BT I/O code modification - lines of code...39 
Table 7: Case study development costs, two examples...41 
Table 8: Productivity goals to design requirements traceability ...63 
Table 9: Design requirements to enabling innovations traceability ..64 
Table 10: System configuration examples using a Clos network..79 
Table 11: Programming model requirements ..81 
Table 12: NAS BT I/O code modification - lines of code...119 

Productive Petascale Computing Page 7 of 139

1 Introduction
Supercomputing seeks solutions to computational problems whose scale, in both complexity and
size, stretches the limits of our technology. Typical supercomputer applications1 include weather
modeling, crash simulation, hydrodynamic modeling, and encryption [12]. Requirements for new
supercomputers traditionally focus on hardware performance issues: CPU cycle speed, storage
I/O, and memory latency.

The High-Performance Computing (HPC) community has begun to realize, however, that
evolutionary hardware improvement, although necessary, is not enough to meet the community’s
goals. Hardware improvements are now delivering less gain in real productivity: the ability to
develop and deploy high-performance supercomputer applications at acceptable time and cost
[30]. Equally challenging is an apparent inability to scale out to a wider class of problems for
which supercomputing would be valuable. The Defense Advanced Research Projects Agency
(DARPA) High Productivity Computing Systems (HPCS) program addresses these problems by
funding research and development of more cost-effective supercomputers. In HPCS Phase II,
DARPA challenged Sun and other vendors2 to develop designs for revolutionary petascale
computing systems that will not only compute significantly faster than the current generation, but
will also deliver at least 10 times more productivity.
HPCS program goals acknowledge that productivity is poorly understood, but suggest that it is
some combination of factors in the areas of performance, robustness, programmability, and
portability.3,4 This characterization demands an extraordinary expansion of the design space for
computing systems:

• Programmability, and thus productivity in general, is critically dependent on the context
of a system’s use, a context that includes challenging issues concerning people, skills,
practices, and organizations.

• Programmability and portability are acknowledged to be whole system properties;
achieving them requires systems engineering of the sort traditionally applied only to
performance and robustness.

• Engineering tradeoffs can be made among at least four system properties with
requirements that sometimes conflict. There is some precedent for such explicit tradeoffs
between performance and robustness, but much less so among the other factors.

It is equally challenging to develop design metrics for real-world productivity. The HPC
community traditionally uses machine utilization as a proxy for productivity, where utilization

1 The HPC community refers to software written to perform scientific computations as codes; in this
paper, they are referred to interchangeably as HPC applications or simply applications.
2 HPCS Phase II vendors were Sun, Cray and IBM.
3 Considerable expense in the lifetime of HPC applications derives from platform-specific optimizations
that confound porting to new platforms.
4 Sun added administration to DARPA’s list of productivity factors – see Section 3.9.

Productive Petascale Computing Page 8 of 139

denotes that portion of the potentially available floating point operations consumed by an
application during execution. This has the advantage of being easily measured and the
disadvantage of addressing only some aspects of HPC’s cost. An even more severe disadvantage
is that it completely ignores the value side of any productivity equation. Utilization as a proxy
for productivity is useful only in environments where almost nothing changes. This renders
utilization useless in the face of the extraordinary improvement sought by DARPA, through
which almost everything changes.
Sun responded to the HPCS challenge by committing to a complete rethinking of supercomputer
design, attending not only to hardware performance but also to requirements derived from the
best possible understanding of real productivity. The project began with the guiding aphorism:

Productivity must be built in; it cannot be added on.
Two general decisions guided this work:

1. Broaden the scope. In addition to traditional hardware and software concerns, decisions were
based on human and organizational issues concerning software development, system
administration, and the scientists for whom the computer is intended. The team drew on
expertise in hardware and software architecture, computational science, software
engineering, programming languages and tools, physics, and cultural anthropology. The
approach was empirical, driven by data on a wide variety of issues, many of which are
messy, historically ignored, and subject to unstated assumptions.

2. Identify bottlenecks. Opportunities for dramatic change in complex systems, including human
organizations, are best prioritized in terms of constraints that limit progress toward goals
[16]. These constraints often manifest most clearly at system boundaries. The team’s research
focused on identifying the most significant bottlenecks that inhibit system-wide productivity.
For example, analysis revealed a crucial programming bottleneck created by the
extraordinary amount of both effort and expertise required to develop and maintain HPC
applications. This is caused by the failure of current systems to isolate programmers from
machine details (for example, memory models and failure modes). Current systems also do
not permit applications to be expressed in ways that are intelligible to the domain scientists
for whom the computations are performed. An example of an administrative bottleneck is
lost availability of machine resources during switchover between capability and capacity
modes of operation.

Three additional decisions guided Sun’s approach, informed by productivity-based requirements
and supported by recent technological breakthroughs:
3. Focus on whole system properties. Experts in performance and robustness understand that

these are emergent properties of complex systems, requiring design skills that span every
aspect from hardware to application software. The team observed that the less-studied areas
of programmability, portability, and administration also have this nature.

4. Rethink system layers. Decomposing systems into layers with distinct concerns is one of the
most powerful intellectual tools available for constructing complex systems. Traditional
strategies for redesigning system boundaries include moving functionality down, aligning
interfaces with more appropriate abstractions, distributing new functionalities across layers,
and making global tradeoffs in the name of overall cost and complexity. The extended scope

Productive Petascale Computing Page 9 of 139

of this design considers people and organizations as parts of the system, for example, as
additional layers in a system stack, inviting analogous tradeoffs—for example, between
human and machine effort.

5. Leverage new technologies. Emerging technologies, such as those in the areas of chip
interconnect and resource virtualization, create new opportunities to rethink established
designs around known system bottlenecks.

This report describes Hero, the revolutionary petascale supercomputer, the design of which arose
from this work. It also describes Sun’s interdisciplinary, highly collaborative design process,
without which the goals could not have been achieved. Sun’s HPCS productivity team, of which
the authors were members, played several roles in that process. The team:

• Conducted research as part of the HPCS extended productivity program.
• Gathered empirical data from the HPCS mission partners, the organizations for which the

HPCS supercomputers are intended.
• Applied research results to development of system hardware and software requirements.
• Worked closely with design teams to create the alignment needed to meet the

productivity challenge.

Section 2 describes how the team constructed an interdisciplinary perspective on the wide range
of significant issues faced by the supercomputing community as systems and problems continue
to increase in scale and the requirement to scale out to a wider audience becomes more
important. It includes an informal, operational definition of productivity that is consistent with a
more precise mathematical model developed during the HPCS program [40], as well as a
discussion of the role of quantitative metrics.
Section 3 describes productivity bottlenecks identified by this research and reviews the multiple
methodologies used to understand them, including observational experiments, case studies, and
literature reviews [54].

The productivity research described in Sections 2 and 3 informed the platform development
strategy described in Section 4. Drawing on well-understood principles from other computational
domains, this development strategy relies on the application of abstraction and automation to a
wide range of productivity-related issues. Application of this development strategy leads to the
productivity requirements in Section 5. These requirements touch on the system memory model,
application portability, tools, libraries, programming languages, resource monitoring and
management, checkpointing, failure recovery, and many others.
Section 6 describes the transition from productivity research and analysis to a design that treats
productivity as a property of the whole system. It introduces an interdisciplinary, collaborative
process for making high-level design decisions, and notes the interplay among those decisions in
rethinking system layers to meet productivity-driven requirements.
Section 7 provides an overview of the Hero system. Each of the subsequent five sections
describes a Hero system layer and how it interacts with other system layers to support
productivity as a whole system property. These sections also introduce the emerging
technologies that enabled the team to rethink system design:

• Compute nodes (Section 8): reliance on massive chip multithreading (CMT)

Productive Petascale Computing Page 10 of 139

• System Interconnect (Section 9): proximity communication and silicon photonics
• Execution model (Section 10): single address space memory
• System software (Section 11): layers, virtualization, system checkpointing, file and

network I/O, and administrative support
• Development support (Section 12): languages, tools, and skills

Section 13 revisits the theme, discussed briefly in Section 6, of interdependent design decisions
that must address multiple requirements and have implications across many system layers. As an
illustrative example, the Hero memory model is chosen for more detailed discussion. Finally,
Section 14 re-emphasizes key lessons from Sun’s productivity research and Hero system design.

Sections 15-19 are appendices that include acknowledgements, references, a glossary, and
documentation associated with the HPCS Phase II program. Section 17 contains a detailed
example of the difference between programming in highly productive and standard HPC
languages.

Productive Petascale Computing Page 11 of 139

2 Characterizing productivity in High-Performance Computing (HPC)
The productivity team began with the definition of real productivity set forth in the HPCS
program goals: the ability to develop and deploy high-performance supercomputer applications
at acceptable time and cost [30]. The range of issues implicit in this precise but general
definition makes it difficult to create a common understanding of the domain within which
design work can proceed.

This section describes several vantage points from which to begin developing an operational
understanding of HPC productivity, starting with characteristics that set it apart from other areas
of computation (Section 2.1). It considers traditional layered models used to manage the
complexity of computer systems, observing that they exclude many significant productivity-
related issues. Drawing on two additional perspectives, software engineering and anthropology,
the layered model is extended to describe the whole supercomputer system: hardware, software
and the full context of use (Section 2.2). Design metrics depend on quantitative models, for
which the utilization-based approach customary in the HPC community turns out to be
inadequate (Section 2.3). Finally, none of these models adequately address the desire to scale out
HPC to a wider range of practitioners and problems (Section 2.4).

These models represent a starting point for the research data and analysis presented in Section 3
and for the design decisions described in subsequent sections.

2.1 Unique characteristics of HPC
Although software productivity has been studied in other computing domains for years (for
example, Boehm’s software engineering economics [5]), these results have proven difficult to
transfer to HPC applications. There are certainly attributes in common, but there are also ways in
which the context of HPC application development differs significantly from general
computation.
Capability trumps cost-effectiveness: By definition, supercomputing takes place at the frontier of
what is possible in hardware scale and performance, well beyond the cost-effective “sweet spots”
available to consumers of commodity computing. Time to solution is often more important than
cost.
Software requirements are not well understood: HPC applications are often undertaken to exploit
new scientific insights or newly developed numerical and computational techniques, but the
software’s actual design requirements are created by trial and error [50]: this puts HPC
development in the special software development category of “exploratory programming”.
Parallel programming is essential: Applying the hardware resources of a supercomputer to large
problems demands that applications execute with as much parallel computation as possible.
Application life cycles are long: Figure 1 describes a typical HPC application life cycle; it spans
up to 35 years, well beyond the lifetime of applications in other domains. Initial deployment
often follows three to five years of development, and maturity may not be reached until years
beyond that. Steady-state production support (known as maintenance and evolution in the
software engineering community) continues for decades [50].

Productive Petascale Computing Page 12 of 139

Figure 1: Typical large-scale computational science and engineering (CSE) project life

cycle5
Ports are frequent: An application is likely to need porting every three to four years during its
life cycle, usually at least once during initial development, often at the cost of significant code
modification. Because FORTRAN 77 is the only language universally supported with high-
quality compilers, it is still considered the safest choice at the outset of new projects, even
though other languages (including Fortran 90/95) may shorten initial development.
Validation and verification are expensive: Correctness constraints on complex scientific
calculations are stringent [7] [49] [53], but the main approach to testing relies on users, who may
also be developers.

Mainstream computing technologies are considered irrelevant: Advances in mainstream
software engineering technologies have taken place outside the extraordinary constraints and
priorities of HPC. Very little supercomputing is done by people with backgrounds in computer
science, because they lack the training, experience, and attitude expected by the HPC
community.

2.2 Design models and strategies
HPCS program goals explicitly call out components of productivity (especially portability and
programmability) that are sensitive to issues such as software product life cycles, technology
replacement cycles, skills, experience, and many more. In other words, the value of a
supercomputer depends not only on the hardware but also on the context of its use. This is a
broad scope for study. An immediate challenge was to derive a framework for relating research
results and system design choices, complicated by the breadth of issues under study and the
interdisciplinary team’s diverse viewpoints.

This section describes an informal model of a whole HPC system that was developed to meet this
need. The model begins with the layered system models ubiquitous in computer systems (Section

5 Figure reproduced with permission from “Large-Scale Computational Scientific and Engineering Code
Development and Production Workflows” [50].

Productive Petascale Computing Page 13 of 139

2.2.1); these are powerful intellectual tools, but they are too narrowly focused for this study’s
purposes. The team drew on models from two additional disciplines, software engineering
(Section 2.2.2) and anthropology (Section 2.2.3), leading to a synthesized model that captures the
notion of a whole supercomputer system (Section 2.2.4). Design strategies familiar to traditional
computer system design can be applied within this extended model, after the appropriate data are
gathered.

Hero’s expanded set of productivity-driven requirements fundamentally changes the nature of
computer system design. Issues that might once have been considered simple constraints become
opportunities for tradeoffs. These may involve not only hardware and software layers, but also
legacy applications, people, and organizations.

2.2.1 A computer system design perspective
Asking a computer system designer for a simple description of a complex system often yields a
diagram such as the one appearing in Figure 2. Layered models represent a powerful intellectual
tool for managing complexity, and they can be applied at many levels of granularity. For
example, Dijkstra’s seminal 1968 paper on operating system design described the advantages of
a layered approach to system software and the useful “separation of concerns” it permits [13].

Figure 2: Simple layered model of a computer system

As a design strategy, the layered model presents two important implications. First, it casts system
design as an exercise in defining boundaries between layers, also called interfaces in some
contexts. A boundary serves to divide the work of designing and building a system, and it defines
what is to be done in each layer. From the perspective of each layer’s design:

• The layer below offers resources with which to carry out the work of the layer.
• The layer above is a client or consumer of the results created by the layer.

Proper layering creates boundaries that are both maximally useful to the layer above and most
easily implemented by resources available in the layer below. Achieving a balance between these
two goals can require complex tradeoffs in the definition of the boundaries—tradeoffs that
change as both technology and goals evolve. For example, increases in hardware capability have

Productive Petascale Computing Page 14 of 139

permitted a great downward migration of functionality, and two historic revolutions in computer
system design, the virtualization of time (time sharing) and storage (virtual memory), eventually
led to redesign at every level.
A second implication of such a diagram is that it defines the scope of the system designer’s
concerns:

• A designer ignores (or, more accurately, treats as a fixed constraint) anything below the
lowest layer in the model, for example the fabrication of processor chips.

• A designer ignores (or, more accurately, treats as a fixed requirement) anything above the
highest layer in the model, for example, the skills of application programmers or what
tools they use.

This traditional layered model of computer systems, although essential, fails to encompass the
range of issues raised by productivity-based requirements. This model was extended by drawing
on perspectives from other disciplines, starting with software engineering.

2.2.2 A software engineering perspective
The HPC Productivity Research community proposed describing application development
activities as workflows within a single cycle of the sort summarized in Figure 1 on page 12.
Although HPC life cycles are extraordinarily long, a software engineering analysis reveals that
focusing only on a single application workflow fails to account for the complete context of HPC
software development. Figure 3 presents a more complete model, in which the single application
workflow is represented in the context of surrounding workflows.

Productive Petascale Computing Page 15 of 139

Figure 3: Software engineering perspective on workflows

This model derives from research into general software development, but it applies equally well
in environments such as those targeted by the HPCS program. Objectives and resources differ
from one level to the next, which means that any notion of productivity must also vary. The three
workflows in this model include:

• Code Development: A typically small team develops an HPC application with a well-
articulated scientific objective, for example modeling thermal dispersion under certain
circumstances; such a team is focused on a timely solution.

• Project: A project often has a larger goal, for example studying the thermal stability of
nuclear weapons, and takes a longer view than a single application. For example,
development of a modern replacement for an important application might begin midway
through the life cycle of its predecessor. Important issues at this level include strategic
reuse of existing code, and decisions about new technology adoption.6

• Organization: Human organizations, such as government-sponsored laboratories, have
missions that are both longer-term and broader than any constituent project, for example
strategic stewardship of the nuclear arsenal. Important issues at this level include

6 Significant decisions to adopt new technologies are almost always taken only at the beginning of new
application development, although experimentation may be underway in parallel (Section 3.10).

Productive Petascale Computing Page 16 of 139

collective cost effectiveness, the project portfolio in the face of evolving mission
objectives, and securing funding.

Many software engineering productivity problems and opportunities lie outside the scope of a
single code development cycle, but within a single cycle for a project or organization. In
practice, programming productivity is often affected by past decisions such as tool investments,
reusable code development, and hiring policies. Problems of this sort appeared during the team’s
research on the topic of specialized programming tools (Section 3.8). A software engineering
perspective enabled the team to understand that the root cause of an apparent failure in the HPC
community was misalignment across levels (Section 5.1.5).
As with computer systems, tradeoffs among software engineering levels (layers) can have
significant impact. For example, programmer training might take place on the job (code
development) or through a wider investment in education (project or organization). Investment in
extensible and reusable software application architectures, such as those explored in the “product
line” approach [3], is counterproductive for a development team, but it might be vital to an
organization’s survival.
Finally, the team observed an interesting alignment: the lowest level of the software engineering
model (code development) corresponded to the highest level in the computer system model
characterized in Figure 2. From the system designer’s perspective, application development is
out of scope (a fixed requirement). From the software engineering perspective, computer system
characteristics are out of scope (a fixed constraint). There is more discussion of this observation
following mention of yet another perspective.

2.2.3 An anthropological perspective
The interdisciplinary team also included a cultural anthropologist, skilled at the systematic study
of culture: a complex phenomenon that includes interrelated economic systems, political
systems, social organizations, and belief systems.7 Observed behavior patterns in people and
organizations reflect the combined interrelationships of all these systems.
As the team began to collect data from and about HPCS mission partners, it became clear that the
development of HPC applications could be understood only in a much larger context. This led to
many questions, starting with those immediately facing the individual programmer and including
issues that eventually encompassed the mission’s fundamental nature:

• What tasks do programmers perform?
• What training and skills do programmers need?
• How are programmers assigned to projects?
• How does a programmer gain access to computing resources?
• How does a programmer make economic tradeoffs with available resources?
• How do careers in HPC programming develop?

7 Franz Boas, the “father of American anthropology” received his doctorate in physics and is known for
applying the scientific method to the study of people and societies.

Productive Petascale Computing Page 17 of 139

• How are projects managed?
• How are computing resources allocated to projects?
• How is access to resources managed on a day-to-day (or minute-to-minute) basis?
• What external products (compilers, for example) are essential, and who pays for

them?
• How and when are new programming technologies adopted?
• How is the purchase of a supercomputer justified?
• Who pays for a supercomputer and under what circumstances?
• How is a supercomputer vendor chosen, and what does the purchase include?
• How are laboratories funded?

An anthropologist frames such questions in the multiple contexts in which work gets done: for
example individual, group, organization, subculture, and culture. A person makes decisions and
acts in every one of those contexts simultaneously; each context has its own systematic structure
and rules.

HPC, in the context of the mission partners, is visualized in Figure 4 by mapping these
anthropological categories to specific organizational structures. An HPC programmer is an
individual (with particular skills), but is also a group member (with short- to medium-term
goals), member of a lab or other organization (with career goals), member of the scientific
programming community and a citizen.

Figure 4: Anthropological perspective on HPCS mission partners

Finally, observe another useful alignment: the layers of the anthropologist’s view are similar to
the three workflows described in the software engineering perspective depicted in Figure 3.
Similar questions arise, and objectives and resources differ from level to level. For example, the

Productive Petascale Computing Page 18 of 139

decision (and funding) to purchase a supercomputer is an act with national policy considerations
and also has a different kind of impact on every level of HPC, down to the individual. The
mission’s nature has a profound impact on the people who are attracted to the environment, as
does the design (and prestige) of the supercomputer around which work gets done.

2.2.4 An interdisciplinary perspective
Drawing on these diverse perspectives, the team extended the conventional but limited layered
system model to include explicitly the context of the system’s use, as shown in Figure 5.

Figure 5: Interdisciplinary view of a whole HPC system

This is the “whole system” whose productivity the team addressed. It is described in terms of
layers that embody separate concerns, which interact at boundaries. These layers are subject to
design decisions that might redefine boundaries, migrate functionality, and make tradeoffs.
Extending the model in this way brings more design parameters into scope for investigation and
design. For example, programmer skills and project organization are no longer fixed
requirements for software and hardware system design, but opportunities for rethinking and
redesign. A machine’s architecture is no longer a fixed constraint for developing application
software, but an opportunity to make different tradeoffs in the name of overall productivity.
General strategies for design apply, including abstraction (making the output, or work result, of
each layer as useful as possible to the layer above) and automation (arranging for as much of the
work as possible at each layer to be subsumed efficiently by a lower layer). Each of the HPCS

Productive Petascale Computing Page 19 of 139

productivity components (performance, reliability, programmability, portability and
administration) is a property of the whole system, and tradeoffs among them must also be
considered, such as performance versus programmability.
Each of these layers is an area for research by the productivity team, as well as an area for close
collaboration with system designers. Insights about many kinds of bottlenecks, which are
obstacles to real productivity, can be drawn into the design process.

A significant challenge is that established boundaries resist change. A particular decomposition
can become so embedded into the skills, practices, organizations, careers, and even culture that
change becomes very difficult and expensive. This observation applies as much to the
organizational context of the mission partners as it does to the organizational context in which
computers are typical designed and built.
HPCS productivity goals, however, demand change of this magnitude. Critical bottlenecks are
likely to be found in boundaries whose design is obsolete; productivity breakthroughs require
significant redesign at many levels.

2.3 Quantitative productivity models
Productivity-based evaluation criteria for design decisions are especially problematic for
supercomputers, both in hardware aspects and application development. Commoditized
computing affords relatively straightforward tradeoffs, such as when to add processors to a web
server farm or how to predict software engineering costs in familiar domains [5]. By definition,
supercomputing operates beyond the sweet spot of commodity computing (Section 2.1):

• Hardware is expensive and quickly superseded by better, faster hardware.
• Parallel programming, especially at large scale, is extremely difficult, poorly supported

by tools, long-lived, and thus quite expensive.
• Missions can be of critical importance.

This section presents an informal view of quantitative drivers for HPC productivity. It is
consistent with a more formal mathematical model developed by Sun’s productivity team [40].

2.3.1 The basic productivity equation
Basic economics defines Productivity as a dimensionless ratio of Value (or output) relative to
Cost (of producing the output).

P = V / C
For instance, producing $100 worth of goods at a cost of $50 is described as having productivity
of two. If the value of goods drops below the cost of producing them, then productivity is less
than unity. Furthermore, the value of products, including scientific results, typically varies with
time; for example, value may decrease due to competition, or it may increase because of rising
demand and short supply, or it may drop precipitously when there are deadlines. Costs may also
vary over time.

Productive Petascale Computing Page 20 of 139

Supercomputing costs include application programming, porting, administration, hardware
purchase, maintenance, space, and (increasingly) energy. Some costs are easy to understand and
assign to projects, but others can be difficult to amortize or distribute precisely.
Supercomputing value is much harder to quantify. For instance, fluid simulations are used to
model the flow of materials into complex molds to ensure good distribution. Such simulations
reduce the need to build and experiment with physical models. Similarly, simulations are used to
model airflow, reducing the need for wind tunnel tests. The money thus saved could be taken as
the value of the simulations, and manufacturers might provide a realistic estimate. By contrast, it
is hopeless to determine the monetary value of research, where scientific publications constitute
the main tangible product. Publication counts or citations could be substituted for the value of
research, but some papers prove to be more valuable than others, and citation numbers are
impossible to predict.

2.3.2 Utilization as a proxy for productivity
The supercomputing community traditionally backs away from these challenges, choosing
instead to evaluate system designs with a proxy for productivity that can be measured with some
certainty. Utilization, expressed as a percentage, measures the portion of the potentially available
floating-point operations that a supercomputer application actually consumes during a span of
execution. Among a collection of early papers by HPCS program participants, nearly every one
characterized productivity gains as improvements to utilization [30].

This approach baffles the outsider; as a simple thought experiment, scenarios can be created
where utilization falls in the presence of clear productivity improvements. The superficial
problem is that utilization is a cost-based metric that takes no account of the value of
computational results. By way of contrast, no owner of a personal computer gives a thought to
unused computational cycles.
The community’s persistent commitment to this metric derives from the singular nature of HPC
in general:

• Utilization can be measured objectively, consistent with the way that physical scientists
the traditional consumers of supercomputing, conduct their own research.

• Unlike general computing, supercomputing is dominated by numerical calculations.
• The cost of operating hardware is disproportionately high.
• The capability8 of a supercomputer is the paramount justification for its purchase.
• Time to solution is understood to be more important than cost-effectiveness.

An unstated assumption behind the use of utilization, however, is that comparisons rest at
particular operating points in which there is very little change in the environment, called the
context of use. This assumption holds for evolutionary improvement of the kind often

8 The HPC community distinguishes between capability computing, for which the extraordinary resources
of a supercomputer are required, and capacity computing, where it is the throughput of significantly
smaller computations that matters; supercomputers typically alternate between the two modes of
operation.

Productive Petascale Computing Page 21 of 139

experienced by the supercomputer community. It does not hold in the face of the magnitude of
change needed for a 10x productivity improvement. Such a change will necessarily affect the
whole system: people, skills, practices, and organizations, as well as hardware and software.

2.3.3 Toward value-based metrics
These challenges suggest that it is not possible to produce a general quantitative model of
productivity: value will vary according to a variety of factors including organizational needs,
application domain, and time. However, it is possible to develop quantitative valuation
frameworks. This is what the productivity team did during the program. Such frameworks
require that stakeholders customize the valuation model with domain-specific parameters that
can be difficult to determine.

In the absence of a general characterization in the numerator, initial quantitative focus must be
on the denominator, combined with a search for ways to keep the availability and utilization of
computer equipment high. In other words, a first step toward improving productivity requires
dramatically reducing costs for hardware, energy, computation runtime, software development,
and service and maintenance. Even without precise quantitative valuation, considerable insight
can be gained by searching for bottlenecks that prevent improvement in these factors (as reported
in Section 3).

2.4 Productivity at a wider scale
Even as hardware costs drop and the notion of a small supercomputer becomes practical,
supercomputing is still perceived by the larger community as too hard for “the rest of us” [1].
Just as DARPA desires to scale up supercomputers dramatically, others envision broadening the
class of problems to which they can be applied in practice [20].
A ratio-based measure, such as the classical productivity formula discussed above, is silent on
total output. In fact, scaling out might, in some scenarios, come at the cost of lower utilization,
which the traditional HPC community would consider reduced productivity. On the other hand,
such a shift would recapitulate the historical shift from mainframe computing to the desktop,
migrating to computers whose utilizations would be unacceptable in mainframe shops. Once
again, the challenge is to adequately value computer output, a topic finessed by an exclusive
focus on utilization.

On the other hand, if the skills needed to use supercomputers were reduced, for instance by
requiring less-detailed programming, this would not only improve productivity by speeding up
software development and increasing equipment utilization, but also increase total output.
Bottlenecks of these sorts are also the topic of research covered in the following section.

Productive Petascale Computing Page 22 of 139

3 Productivity bottlenecks in HPC
Within the conceptual framework described in the previous section, the productivity team
created a research program that would generate goals and requirements for a new kind of
supercomputer: 10x more productive than the status quo. This is an extraordinary requirement,
especially for such a poorly understood phenomenon, and it calls for dramatic breakthroughs.
Two observations distinguished the team’s approach:

• Ten times anything is disruptive. Under the best of circumstances, a 10x change
invalidates existing models and assumptions. This is especially true of the incremental,
utilization-based quantitative models favored by the HPC community. A disruptive,
qualitative change is required, so the research program sought opportunities for such
shifts; opportunities for which qualitative insight is as important as quantitative. These
opportunities emerged through the identification of bottlenecks: aspects of the HPC
environment that prevent dramatic breakthroughs in productivity. Bottlenecks may or
may not be evident to practitioners, whose daily work embeds them in accepted, non-
reflective routines; a well-founded scientific inquiry was required.

• Context matters. HPCS criteria imply that a supercomputer’s productivity can be
understood only in the context of its use. The team’s conceptual framework for
investigating both computer and context, depicted in Figure 5 on page 18, includes
phenomena far beyond the expertise and traditions of the existing HPC community
(phenomena that concern people, groups, organizations, and culture,) as well as issues
closer to home that are often ignored, such as software engineering and programming
language design. The inquiry must be interdisciplinary, and it must be conducted in situ.

Section 3 describes the methodology, process, and selected findings from this search for
bottlenecks in HPC application development. The bottlenecks can be validated with available
data and, although difficult to quantify precisely, can be estimated to have very large effects on
productivity.
These studies by the productivity team focus on several of the upper levels depicted in Figure 5,
which have historically received little attention. Extensive research by other teams was
conducted at many system levels, including processor design, chip interconnect, memory
models, and system software. The details of those studies are beyond the scope of this report,
although the resulting design decisions, informed by productivity-based requirements, are
described in later sections.
Section 3.1 begins with a summary of the interdisciplinary methodology created for these
studies. A three-stage adaptation of the scientific method provides a roadmap for the transition
from qualitative to quantitative studies and helps avoid common mistakes made by researchers
operating outside their fields of expertise, for example naively gathering precise data without an
evidence-based theory in which to interpret and validate results.

Section 3.2 describes a set of collaborative case studies conducted by teams from the HPCS
vendors, mission partners, and HPCS-funded university projects. Each case study gathered
baseline data about a representative HPC application development. Common themes extracted

Productive Petascale Computing Page 23 of 139

from the data addressed quite explicitly some issues associated with the upper (contextual) layers
of the conceptual framework.

Section 3.3 introduces the expertise hypothesis, an anecdotal but substantial perception already
present in the HPC community that (a) the productivity of HPC application development was
collectively stuck at a point of diminishing returns, and (b) that the root cause has something to
do with expertise [52]. Starting with this perception, the team reevaluated the collaboratively
collected data, gathered more of its own, and created a working hypothesis about the role of
expertise in HPC application development.

The HPCS program called for collaborative development of workflows, described in Section 3.4,
that would describe the tasks and procedures in HPC application development. The team
discovered that the resulting workflows, while useful, could not help refine and validate its
hypothesis: they contained more detail than could be validated with the available data, and they
were silent on issues that were felt to be significant.
Section 3.5 describes some of the analysis that helped refine and validate the team’s
understanding of the expertise (skills) and effort (time) that goes into HPC application
development. The resulting quantitative data also helped sort out those parts of the process that
are essential to application goals from those parts that are accidents of the technologies being
used.9 The team found that a substantial amount of effort and expertise were not fundamentally
essential to the projects’ goals. These were cited as bottlenecks where dramatic improvement in
productivity might be found. So attention was turned to three areas of software engineering to
develop estimates of what improvements might be possible:

• Software libraries (Section 3.6), which continue to save effort through code reuse, but
offer little promise of a breakthrough in expertise requirements;

• Programming languages and techniques (Section 3.7), where several data points suggest
that a dramatic increase in productivity is possible; and

• Development tools (Section 3.8), where a dramatic breakthrough is possible and the need
for change is widely perceived. However, the solution lies beyond the resources or
mission of any stakeholders other than funding agencies at the top level (mission) of the
extended system model.

In parallel with the productivity team’s investigation of programmability and portability
requirements, another team gathered data and analyzed the administration requirement. Section
3.9 summarizes their findings.

A critical requirement for any potential breakthrough in productivity is that the HPC community
must actually be able to adopt whatever technologies and practices are needed to break the

9 Fred Brooks draws this distinction in his essay, “No Silver Bullet – Essence and Accident in Software
Engineering,” and argues that modern software engineering has already achieved dramatic reductions of
the accidental, leaving the unavoidably essential complexity of the problems that were supposed to be
solved with software [6]. The team found that Brooks’ argument does not yet apply to HPC
programming.

Productive Petascale Computing Page 24 of 139

bottleneck. Section 3.10 explains how the unique characteristics of HPC environments constrain
such adoption, some of which are bottlenecks identified in earlier sections.

Finally, Section 3.11 summarizes findings about bottlenecks in HPC productivity that promise
possible breakthroughs. These findings directly drove Hero’s design goals and requirements
(Section 5) and their impact can be seen in the design work reported in Sections 7 through 13.

3.1 Research methodology
This expansive program of productivity research required a corresponding expansion of
methodology conducted by an interdisciplinary team with experience in the social sciences,
physics, numerical computation, and software engineering. The team committed to the soundest
scientific basis possible, drawing on well-established research methodologies from relevant
fields, many of which are unfamiliar within the HPC community (and are sometimes reinvented
badly). This section summarizes the team’s methodology [54].

Social scientists have developed methods that are both verifiable and reproducible in many
contexts, and which can do so with surprisingly few data points in some circumstances.
However, the sheer number of methodological options made it crucial that each project begin
with clear research goals to identify the most effective combinations of concepts, research
designs, information sources, and methods. Table 1 summarizes a three-stage framework, based
on the scientific method, that guides these goals; it is grounded in empirical data, validated by
multiple approaches (triangulation), and applied to practicing HPC professionals who actually
perform the work under study.10

Table 1: Research framework
Stage Goals Methods
1. Explore and discover Develop hypotheses Qualitative
2. Test and define Test and refine models Qualitative and

quantitative
3. Evaluate and validate Replicate and validate findings Quantitative

The stages are necessarily sequential: each provides a foundation for methods in the next. This
framework is broadly analogous to realizations of the scientific method used in many disciplines,
although the correspondence can be obscured by differences among the phenomena being
studied and the methods appropriate to their study.

• Explore and discover. At the outset, researchers may not know the appropriate questions
to ask or issues to address, let alone have a coherent theory of the phenomena being
studied. The first stage is mainly qualitative, open-ended, and designed to produce

10 It is possible to collect data much less expensively using students rather than professionals.
Unfortunately, this presents threats to validity that cannot be assessed in early-stage research on poorly
understood phenomena. This danger is acute in a domain where competence is widely understood to
require years of experience [52].

Productive Petascale Computing Page 25 of 139

insights for hypothesis generation. Such insights can be considered explicit models of the
phenomena, analogous to the paradigm in which scientific inquiry is generally
undertaken and through which experimental data are interpreted. The most important
techniques in this phase permit a researcher to identify and neutralize well-established
assumptions, the so-called conventional wisdom of a community under study. This starts
the essential process of distinguishing the conventional wisdom that is true from that
which is not.

• Test and define. Rigor is added in a second stage, using methods that produce additional
data surrounding theories generated in the first. This provides feedback on insights,
supplies concrete data for model refinement, and leads to deeper understanding of what
can be measured and how those measurements can be interpreted. This is the necessary
bridge between theory and experimentation.

• Evaluate and validate. Finally, more focused and mostly quantitative techniques are
precisely applied to collect data, interpret results, and validate outcomes.

An important benefit of this framework is a reliable roadmap for moving from qualitative data
collection and analysis, which are appropriate for discovery, to more quantitative data collection
and analysis methods, which are appropriate to definitional and evaluative research. In particular,
it addresses the challenge of determining exactly when, how, and why to use certain methods to
draw out implications of experimental data. Table 2 summarizes many of the possibilities.
A research program without such a roadmap runs a great risk of collecting data using later stage
techniques, for example surveys and experiments, without sound hypotheses to inform
experimental design; in such cases, conventional wisdom may fill the gap and obscure actual
phenomena.

Productive Petascale Computing Page 26 of 139

Table 2: Examples of research methods
Stage Character Examples of Methods

1. Explore and
discover

Open Ethnography
Case study11
Contextual observation
Semi-structured interview
Participation
Document review
Language patterning

2. Test and define Focused Quasi-experimental study
Concept mapping
Structured interview
Questionnaire
Comparative study
Focus group
Semiotic analysis12

3. Evaluate and
validate

Structured Social network analysis
Survey
Controlled experiment
Product testing
User experience simulation
Human testing
Quality measurement

3.2 Collaborative case studies
An important method for first-stage research is the case study [66], which draws on many
techniques, including document reviews, observation, collection of contextual artifacts, self-
reporting, and interviews. In addition to its own research, the team participated in an extensive
series of studies at mission partner sites, conducted in collaboration with representatives of
national laboratories and other HPCS vendors. The stated objectives of these studies were to:

• Identify critical success factors
• Identify issues that must be addressed by hardware and software vendors to improve

productivity of the code development process
• Develop a reference body of case studies for the computational science and engineering

community
• Document lessons learned from the analysis and personal team interviews [24] [25] [26]

[27] [28] [29] [48] [56]

11 Italicized methods are those used by the productivity team during this research program.
12 Semiotics is the study of how symbols and signs are given meaning and understood by people.

Productive Petascale Computing Page 27 of 139

These studies collected quantitative data using a structured pre-interview survey and qualitative
data using semi-structured interviews with individual stakeholders and in structured group
sessions with code teams. Each study followed a standardized protocol:

• Identify the project and sponsors.
• Negotiate the case study with team and sponsors.
• Complete the pre-interview questionnaire process.
• Analyze the questionnaire and plan onsite interviews.
• Conduct an onsite interview with the team.
• Analyze the onsite interview and integrate with questionnaire.
• Conduct follow-up to resolve unanswered questions.
• Write a report and iterate with code team and sponsor.
• Publish the report.

The collaborators identified common themes [7]:
• Verification and validation are very difficult in this environment.
• A project’s primary language typically does not change over time.
• The use of higher-level languages is low.
• Developers prefer the flexibility of UNIX® command lines over integrated development

environments (IDEs).
• Externally developed software is a risk.
• Performance competes with other important goals.
• Agile methodologies are better accepted by scientific and engineering code developers

than more traditional methodologies.
• Multidisciplinary teams are important to a project’s success.
• A project’s success or failure depends on keeping customers satisfied (in addition to

sponsors).

Baseline data collected by these studies provided valuable first-phase research data, much more
than could be reported in published reports. In fact, the choice of what data should be analyzed
and reported reflected a certain amount of preconception by participants that, in hindsight,
overlooked important contextual data. This is not unusual in early-phase studies.
An outcome from these studies was validation of the extended system model, which adds
programmers, projects, organizations, and missions to the essential context of productivity. All
of these appeared in themes mentioned in the research summary.

3.3 The expertise hypothesis
Although not reported in findings from the collaborative case studies listed above, the team
noticed themes about potential bottlenecks emerging from interview data. For example, an HPC
program manager commented on the difficulty of finding people with the right combination of
skills to exploit existing machines. In addition, informal evidence showed that some
supercomputer sites experience difficulty developing enough highly parallelized applications to

Productive Petascale Computing Page 28 of 139

keep the machines busy in capability mode for substantial amounts of time. This is the mode of
operation for which supercomputers are designed and which justifies their expense.

These insights were consistent with early anecdotal evidence from DARPA and HPCS mission
partners concerning an “expertise gap” that might lie at the heart of the HPC application crisis
[52]. The team began looking more deeply into this question, among others, with additional first-
stage research:

• Raw data collected during collaborative case studies was revisited and reinterpreted.
• Additional rapid ethnographic assessments [60] were conducted, drawing on contextual

observations and semi-structured interviewing methods at HPC workplaces during
subsequent visits to mission partner sites.

Patterns emerged that centered on expertise. In every study, at least one founding team member
had been recruited for special knowledge of science; in each case the scientist was not an HPC
programmer and may have had little or no experience using Fortran or C++. The scientist was
required at the outset to undertake a significant effort outside the domain of science: either learn
a programming language or build an effective working relationship with someone who already
knew it. In either case, the educational process took considerable time before the individual/pair
were judged to be productive. The role of project manager, typically assumed by another person,
was to run interference by keeping the sponsor happy and obtaining computing resources. In this
context, teams typically require four to six years to produce a working application. Success is
commonly attributed to having the right mix of expertise. Teams succeeded only with the
appropriate mix of knowledge in four broad areas of expertise:

• Domain science
• Numerical programming
• Optimizing and scaling (parallelization)
• Project management and resource provision

Furthermore, the problems are so demanding that the mere presence of the necessary knowledge
does not suffice: there must be overlap. In other words, every member of a successful team must
have some expertise in more than one area and be skilled at communication and collaboration.

It appeared that these patterns might explain why HPC expertise is so scarce. A hypothesis was
developed postulating that overlapping, domain-specific expertise in at least four different areas
is needed to exploit highly parallel machines. Very few people possess these skill sets, and as
machines grow in size and complexity, the pool of experts narrows.

Team approaches, as described, are felt to be the best strategy at the moment, but a variety of
opinions were expressed about how development might become more productive. A common
suggestion was that education for HPC programming should be improved. However, other data
shows that it takes many years for programmers—even with the best education anybody could
describe—to be considered fully productive. This is an example of conventional wisdom that,
upon examination, could not be validated.

The next research step was to craft a more focused study to test the hypothesis and to understand
in more detail when and how the various areas of expertise were used; this took place in the
research framework’s second stage, during which a variety of studies were undertaken to explore

Productive Petascale Computing Page 29 of 139

several of the upper layers in the extended, interdisciplinary model of supercomputing (Figure 5
on page 18).

3.4 HPCS workflows
A research outcome requested by HPCS program sponsors was the collaborative development of
standard workflows, intended to identify tasks and procedures carried out by HPC programmers.
HPC team members extracted an extensive list of activities from case study data (Section 3.2)
and other sources, from which they proposed workflows describing the structure of standard
tasks. The workflow in Figure 6 is one example; it is intended to characterize the development of
large complex applications and highlight the many iterative paths [50].

Figure 6: Complex HPC workflow13

The proposed workflows represent interesting and useful compilations of data from informant
interviews, describing in considerable detail how they think about their work at the programming

13 Figure reproduced with permission from “Large-Scale Computational Scientific and Engineering Code
Development and Production Workflows” [50].

Productive Petascale Computing Page 30 of 139

and project layers of the extended system model. As working hypotheses for a research strategy,
however, they are overspecified: that is, they contain more detail than can be validated at this
early phase of research. Without additional data behind these workflow models, it is not possible
to identify significant obstacles to productivity. Addressing the expertise hypothesis would take
further second-stage research and require more details.

3.5 Expertise, effort, and intellectual workflows
An important hypothesis from first-phase research was that an important factor limiting HPC
software development productivity is the level and range of expertise needed. A second-phase
research goal was to validate the hypothesis concerning the different areas of expertise needed
and seek significant bottlenecks whose removal might have a dramatic positive impact on
productivity.
In this phase, the strategy was to construct a workflow for HPC programming that, in contrast to
HPCS workflows, would emphasize only generalized activities and the expertise needed to
support them. This workflow could then be validated and estimates could be constructed,
correlating the results with data from other sources. Candidate bottlenecks would appear as areas
requiring considerable effort and/or expertise that could be seen as not essential to the scientific
objective, but rather accidents of the technologies being used.
The first step toward constructing an intellectual workflow was a set of observational studies
using professional programmers. During these studies, a variety of data was collected, both
quantitative (automated measurement of time spent interacting with programming tools) and
qualitative (subject journaling and informal interviews).

Hackystat, an in-process software engineering measurement and analysis tool [24], unobtrusively
recorded hours of event traces from instrumented software development tools. A small excerpt,
appearing in Table 3, exemplifies Hackystat data collected during a five-hour work session. It
includes the session date, total time the programmer spent working with particular files and a
detailed event log (first 10 minutes). Hackystat collects data from multiple streams on a server
and can produce many kinds of activity reports and analyses spanning different time frames [23].

Productive Petascale Computing Page 31 of 139

Table 3: Examples of Hackystat detail
Date Time in Each File Time /Activity Detail14
16-Mar-2005

chargee.f90 (0.4hrs)
chargei.f90 (0.7hrs)
field.f90 (0.1hrs)
int_frac_parts (1.3hrs)
module.f90 (0.4hrs)
poisson.f90 (0.5hrs)
pushe.f90 (0.2hrs)
pushi.f90 (0.2hrs)
setup.f90 (0.6hrs)
smooth.f90 (0.2hrs)
snapshot.f90 (0.1hrs)
summation_notation.f9
0 (0.2hrs)
transactional_memory_
example.f90 (0.2hrs)

06:30 AM 2 06:30 ls
06:30 history
06:31 vid
06:31 ls
06:31 wc -l *.f90
06:31 vim ~/ /diary
06:32 jobs
06:32 grep qtinv *
06:32 vim chargei.f90
06:34 vid chargei.f90
06:35 jobs
06:35 vim chargei.f90
06:36 grep istep *
06:36 vim chargei.f90
06:37 grep jtion *
06:37 grep kzion *
06:38 vim pushi.f90
06:39 jobs
06:39 vid 06:40 AM 06:40
ls
06:40 jobs
06:40 more main.f90 …

Although Hackystat data is invaluable for its detail and objectivity, it is necessarily incomplete.
For example, it does not account for time spent on the phone, walking down the hall to speak
with a colleague, or just sitting and thinking. Figure 7 shows the total daily time (interactions
with programming tools) captured by Hackystat for a professional HPC programmer over several
weeks. It is understood in general software development that there are many important activities
away from the edit-debug loop, and this is clearly the case for HPC programming, as well.

14 Entries in the Time/Activity Detail column are commands typed by the user into a UNIX shell
(command interpreter). For example, “ls” enumerates file names in a particular file system context, “wc –
l” counts the lines in file, and “vim” opens an editing session on a file.

Productive Petascale Computing Page 32 of 139

Figure 7: Time per day spent interacting with programming tools

Hackystat also cannot record why certain tools were used, for example whether using the
telephone or a web browser concerns a requirements task, programming task, debugging, or
whether the programmer is on task at all. The Hackystat data was complemented with qualitative
data in near real-time: time-stamped journals written by the professional subjects who agreed to
record personal narratives as they worked. Finally, additional qualitative data was collected
during informal interviews.

Manual coding of the qualitative data yielded important insights in how to interpret the
Hackystat data. For example, it confirmed that a great deal of the time away from instrumented
tools, during which Hackystat records no data, is in fact on task: most often it was spent trying to
understand difficult aspects of the work.

Furthermore, some of the time spent with programming tools was actually used for executing
small experiments, such as downloading and playing with code imported from elsewhere. Such
experiments sometimes produced insight or answered questions, but the code written during
these episodes was often discarded. Such periods should be recorded as part of an understanding
phase, rather than coding, a distinction that cannot be drawn from Hackystat data alone.
By triangulating data from many sources, such as Hackystat telemetry data, journals, interviews,
and contextual information from the earlier case studies, it was possible to refine the team’s
understanding of the work and the significance of expertise in carrying it out. An alternate model
of the workflow was created, as shown in Figure 8, which emphasized generalized activities at a
granularity more in keeping with available data. This model is divided into stages of different
kinds of activities that require different skill sets. These activities are defined less in terms of
concrete actions, as were those in the HPCS workflows (Section 3.4), and more in terms of the
goals and intellectual activities relevant to the team’s hypothesis about expertise from first-phase
research. In practice, stages overlap and iterate, with only a broadly sequential relationship.

Productive Petascale Computing Page 33 of 139

Figure 8: HPC development stages and skill sets

Then, activities were weighted with other available data. This included fine-grained data, such as
the Hackystat logs for individual programmers, as well as very coarse-grained data from other
sources.

For example, collaborative case studies (Section 3.2) solicited estimates of total time spent on
specific activity sets: categories created by interviewers at the beginning of the study. These
categories, along with the results, are summarized in Table 4. They do not align with the stages
identified in the workflow shown above in Figure 8, since the study’s methodology allowed the
categories (models of the phenomena) to emerge from first-stage data. This is a clear example of
how initial assumptions about phenomena under study can determine what type of data is
collected. Interpreting the relationship between case study data and the workflow required
additional analysis that drew on other contextual data.

Productive Petascale Computing Page 34 of 139

Table 4: Total time spent on key activity sets in case study projects

Project
Analysis and
Design Implementation Testing Maintenance

Falcon 25%–35% 25%–35% 15%–30% 10%–30%
Hawk 25% 40% 20% 15%
Condor 15% 55% 15% 15%
Eagle 25% 55% 15% 15%
Nene 35% 45% 15% 5%

Yet another source of data appeared in the form of project staffing timelines. Table 5 summarizes
this data for one of the collaborative case studies. Management data allowed development to be
divided into two broad categories: the first leading to a working serial application with the
desired scientific properties; the second leading to a rewritten version of the same code that is
parallelized and tuned for performance. The resulting application contained approximately
134,000 lines of executable code [25]. As before, other analysis and contextual information
helped estimate the relationship between this data and the workflow stages.

Table 5: HPC application project timeline and staffing
 Understand, Formulate

Experiment, Prototype
Code for HPC Summary

Timeline 4 years 3 years 7 years
Staff FTE 2 people 3 people
Effort 8 person-years 9 person-years 17 person-years

Among the many insights derived from these studies came validation of the workflow’s structure
(Figure 8). In addition, estimates of the amount of resources and expertise required in each stage
were developed.
Finally, in order to validate such findings from the case studies and developer instrumentation,
closed-form surveys (typical of third-phase research) were conducted across larger samples of
mission partner teams using a standardized closed-answer questionnaire. Statistical analysis of
the data supported the team’s conclusions in this area [55].
The team concluded that the estimates were more than precise enough to classify groups of
activities that consume the most resources. These are:

• Developing correct scientific programs: activities associated with translating an
understanding of the scientific problem that must be solved (for example, a predictive
weather model) into working code, often starting with or including code from other
projects; this corresponds to the first three phases in the workflow.

• Code optimization and tuning: activities associated with refining a serial version of the
code to ensure correctness and achieve desired levels of accuracy and efficiency; this
corresponds to the fourth and fifth phases in the workflow.

Productive Petascale Computing Page 35 of 139

• Code parallelization and optimization: activities associated with parallelizing the code
and tuning to achieve high machine utilization and rapid execution; this corresponds to
the final phase in the workflow.

• Porting: where a solution exists, this comprises activities associated with translating the
existing solution to a representation appropriate for a new platform. This activity was not
an explicit part of the studies conducted at that time, although its importance and
relationship to the activities became clearer as the studies progressed.

The data show that these activities are expensive, not only in total amount of effort (Table 5), but
also in expertise needed. Three distinct skill sets, in addition to project management, are
required:

• Mastery of the application domain’s science
• Scientific application programming
• Tuning or optimization of programs for efficient execution on a particular parallel

platform

Annotations in Figure 8 summarize the skills needed at each stage of the workflow. Because
these skills are scarce, this was a significant constraint on some of the projects studied. Finally,
overlapping skills and effective collaboration are essential, raising the bar even higher.
From this, two interrelated bottlenecks to productivity in HPC application development were
identified. These obstacles were of sufficient magnitude that, if addressed, they would contribute
significantly to the HPCS productivity goal:

• Programming effort. Of the four activity groups that consume the most resources, only
the first (developing correct scientific programs) is essential to the scientific objectives. A
significant reduction in the need for the others would dramatically increase productivity,
not only lowering cost, but also reducing time to solution.

• Expertise. In general, human resources are not fungible—that is, expertise in one area
does not imply expertise in another—so people cannot be arbitrarily reallocated to critical
tasks. Currently, there is a shortage of experts skilled in scientific application
programming and tuning for parallel platforms. Sarkar et al postulate an expertise gap in
these areas, exacerbated by the increasing complexity of both scientific applications and
parallel platforms [52], a gap validated by the team’s data [55]. A reduction of skill level
needed for any activity group would dramatically increase productivity, not only by
lowering cost and reducing time to solution, but also by increasing the number of HPC
applications that could be produced with the available pool of experts.

3.6 Code libraries and expertise
A historically important approach to improving programming productivity in HPC and general
programming communities has been the use of libraries: collections of well-documented and
tested code that can be reused without intimate knowledge of their construction. A good library
can reduce both the amount of effort and expertise associated with application development,
making library construction a possible strategy for a productivity breakthrough.

Productive Petascale Computing Page 36 of 139

In fact, a number of informants in the HPC community offered this prospect as a possible
solution to the productivity problem. This view is highly plausible: libraries play a very
important role in the history of HPC programming and will clearly continue to do so. However,
one of the team’s experiments casts doubt on this particular conventional wisdom.

Two experienced programmers were instructed to study one of the proposed benchmark
applications15 under development by other groups in the HPCS research community. Each
subject, working separately, was asked to port that application from its “executable
specification” written in MATLAB [37] into the Java™ programming language [17]. Little
further direction was given. One subject had HPC programming experience but was new to Java;
the other was familiar with Java but new to HPC programming. Data were collected using
journaling, occasional observation, interviews, and code inspections.
Among the findings was that neither subject adopted any of the readily available libraries, even
though that would have shortened their tasks significantly. Each subject did spend time actively
seeking suitable libraries. However, in every instance, the subject had too little confidence in the
choice to risk commitment to something they understood so little as the task itself. Both ended
up completing the application port without supporting libraries.

This outcome suggests that libraries, although they can reduce the level of effort needed in many
cases, require a high level of expertise to be selected with confidence, used appropriately, and
chosen early enough in a development task to make a difference. The conclusion was reached
that libraries can reduce effort and, to a lesser extent, the need for expertise, but not with
sufficient magnitude to create a productivity breakthrough.

3.7 High-programmability code
Another historically important approach to improving programming productivity in both the
HPC and general programming communities has been the development of better programming
languages and techniques. The team investigated the prospects for a significant productivity
breakthrough in this area, drawing on the study’s experiments and case study data. The
conclusion was that significant breakthroughs are possible.

The experiments were conducted by an experienced professional HPC programmer. In addition,
data collected from the mission partners was revisited for insight into the same questions. The
results strongly suggest that significant improvement is possible with existing technologies and
that more improvement could be gained through investment in improving currently available
technologies, as well as developing new programming languages designed with these issues in
mind.

3.7.1 NAS benchmark improvement
One experiment explored the character of HPC applications. In particular, the team investigated
how applications written using conventional HPC programming models might be transformed
into a style that would lead to more productive programming. This might be possible through
application of software engineering techniques well understood in the general programming

15 Scalable Synthetic Compact Application #2 (Graph Theory) [4].

Productive Petascale Computing Page 37 of 139

community, but considered inappropriate by HPC programmers because of their cost in runtime
performance.

To gather baseline data, a programmer rewrote well-known HPC code examples, including the
NASA Advanced Supercomputing (NAS) parallel benchmarks [41] and a few others, with clarity
and compactness of the code as paramount goals. The code was stripped of explicit Message
Passing Interface (MPI) data decomposition and distribution, manual optimizations were
removed, and the more expressive (and abstract) array syntax of Fortran 90 was adopted in place
of the customary FORTRAN 77 operations. The programmer endeavored to align the code with
the published specification as much as possible.16 The modified code turned out to be as much as
ten times smaller and vastly easier to read and understand.

The code excerpt in Figure 9, taken from the benchmark suite rewritten in the experiment, shows
how improved abstraction can make code dramatically easier to read and understand than its
conventional counterpart. A significant and somewhat unexpected result was that with thoughtful
programming, language features available in Fortran 90 could be exploited to produce code that
was visibly more aligned with underlying mathematics and free of language artifacts that were
irrelevant to the problem.

16 No useful measures or breakdowns of time and effort were recorded in this experiment; the focus was
on the plausibility of code written in this nonstandard fashion, not on the cost of reengineering legacy
code. In fact, the original experimental design did not even require rewriting the benchmarks into an
existing language.

Productive Petascale Computing Page 38 of 139

This experiment also produced a dramatic reduction in code size across the benchmark suite and
some other examples, summarized in Figure 10. Approximately half of the size reduction was
due to removal of explicit data decomposition and distribution, a result consistent with other
studies on the contribution made by MPI to code size [9] [31].

Figure 10: Benchmark code improvement: size reduction [35]

call resid(u,v,r,n1,n2,n3,a,k)
callnorm2u3(r,n1,n2,n3,rnm2,rnmu,nx(lt),ny(lt),nz(lt))
old2 = rnm2
oldu = rnmu
do it=1,nit
 call mg3P(u,v,r,a,c,n1,n2,n3,k)
 call resid(u,v,r,n1,n2,n3,a,k)
enddo
call norm2u3(r,n1,n2,n3,rnm2,rnmu,nx(lt),ny(lt),nz(lt))

(a) Original FORTRAN 77

Each of the four iterations consists of the following two steps,
r = v - A u (evaluate residual)
u = u + Mk r (apply correction)
...
Start the clock before evaluating the residual for the first time, ...
Stop the clock after evaluating the norm of the final residual.

(b) Specification

do iter = 1, niter
 r = v - A(u) ! evaluate residual
 u = u + M(r) ! apply correction
enddo
r = v - A(u) ! evaluate residual
L2norm = sqrt(sum(r*r)/size(r))

(c) High-programmability style with Fortran 90

Figure 9: Improved code excerpt from NAS MG benchmark (timed portion)

Productive Petascale Computing Page 39 of 139

It is well-understood in the software engineering community that software’s lifetime
maintenance cost is very strongly correlated to code size, suggesting that this approach to HPC
programming can produce significant reduction in effort over an application’s life cycle.

3.7.2 NAS BT I/O code modification
In a closely related experiment, an experienced HPC programmer was asked to add new
functionality to an established benchmark (NAS block-tridiagonal or BT I/O). This exercise was
part of the original benchmark specification and was reflective of the maintenance phase of an
application’s life cycle. The starting point was the version of the benchmark rewritten in the
previous experiment. The task was to add checkpoint-style I/O and perform the experiment
several times, each time using a different programming model. To summarize the results from
four of these experiments:

• High-programmability style with Fortran 90: Exploiting simplifications made during the
previous experiment, the important application state was contained in a single array, for
which high-level Fortran 90 array operations are available.

• Serial FORTRAN 77: Standard FORTRAN I/O for reading and writing the array contents.
• MPI – simple: Parallel I/O with naïve use of the MPI I/O API.
• MPI – optimized: Parallel I/O optimized use of the MPI I/O API, for example using

collective I/O operations.

The task required implementing four operations: setup, write, read and close. Table 6 shows the
amount of code required for the task using each of the four programming models. The total lines
of code (LOC) required for each model gives a rough measure of the code’s complexity and
expected lifetime maintenance cost for this segment.

Table 6: NAS BT I/O code modification - lines of code

Programming Model Setup Write Read Close Total LOC
High programmability with F90 1 1 1 1 4
Serial FORTRAN 77 7 19 20 1 47
MPI - simple 25 22 23 1 71
MPI - optimized 144 12 13 1 170

Two representative examples of the added code appear in Figure 11: the write operation, as
written in both the high-programmability style with Fortran 90 and naïve MPI programming
models, respectively. A complete listing of code from this experiment appears in Appendix 17.

Productive Petascale Computing Page 40 of 139

 Figure 11: NAS BT I/O code modification - code samples

3.7.3 Performance penalty
When simplifying code, the HPC community’s first concern is the cost in performance, including
parallel speedup. This concern is justified, but substantial grounds for hope were found.
First, it was acknowledged that experiences vary tremendously. In the experiments, however,
programmers found the performance shortfall of high-programmability applications to be rather
tolerable. Approximately 2x performance loss was representative for most of the cases
considered, even when scaling up to 100 threads. These results were achieved using commercial,
automatically parallelizing compilers and large-scale, shared-memory hardware [35].

Many opportunities were found for on-going product improvements. For example, compilers
could produce better performance and automatic parallelization such as faster algorithms for
implementing array syntax and more-aggressive exploitation of concurrency. Much compiler
development, however, is driven by benchmarks that are written in traditional styles, which
stunts the development of a high-programmability application ecosystem.
On the hardware side, better support for high-end shared-memory systems and latency hiding
would help software developers deliver high parallel performance for high-programmability
applications, compilers, and middleware.

write(20) u ! write entire array, including boundary cells

(a) Write: high-programmability style with Fortran 90

do cio=1,ncells
 do kio=0, cell_size(3,cio)-1
 do jio=0, cell_size(2,cio)-1
 iseek=5*(cell_low(1,cio) +
$ PROBLEM_SIZE*((cell_low(2,cio)+jio) +
$ PROBLEM_SIZE*((cell_low(3,cio)+kio) +
$ PROBLEM_SIZE*idump)))

 count=5*cell_size(1,cio)

 call MPI_File_write_at(fp, iseek,
$ u(1,0,jio,kio,cio),
$ count, MPI_DOUBLE_PRECISION,
$ mstatus, ierr)

 if (ierr .ne. MPI_SUCCESS) then
 print *, 'Error writing to file'
 stop
 endif
 enddo
 enddo
 enddo

(b) Write: MPI - simple

Productive Petascale Computing Page 41 of 139

On one hand, HPC conventional wisdom was confirmed: programming to minimize software
development costs can be at odds with programming to maximize hardware performance. On the
other hand, the great potential to reduce code volumes (nominally, 10x) and relatively tolerable
cost in performance (nominally, 2x) was surprising.

3.7.4 Case study data
Analysis of raw data from the case studies provided additional validation of the significance of
programming language on productivity. An alternate style of HPC code development was
observed in use at some sites, using MATLAB in an early phase of development instead of
traditional choices like Fortran and C++. The MATLAB programming language, although
closely related to Fortran, is characterized by extensive use of higher level (more abstract) library
functions that are specialized for the kind of scientific and numerical programming common in
HPC applications. Although MATLAB did not offer parallel scalability at the time of those
studies (efforts to correct this are underway), and although it incurred a considerable
performance penalty when compared to serial (nonparallel) Fortran, many projects chose
MATLAB over the alternatives.
Two case studies were selected for comparison: one used MATLAB in early phases and one
used Fortran. In both cases, serial programs developed in early stages were eventually rewritten
into C++ for parallel scalability. The resulting C++ programs were of roughly comparable size.
Table 7 summarizes aggregate staffing costs for these two projects. The “Code for HPC” phase,
in which serial codes were rewritten for parallel scalability, incurred similar costs in both
examples, confirming the notion that the two projects were in some way comparable. On the
other hand, the earlier phases “Understand, Formulate, Experiment, Prototype,” in which a serial
program was eventually produced that captured an understanding of domain and numerical
solution methods, differed dramatically in cost between the two projects.

Table 7: Case study development costs, two examples
Project Domain Understand, Formulate

Experiment, Prototype
Code for HPC Costs

Hawk Fluid
Dynamics

Time: 4 years
FTE: 2 people
Total: 8 person-years
Language: F90

Time: 3 years
FTE: 3 people
Total: 9 person years
Language: C++

Time-to-solution: 7 years
Effort: 17 person years

Eagle Signal
Processing

Time: 1 year
FTE: 1 person
Total: 1 person-year
Language: MATLAB

Time: 3 years
FTE: 3 people
Total: 9 person-years
Language: C++

Time-to-solution: 4 years
Effort: 10 person years

The results from these studies of programming languages and technologies appeared in a
requirement for ongoing improvement in programming languages and their use (Section 5.1.4),
including the development of experimental new languages such as Sun’s Fortress [2] (Section
12.4).

Productive Petascale Computing Page 42 of 139

3.8 Software development tools
Another possible opportunity for productivity breakthroughs, almost by definition, concerned
tools used by HPC programmers, identified as the Development Environment layer in the system
model (Figure 5 on Page 18). These investigations produced findings as dramatic as those
reported for programming languages and techniques in the previous section. In this area,
however, the findings were consistent with the community’s conventional wisdom, at least to the
extent that tools were a problem [62].
HPC programmers use many tools in common with wider computing communities, such as
editors and source code control systems.17 However, they do not use IDEs, which have
contributed greatly to productivity among C++ and Java programmers. Conventional wisdom
holds that HPC programming languages and practices are not well supported by IDEs; no data
was found to contradict this opinion.

The tools that matter, the ones called out for complaint by HPC programmers, are those designed
for the unique requirements of highly parallel, scientific computing, such as specialized
compilers and performance analyzers. Common complaints included:

• Tools are hard to learn.
• Tools do not scale (in problem size or parallelism).
• Tools differ across platforms.
• Tools are slow to appear on new platforms.
• Tool support is inadequate.
• Tools are hard to test.
• Tool availability is uncertain.
• Tools are often too expensive for universities.
• Tools are seen as a risk to project success.

The last complaint, typically heard from project managers, was the most startling: rather than
being seen as a source of productivity and opportunity for productivity growth, specialized HPC
tools were seen as a risk to project success. Given the essential role played by tools in any kind
of productivity, this situation was identified by the team for further investigation as a potential
bottleneck.

The most significant fact is that programmers perceive a problem, implicitly believing that they
would be more productive if they had better tools. A 1997 technical report promoting HPC
software standards began:

Although the number and variety of high-performance computing (HPC)
systems has grown dramatically over the last decade, the quality of system

17 Data taken from case studies reported in Section 3.2 suggest that the HPC community’s use of general-
purpose tools is several decades behind the wider programming community, evidently because those
tools, although useful, do not address dominant problems confronting HPC programmers.

Productive Petascale Computing Page 43 of 139

software and tools remains far below the expectations of the user
community. [47]

More evidence of this belief and its intensity comes from several attempts by HPC practitioners
to do something about the problem, most notably the now-defunct Parallel Tools Consortium
[46]. Bitterness about those failures lingers.
As the team dug deeper, revisiting earlier data and conducting additional unstructured interviews,
they discovered that a surprising amount of effort was dedicated to tool development, effort that
did not directly address the scientific problems at hand. Frustration about this situation was
observed at the project and laboratory management levels. The effort showed up in several ways:

• Retooling. A major scientific project lost a year’s progress when the optimizing compiler
became unavailable; the supplier, a very small software company, was purchased by a
large corporation that removed the compiler from the market. Also, useful tools
sometimes emerge out of university or other research environments but become
unavailable when the developer graduates, migrates, or otherwise moves on.

• Relearning. HPC tools tend to be complex: they address difficult problems, and the small
market size dictates against large investment in usability. Furthermore, some important
tools are supplied by platform vendors and are thus unique. Learning to use new tools
imposes a considerable delay when a programmer moves to a different environment.

• Migrating. One software support group estimated that it typically takes one year before a
new supercomputer becomes fully productive. This is a significant loss of value for
machines with useful lives of four years. Reasons cited included: new platforms often
arrive without critical software such as tools, new software is very buggy, and it takes a
long time for programmers to become productive with new tools.

• Negotiating. Some support groups reported pushing tool vendors toward open source,
even when they were willing to pay for support. The reason given was neither financial
nor ideological, but rather indemnification against loss of critical tools.

• Reinventing. Several HPC groups reported developing their own tools, often duplicating
functionality available in commercial tools, and putting the results into open source. The
choice of open source serves both as indemnification, as mentioned above, and a way to
share with other HPC programmers (the publicly funded laboratories had been doing this
for many years before the formal existence of open source).

Analysis of these data began with two general observations. The first is that in HPC
environments, tools used to develop an application become an essential part of the application
for its lifetime. Although this is also somewhat true in general computing environments, it is
especially notable in the HPC environment where the cost and complexity of specialized tools,
combined with the small market size and poorly funded consumers, makes the business
environment for them extremely fragile. Unfortunately, HPC applications can depend on those
specialized tools for 30 or more years. The problem’s shape became clear: adopting a tool,
including a programming language, at a project’s outset amounts to placing a bet that the tool
will be available and effective on all the platforms where the application will be ported over its
lifetime. In other words, tools become a risk.

Productive Petascale Computing Page 44 of 139

A second general observation concerned the apparent intractability of the tool problem, noted
especially by participants in failed attempts at solutions. Data was reviewed that described the
contexts in which the evident stakeholders operated: hardware vendors, researchers, independent
tool companies, customers, voluntary collaborators, and community heroes. The conclusion:

None of these stakeholders have the primary mission, resources, or
longevity to produce what’s needed: to create a complete productivity
infrastructure for the HPC community. [62]

This means that the real issue is not an individual’s or group’s productivity, but rather the HPC
community’s productivity as a whole.
Opinions from informants about underlying causes of this problem or prospects for a solution
were diverse and unconvincing. The analysis, based on the model described in Section 2.2.2 and
using social science methodologies, identified a serious misalignment of responsibilities that
crossed many layers of the extended system model (Figure 5): programmers, projects,
organizations, and missions. In particular, it was observed that the need for high-quality
specialized tools, experienced most painfully at programmer and project levels, was not
acknowledged, understood, or funded at the mission level, which is the only level where
sufficient resources and longevity were available to create general solutions [62]. This finding
was consistent with, and explained the need for, recommendation 4 from the 2003–2004
National Research Council study on the future of supercomputing in the United States:

The creation and long-term maintenance of the software that is key to
supercomputing requires the support of those agencies that are
responsible for supercomputing R&D. That software includes operating
systems, libraries, compilers, software development and data analysis
tools, application codes, and databases [18] [emphasis added].

The analysis further identified critical characteristics of the software in the productivity
infrastructure: common toolset, functionally complete, multiplatform, specialized, widely
available, enduring, open to research and financially viable [62]. With such an infrastructure, the
entire community’s productivity would improve. Individuals and groups would be more
productive with better tools, less time would be spent on tool-related efforts and the pool of
capable HPC programmers would grow.

Although a significant breakthrough in this area was beyond the reach of any single participant
in the HPCS program, this analysis informed tool requirements (Section 5.1.5) and Sun’s tool
strategy (Section 12).

3.9 Administration
Sun’s comprehensive view of productivity led to the addition of administration to the HPCS
program’s list of productivity factors (performance, robustness, programmability, and
portability). The administration category includes general activities typically associated with
making a supercomputer useful for its intended purpose: operations, administration,
maintenance, and provisioning (OAM&P). These activities play a significant role in
supercomputer productivity. Administration costs contribute significantly to the cost of running a

Productive Petascale Computing Page 45 of 139

supercomputer, and effective administration can make a significant impact on the value derived
by scientists and programmers.

A separate team, working in collaboration with the core productivity team, conducted research
into productivity factors associated with administration. Details of those results are beyond the
scope of this report, but the findings that made an impact on Hero’s design are summarized here.
Analysis of data gathered by the administration team revealed bottlenecks in two general areas:
availability and effective resource utilization.
Availability refers to the percentage of time that a machine is in operation and able to process
user jobs. Productivity bottlenecks in this area include:

• Manually restarting failed jobs after hardware failures have been diagnosed and
corrected.

• Diagnosing faults, in particular locating failed hardware components in a timely way, a
problem likely to become acute as systems grow to petascale.

• Performing software upgrades, especially urgent upgrades needed for security purposes,
another problem likely to have a growing impact on availability as system size increases.

Effective resource utilization covers the degree to which available computing resources are
effective in helping users achieve their goals. It has several aspects:

• Computing jobs vary considerably in type of computing resources needed: memory, CPU
cycles, disk I/O bandwidth, or disk space. It is difficult or impossible to configure these
resources precisely, without waste, in most systems; it is even more difficult to
characterize the needs of certain applications in advance or on the fly as they change
computational phases.

• In addition to resource availability, job scheduling is sensitive to administrative concerns
such as priority and urgency; well-defined scheduling policies are usually in place but are
often manipulated by users to secure better responsiveness, sometimes by exercising
political influence.

• A difficult scheduling issue, unique to supercomputers, is the cost (in resources and
availability) of switching from capacity mode into capability modes. An effective job
scheduler operating in capacity mode may have a large number of jobs running
simultaneously, with a wide distribution of completion times. Switching into capability
mode requires clearing out capacity jobs so that the entire machine can be dedicated to a
single computation. The transition can produce long delays (when jobs are allowed to
complete) or unhappy users (when jobs are terminated prematurely).

• A general concern in resource utilization is the ability of administrators to gather and
visualize enough information to make effective, sometimes urgent decisions.

Requirements informed by this analysis appear in Section 5.4 and some solutions proposed for
Hero are in Section 11.4.

Productive Petascale Computing Page 46 of 139

3.10 Technology adoption
The findings reported so far represent a snapshot of the status quo in the supercomputing milieu
across the many levels depicted in Figure 5 (on Page 18). As suggested earlier, a change of the
magnitude proposed by DARPA (10x more productive) demands a fundamental shift in the way
things are done, a change that likely pervades every layer of the system, from semiconductors to
mission sponsors. Hero succeeds only if the community can make the transition, a steep
challenge for a community whose software development practices appear to evolve at a glacial
pace.

The team investigated how the HPC community adopts new technology, drawing on many
sources. It found that the pace of adoption for software technologies is indeed glacial but not
completely static:

• The structure and pace of technology adoption follow naturally from characteristics of the
existing HPC environment (Section 2.1).

• A technology adoption process exists and is best described in terms of three stages:
established, emerging, and future.

• Organizations typically engage in all three stages simultaneously, differing mainly in
distribution of effort and mission-driven time constraints.

A closer look at these three stages added a different dimension to the understanding of
productivity, and in particular to bottlenecks in the adoption of any new technologies, no matter
how promising. In particular, it became clear that successful adoption of Hero requires support in
all three stages (Section 5.1.4).

3.10.1 Established technologies
Widely established HPC technologies have ubiquitous and reliable supporting software
infrastructure, drawing on programmers’ expertise in FORTRAN 77, Fortran 90/95, C++, and
MPI-1 [38]. Most of these applications already exist and use established technologies that will
require support for at least 30 years into the future.
The window of opportunity for software technology adoption comes mainly at the beginning of
new projects. The cost of rewriting existing code is so great that projects seldom adopt new
technologies once underway. Support teams experiment with new technologies in noncritical
ways, but adoption takes place only if a new technology fits well, which means it offers
immediate and substantial benefit, requires little or no code change, avoids the cost of
reverification and revalidating and is expected to be widely supported into the indefinite future
without substantial additional cost or fear of disappearance. This latter concern, based on painful
experience, is increasingly addressed through reliance on open source software, not out of
ideology but as a form of indemnification against the kinds of disasters that cause tools to be
seen as risks (Section 3.8) [62].

3.10.2 Emerging technologies
The limitations of established technologies are well understood: thoughtful members of the
community believe that a transition to more productive technologies is necessary. Many HPC
sites participate actively in the development of new technologies.

Productive Petascale Computing Page 47 of 139

Even so, the window of opportunity at the beginning of new projects is exceedingly narrow.
Project managers adopt new technologies only if they have great familiarity and high confidence
in the future outlook for cross-platform standardization and support. Examples of emerging
technologies include the three partitioned global address space (PGAS) languages - Co-Array
Fortran [42], Unified Parallel C (UPC) [61] and Titanium [19], as well as MATLAB [37] and
scripting languages. Some of these technologies have been emerging for 10 years. MPI-2 [39]
also falls in this category, but it is mainly a transitional technology leading to PGAS languages.
Time lines for technology adoption vary considerably, ranging from sites with no intention of
abandoning established technologies in the foreseeable future (“MPI forever” is a ubiquitous
sentiment in some organizations) to those already heavily committed to emerging technologies
(“can’t live without MATLAB or UPC”).

3.10.3 Future technologies
A few members of the HPC community engage in research beyond the emerging technologies.
However, most see these as irrelevant or too far out. Current examples of future technologies
include the high-productivity computing systems (HPCS) languages (Chapel [8], X10 [22] and
Fortress [2], see Section 12.4), as well as parallel versions of MATLAB. Even these visionary
languages are expected to interoperate with existing and emerging technologies; examples
include parallel MATLAB with MATLAB and Fortress with Fortran.

3.11 Summary of findings
This section summarizes findings concerning significant bottlenecks that constrain HPC
application development in environments studied during the DARPA program, in particular the
mission partners. The framework within which the findings were interpreted is the workflow in
Figure 8, expressed in terms of skills (expertise) and tasks (effort) across several stages.

Some of the findings were general; some described conventional wisdom about productivity that
turned out to be inaccurate. However, some identified bottlenecks so significant that their
resolution could move the community toward the 10x DARPA goal. These findings shaped the
goals and informed the requirements described in following sections.

General findings about HPC in the environments studied are listed below:
• HPC programming is extraordinarily expensive as measured in labor cost, computational

resources, and time to solution.
• HPC programming is on an evolutionary path that will not lead to productivity

improvements; the reverse may actually be true.
• The level of skill and domain understanding among HPC programmers is very high.
• Project success depends on good management in combination with skills in several areas:

the scientific problem domain, numerical programming, optimization and scaling, or
optimizing for highly parallel execution.

• Productive HPC programmers are in short supply.
• Software development tools specialized for HPC are often perceived as risks to project

success, rather than generators of productivity.

Productive Petascale Computing Page 48 of 139

A number of possible strategies were investigated, some originating in the community’s
conventional wisdom, that did not represent opportunities for breakthroughs of the magnitude
needed for DARPA’s goals:

• Better education is always appealing, but the imagined advantage was not supported by
the data. HPC programming is essentially a craft that is learned on the job. Even with a
PhD-level education in science or engineering, it requires years of work to become highly
productive in the current HPC programming environment [52].

• Bigger teams are not practical as a general strategy. Necessary skills are in short supply.
The work requires overlapping skills and collaboration, which depends on collaborative
relationships that take time to build and sometimes fail. Finally, scientific programming
is essentially exploratory, which means that concurrent development is especially fraught
with difficulty [50].

• Better code libraries would make a difference, but this strategy for code reuse has
already been pursued for years. Good libraries reduce programming effort significantly,
but they do not dramatically reduce the need for scarce expertise (Section 3.6).

• Early workflow stages are focused on exploration of both science and numerical methods
in the problem’s domain. This exploration is the essential part of a project; there is no
reason to expect a breakthrough here.

On the other hand, the focus on an expertise hypothesis led to bottlenecks where breakthroughs
big enough to contribute to DARPA’s goals are possible:

• Early workflow stages are constrained by the need to produce working serial codes; this
requires considerable effort as well as scarce expertise in numerical programming,
obtained through collaboration and/or multi-skilled personnel. Experiences reported by
programmers and teams using higher level, more-abstract languages during early stages
suggest that considerable advantage can be gained (Section 3.7.4). In fact, the greatest
hypothetical breakthrough could come from allowing scientists to carry out this
exploration purely in terms of the science and numerical methods, not programming.

• Later workflow stages consist mainly of tasks not directly related to the science
objective: optimizing serial codes, rewriting codes for parallel execution, tuning the
parallel codes for scalability, and eventually porting. Any of these tasks, and the
enormous expertise and effort they require, could in principle be partially automated or
eliminated to great advantage.

• Programming languages and techniques can have a dramatic impact on software
development productivity (Section 3.7). Thoughtful use of existing languages such as
Fortran 90 can produce benefit only with sufficient investment in high-quality compilers
and guarantees of future portability (a tools problem). However, the languages available
at this time, including emerging PGAS languages, do not support parallelism at the scale
needed for petascale systems. As with early-stage tasks, aligning the implementation
language abstraction with the domain of science would produce benefits, including
reduction of effort through automation of low-level and platform-dependent tasks.

• Programmers are frustrated by inadequate support software, especially the specialized
development tools critical to HPC programming. This failure cannot be corrected, despite

Productive Petascale Computing Page 49 of 139

persistent effort, at project and lab levels, nor is a solution with the reach of any single
platform vendor (Section 3.8). A significant breakthrough is possible in this area, but the
relevant funding agencies apparently lack the knowledge, wisdom, or priorities to do so.
However, platform vendors can steer tool efforts in more productive directions.

• Nowhere is the lack of advanced tool support more noticeable than in the need for
validation and verification; although increasingly important [49], typical approaches are
informal.

Selected findings reported by the administration team (Section 3.9) are summarized below:

• The scale of Hero’s hardware makes it more difficult to keep the machine functioning
correctly and highly available.

• The scale of Hero’s processing power increases the challenge of understanding and
managing job processing.

• The opportunities for significant productivity breakthroughs in administration are, in
many ways, similar to those for programming languages and tools. Effective tools
operating at petascale must enable system administration to be highly automated, so staff
can make policy decisions at a more abstract level than is now supported.

Finally, a summary of cautions—possible obstacles to achieving the potential productivity
breakthroughs identified by the team:

• The change needed to achieve DARPA’s challenge of 10x productivity improvement is
dramatic and pervasive. The biggest obstacle to change is the evolution of the
community’s expectations and practices.

• A successful supercomputer must simultaneously support programming technologies in
all stages of the adoption model (established, emerging, and future), with special
attention to incremental migration (Section 3.10).

• A successful supercomputer must rely on programming technologies (languages,
compilers, performance analyzers, and many others) whose ubiquity, future availability,
and ongoing evolution are not in doubt. These must be guaranteed by a stakeholder with
the appropriate mission, budget, and longevity to convince project management that tools
are no longer risks, but keys to a more productive future.

Productive Petascale Computing Page 50 of 139

4 Strategic development goals for Hero
As summarized in the preceding section, the key to increasing HPC productivity is to reduce the
programming effort and level of expertise required to achieve a given level of machine
utilization. The project systematically applied the engineering principles of abstraction and
automation to remove these bottlenecks. Although these principles have been extensively applied
in other domains, they have been largely eschewed by HPC programmers in favor of hands-on
control over performance. However, it is precisely the exercise of this low-level control that
leads to programming effort and expertise bottlenecks.

A long-term goal must be to relieve HPC programmers from considering platform dependent
details. The team’s studies of programmability demonstrated that explicitly parallelizing and
optimizing applications for a given machine architecture can cause program size to grow by a
factor of ten over a formulation that abstracts from such details (Section 3.7). Also, it is known
that total software development time and effort rise super-linearly with code size [5].
Ideally, scientists and programmers would develop application programs using syntax and
semantics close to the application domain, without regard for underlying machine architecture.
However, empirical data shows that productivity on existing platforms is constrained by both the
effort and expertise required to adapt solutions to particular parallel platforms (this includes
coding, tuning, parallelization, and optimization). Current HPC environments fall short in
providing effective abstractions; in fact, common parallel programming models such as MPI [38]
and OpenMP [44] break abstraction by forcing users to explicitly manage process parallelism
and communication. Moreover, when programs must be written with additional mechanisms to
compensate for machine failures (for example, explicit checkpointing), another important
abstraction is broken.

The Hero design strategy is to create a virtual machine that hides platform details such as
instruction sets, number of processors, and memory architecture. The virtual machine is also
designed to be reliable, even if underlying hardware is not. If machine components fail,
programs must continue to run, though perhaps with reduced performance. The virtual machine
is not provided by any single component architecture, but necessarily results from a synthesis of
hardware and software capabilities.

A second strategic platform goal is to automate many labor-intensive tasks such as
parallelization and optimization. Creating effective abstraction without sacrificing efficiency
(especially machine utilization) requires automating many programming and optimization tasks
that are now done by hand. Where the scientist or programmer’s interface abstracts away the
details of hardware management, a development platform must provide capabilities to effectively
automate significant parts of code parallelization, memory management, fault recovery, and
other platform-dependent details that are now managed explicitly.
These high-level goals are necessarily strategic because it may not be possible to fully satisfy
them with current technology. Creating effective domain-specific abstractions (for example, in
domain-specific languages) is an open area of research. So too is the technology needed to
automate mapping of domain-specific constructs and other abstractions onto massively parallel
platforms with high utilization and performance. Even if these research issues can be addressed,
the cost of incorporating solutions in any particular platform is still unknown.

Productive Petascale Computing Page 51 of 139

Nonetheless, it is important to identify and characterize these strategic platform goals.
Addressing productivity problems in the long term requires meeting these goals. Preserving this
as a possibility in any future platform means that interim solutions should be waypoints on a path
toward those goals. This ensures that requirements and design are given sufficient forethought,
so they can be adapted to accommodate future platform changes that address productivity needs.

Productive Petascale Computing Page 52 of 139

5 Productivity requirements for Hero
From the results of productivity studies with HPC stakeholders, reported in Section 3, and the
strategic goals summarized in the preceding section, requirements were derived that address
productive use of human and computer resources. These requirements include the need to reduce
the effort and level of expertise required to develop, run, maintain, or port HPC application
software. They also include the need to keep a supercomputer as busy as possible with useful
computation because an underused, idling, or unavailable supercomputer is an unproductive use
of significant capital expenditure.

5.1 Requirements for programmability and portability
Studies of HPC developers establish that two tasks consuming large amounts of time and effort
are (1) translating a computational concept into a correctly operating, parallel program and (2)
porting the program to a different machine [7] [25] [26] [27] [28] [29] [48] [56]. Moreover,
developers cannot reduce development time by adding people to a project. For the foreseeable
future, there will be a shortage of personnel with requisite skills. For these reasons, many of the
greatest opportunities for productivity improvements will come from improving programmability
and portability.

5.1.1 Shared memory model
The application development environment must provide some form of shared memory model.
There is strong evidence (including this project’s own experiments, Section 3.7) that message
passing and other forms of explicit memory management in parallel applications require a
significant amount of programming effort and expertise. For example, some scientists claim that
writing MPI code is the most difficult aspect of their work [56]. These studies also showed that
MPI increases code size by a factor of 1.5 to 2.0, with a corresponding downstream burden on
maintenance. The general consensus is that a shared memory model (that is, one in which the
programmer does not need to consider where in memory data is stored) is much simpler to
program.

The difficulty is in providing a shared memory abstraction while also achieving adequate
memory latency and bandwidth. HPC programmers invest time and effort in memory
management precisely because different memory allocation strategies result in significant
performance differences across different hardware platforms. Programmers will release direct
control over memory management only when the system can provide a shared memory model
that does not significantly retard execution efficiency. This requires advances in hardware
implementation of parallel platforms and memory management provided by system software.
Progress in these areas suggests this will be possible in new machines. For example, the Hero
system was architected to provide memory bandwidth and latency sufficient to keep up with the
processors for large address spaces, relative to the amount of data accessed by typical parallel
computations. While such approaches do not remove all memory latency issues, they can reduce
them below the threshold of concern for a large class of applications and enable effective support
for legacy MPI applications.

Productive Petascale Computing Page 53 of 139

5.1.2 Problem-oriented abstraction
Adequately addressing the expertise gap [55] requires programming environments that support
problem-oriented abstraction. Substantial effort throughout the development cycle is expended to
manage the interface between application science and parallel programming. Since there is a
community-wide shortage of developers who are conversant in both disciplines [52], this
problem is expected to persist. In fact, the increasing complexity of new applications, coupled
with the increasing complexity of supercomputer platforms, suggests that the expertise gap will
only widen unless steps are taken to manage it.

Since handoff and translation problems are inherent in the division of labor between scientists
and programmers (Section 3.3), truly addressing this problem will require reducing the level of
programming expertise needed—ideally to a point where domain experts can develop most of
their own applications. Supercomputer platforms need to provide programming environments
that support more problem-oriented abstractions, so developers can think and write applications
in terms of the problem domain (rather than the parallel computing domain).

While providing specific problem-oriented abstractions (such as programming constructs for
weather simulation) is beyond the scope of any hardware vendor, such systems should provide
core capabilities (extensible libraries, languages, performance analysis and prediction, interactive
graphical visualization, automatic checkpointing, and so on) on which problem-oriented
abstraction layers can be constructed.

Verification and validation of scientific codes has also been identified as a significant bottleneck
[49]. If programs are written at a higher level of abstraction, expressed in terms closer to the
problem’s mathematics and structure, verification and validation is easier than when dealing with
low-level implementation details, as the experiment in code rewriting showed (Figure 9).

5.1.3 Portability layer
Significant development effort is expended in porting applications to new machines. Because
HPC applications can outlive multiple machine generations, they are often ported several times.
To the extent that the application has been optimized to its current platform, that optimization
must be undone, and the application must be optimized on the new machine.
This problem can be addressed by providing a portability layer: an abstract machine layer that
can run on different hardware, provide a uniform target for translators, and automate efficient
mapping to the underlying machine. For example, the Hero approach is to provide a portable,
intermediate abstract machine layer (as is done for the Java programming language [17])
optimized across a family of similar (single address space) hardware implementations.

5.1.4 Programming language support
Stakeholder perceptions differ on the requirements for programming language support. In some
cases, there is a strong desire for platforms that support established languages, in particular
Fortran and C++ with MPI. However, others feel that existing languages do not offer the
capabilities to address language-related productivity issues (for example, the capability to
provide adequate abstraction or automation). These stakeholders (including DARPA) are

Productive Petascale Computing Page 54 of 139

currently supporting several efforts to develop new parallel programming languages, but it is
clear that a range of language support is needed in the foreseeable future (Section 3.10).

Specific requirements for established languages (Section 3.10.1) include backward compatibility
as well as execution efficiency for applications written with MPI, OpenMP and MPI I/O. For the
Hero architecture, this requirement was interpreted to mean that legacy applications written for
distributed memory machines had to run with acceptable efficiency when mapped to Hero’s
memory architecture.
Emerging languages such as the PGAS family (Section 3.10.2) also had to be supported; these
are not yet in widespread use, but consensus in much of the community suggests that this is the
near-term trend. Sites differ in pace and timing when adopting these new languages, and
effective interoperation with the older languages is understood to be a significant requirement for
incremental adoption.

Finally, there are efforts to develop new parallel programming languages that provide both a
more effective parallel programming paradigm and more efficient implementation on new
hardware architectures (Section 3.10.3). Each of the HPCS Phase II vendors has been developing
some form of new programming language. Sun’s experimental language Fortress [2] (Section
12.4) is strongly focused on abstraction and on language extensions tuned for particular kinds of
applications.

Some studies also suggest that significant productivity gains can be accomplished with better use
of existing programming languages. This includes experimental rewriting of a standard
benchmark into a high-programmability style using Fortran 90, which produced code that ran
about half as fast using currently available language support (Section 3.7). It is likely that much
of this loss could be regained through improved optimization techniques. Further, the effects on
human productivity (for example, in maintenance or porting) may outweigh losses in runtime
efficiency. None of this can be achieved, however, without increased investment in compilers
and guarantees that high quality support will be widely available well into the future (a tools
issue, discussed in the next section).

5.1.5 HPC tools and libraries
Although much of the development of HPC-specific tools and libraries may be conducted by
third parties, their availability is a critical requirement if new supercomputer platforms are to
have a major and continuing impact on productivity. The availability of good HPC tools has
unfortunately been trending in the opposite direction, creating a perception that tools represent a
significant project risk (Section 3.8).

Tools that address key development areas include software configuration management tools,
build tools, parallel debuggers, program monitors, profilers, and tools for detecting deadlocks
and race conditions. Data visualizers are also needed to help interpret the output, and program
state visualizers are important debugging aids.

Despite the potential of tools, current developers are often unwilling to embrace them, because
they are unsure whether the tools will be available on future platforms. In some cases, this also
results in tools being developed and maintained in-house at considerable effort and expense.

Productive Petascale Computing Page 55 of 139

An assessment of stakeholders’ tool needs suggests that a long-term tool strategy is required,
based on collaborative development or open source, to ensure that tools can be ported to different
machines even if the original developers have lost interest. A more complete analysis and set of
recommendations appear elsewhere [62].

Ongoing improvement in libraries supporting parallel programming constructs, as well as
specific application domains, is also needed. Libraries have been demonstrated to save
significant amounts of development time in HPC domains by providing reusable solutions for
recurring problems. The development environment should provide libraries for common parallel
vector and matrix operations, parallel versions of common data structures, as well as flexible
visualizations of these data structures. It should also provide capabilities supporting user
extensions that enable development of organized classes of domain specific objects. This can be
viewed as a steppingstone toward a more problem-oriented development environment expressed
at a more suitable level of abstraction.

5.1.6 Continuous monitoring, measurement, and improvement
Developers should be able to continue identifying and removing productivity bottlenecks after
system delivery. Productivity bottlenecks act as a set of constraints on software development. A
new platform that satisfies these requirements will remove many of the constraints discussed in
this paper. However, the theory of constraints tells us that removing one process constraint will
likely expose other constraints that were previously masked [15] (much as fixing the weakest
link in a chain exposes the next weakest link). Continuous productivity improvement requires
identifying and addressing new constraints as they become manifest.

New platforms should support such continuous monitoring and improvement by offering support
for collecting data on how individuals and teams of programmers spend their time on real
development efforts. The studies mentioned in this paper (Section 3.5), as well as others in the
HPCS program, used the monitoring tool Hackystat [24] to gather real-time data on developer
activities. This work has shown that such tools can unobtrusively collect data needed to profile
development activities by monitoring computer activities associated with programming, testing,
and debugging. Such data can provide the basis for suggesting further productivity
improvements such as better tools or programming methods. Additional research in this area is
needed to understand exactly what data should be collected and how to facilitate its
interpretation.

5.2 Requirements for performance
Performance is the raison d’être for supercomputers. Further, ever-increasing performance
allows ever-larger problems to be solved in the available time. Performance can even be an all-
or-nothing criterion. For example, the results of a weather simulation are useless if its predictions
arrive after the fact. Performance can thus influence productivity in two ways: first, by achieving
a computational result quickly. If the result is achieved too late because of hardware or software
that is too slow, the value of this result may be greatly reduced, perhaps to zero.

The second contribution to productivity comes from making scientists more productive.
Assuming that a parallel program has been developed and is being used in production mode, if
scientists get their results back more quickly, they spend less time waiting or doing less-

Productive Petascale Computing Page 56 of 139

productive work. It is well established that interruptions in work are disruptive; a faster computer
can return results sooner and shorten these disruptions, so work on the next problem can start
sooner. Thus, a faster computer produces results of higher value and helps scientists use their
own time more productively, as well.

For supercomputer applications, performance is much more than just a simple measure of
microprocessor floating point operations per second (FLOPS). DARPA has defined a set of HPC
challenge benchmarks [36] that include measurements of FLOPS, memory bandwidth, bisection
bandwidth, and remote memory access latency. In addition, with the increase in the cost of
energy, measurements such as FLOPS per Watt have become very important in evaluating
operations cost.

5.3 Requirements for robustness
Due to the large number of hardware components in a petascale system, the likelihood of a
component failure is high. For example, reliability models for the Hero hardware, which consists
largely of commodity components, predict the occurrence of several hardware faults per day.
Since HPC applications typically run for hours, days, or even longer, multiple component
failures during execution must be anticipated. Clearly, shutting down the entire system, repairing
it, and restarting the interrupted applications causes unacceptably low productivity.
Next-generation systems must be designed to continue computation in the face of component
failure, a goal expressed as:

Compute Correctly Through Failure
First, in the event of component failures, unaffected components should continue to provide
service, even as total system capacity and performance diminishes. Repair or replacement of
failed components should be possible while the rest of the machine continues operating.
Applications using the failed components should continue unabated. Second, applications using
the failed component should not lose results computed prior to the failure. Many failures can be
made transparent to the application by using redundancy or restarting failed processes. To protect
against failures that cannot be made transparent, it must be possible to collect and store frequent
checkpoints for applications at runtime, then restore an application to a safe state and resume
computing, without compromising program execution time or overall system throughput.

For example, Hero is designed to provide an automatic checkpointing facility, allowing
applications to be rolled back and restarted at a checkpoint. It also provides facilities for
monitoring the health of all components and proactively migrating computations away from
components that are in danger of failing. The benefits of such approaches are discussed
elsewhere [63] [65].
By providing automated checkpointing, migration, and continued operation through failures,
developers can be relieved from programming their own robustness features. The resulting codes
will be smaller and less expensive to maintain.

5.4 Requirements for administration
Scheduling jobs of varying sizes and priorities on a supercomputer is complex, and it is
becoming even more challenging as machines such as Hero grow to petascale (Section 3.9). This

Productive Petascale Computing Page 57 of 139

task should be automated as far as possible because automation reduces administration costs and
errors. Resource monitors and visualization should provide administrators, scientists, and
programmers with up-to-date status and usage information at several levels of detail.
Applications also should not waste resources. Many parallel applications exhibit a point of
diminishing returns, where adding processors causes poor machine utilization or even an
increase in computation time. In that case, it is more productive to allocate fewer resources and
allow applications to run concurrently. This implies that the system should provide automated
monitors for detecting and mitigating resource waste. It must also be possible to change the job
mix quickly (for example, between large numbers of smaller jobs and fewer large jobs) as a
response to project demands and priorities. Minimizing delay and idle resources while changing
the job mix requires that the system checkpoint and suspend jobs quickly, and restart them
without significant loss of progress.

Efficient use of a supercomputer system also means that the machine must be configurable to the
intended workload. Underutilized components are unproductive. The number of processors,
memory per processor, number of I/O nodes, and number of various types of storage devices
should be configurable on an as-needed basis. This is because data analysis and computation-
intensive applications differ in their processing, communication, and storage requirements.
In particular, to support many different types of workloads at national laboratories and other
supercomputer centers, the machine must be able to transition seamlessly between capability and
capacity modes (Sections 2.3 and 3.9). Current supercomputers often run only in one or the
other; for example, the newest, most capable machine often runs in capability mode while older
machines run mainly in capacity mode. For a system the size of Hero, few applications are
computationally intense enough to consume all its resources, so the machine must be able to
satisfy other computing demands when the few large applications are not running.

Productive Petascale Computing Page 58 of 139

6 From requirements to design
The requirements set forth in the previous section call for an innovative system architecture and
design. The challenge to innovate requires the synergy that results from combining individuals
with expertise in multiple areas on every functional design team and having key design leaders
participate in all design phases. This meant that the consequences of each design decision were
evaluated from many perspectives and that the full benefit could be extracted from any particular
innovation. For example, by including the lead designer for reliability, availability, and
serviceability (RAS) in all key hardware and software decisions, and by enabling direct
participation of hardware and software leads in the RAS team, RAS considerations permeated
the entire design at every level. This ensured that the design requirements were met and key RAS
features such as hardware virtualization could be supported in the most efficient possible way,
using both hardware and software design components.

Likewise, the direct participation of all design leaders for both hardware and system software
features enabled the creation of a flexible and powerful global shared address space
programming model, using both hardware and software components, while avoiding the
excessive costs associated with global hardware cache coherence. The flexibility to implement
any required feature in the most efficient manner by combining the best mechanisms from
hardware and software technologies was crucial to the production of a revolutionary new design,
not just a simple evolution of current designs.

Section 6.1 describes the design process that allowed the team to break through organizational
barriers and avoid obstacles to innovation. Section 6.2 illustrates the results of the process at a
high level—how productivity goals were supported by innovations at all layers of the system, the
subject of sections 8-12. Section 6.3 contains a detailed mapping of productivity goals to design
requirements and of design requirements to enabling innovations. These mappings demonstrate
the flow of productivity goals into the design. Later in this document, Section 13 returns to the
theme of interdisciplinary design and provides a specific example of how the design process
enabled the tradeoffs needed to create a feasible design in the presence of seemingly intractable
requirements.

6.1 System Exploration Model
Sun developed a collaborative design approach for the HPCS Phase II program: the System
Exploration Model. In contrast to other design approaches, which assemble existing or favored
component architectures, the System Exploration Model started with the requirements and did
not constrain the system architecture required to fulfill those requirements in any way. A cross-
functional team of component technology experts worked together to understand what is possible
and used simulation and analysis tools to evaluate the possibilities. The output of the process was
an optimized system design, jointly proposed and agreed to by the component technology
experts. Sun's System Exploration Model is fundamentally a concurrent process, in contrast to
sequential models where separately optimized components are merged into system-level designs
and then packaged into products.
The central management construct in the System Exploration Model is the system architecture
team, which provides a central unifying role during the system exploration process. This team is
cross-functional; it includes thought leaders from component teams and becomes an

Productive Petascale Computing Page 59 of 139

interdisciplinary group of experts, addressing global objectives by stepping through learning
stages that include:

• Prior art investigation
• Workload characterization
• Assessment of key market and technology limiters and opportunities
• Technology trend analysis
• Component and system modeling
• Design space exploration
• Generation of straw man alternatives
• Generation of system reference designs
• Component, subsystem, and system-level prototyping

The system exploration process is summarized in Figure 12. Component area experts begin by
explaining the technology trends in their areas, rather than specific components or design
attributes. For example, a microprocessor architect describes technology trends, such as
multithreading, that allow microprocessors to continue on the trend prescribed by Moore’s law,
rather than describing the operating frequency and floating-point pipeline of current
microprocessors.
Technology trends feed a sequence of progressively more detailed system models that permit the
system architecture team to identify areas that may require innovation beyond current technology
trends. For example, interconnect trends did not provide the internode bandwidth required to
meet performance goals, so the innovations described in Section 9 were necessary. Models are
often just simple component performance models, which would not have allowed the satisfaction
of a wide range of productivity goals. Therefore, the HPCS Phase II program measurement and
analysis frameworks were developed for end-to-end performance, productivity, robustness, and
security projection, as well as system-level cost, power, thermal, and mechanical models. The
modeling approach was hierarchical, based on detailed component-simulation models, which
were then factored into system-level analytic and simulation models. These analyses became
progressively more accurate as prototyping and implementation progressed.

In addition to system models, a detailed understanding of the workload characteristics is
essential. A system optimized for a particular workload such as random traffic may perform
poorly under other workloads that have hot spots. The DARPA challenge benchmarks [36]
provided a set of workloads that stressed the system design in multiple dimensions, including
peak processor performance, memory access latency, and bisection bandwidth. The Hero system
architecture had to satisfy the requirements of all workloads, rather than just being optimized for
a single characteristic.
With such a challenging set of requirements, the system architecture exploration shown in the
center of Figure 12 was an iterative process, informed by workload simulation of proposed
system alternatives. Component teams could make proposals, but the interplay of proposals with
other components had to be evaluated in the context of an entire system to create an optimal
system design, rather than a set of optimal component designs. For example, the memory
subsystem had to satisfy system checkpoint requirements as well as microprocessor requirements
for memory bandwidth and latency. This concept is somewhat foreign to product teams

Productive Petascale Computing Page 60 of 139

accustomed to spending most of their time in detailed design rather than iterative system
architecture, and management had to work hard to ensure that the architecture team remained
focused on system optimization.

Figure 12: System Exploration Model

System-level metrics visibility keeps everything in perspective. The system exploration process
identifies the system-level contribution of each component, the critical factors and risks, and the
system metrics comparison of alternative system designs. It thus enables the derivation of
optimal reference designs for each market segment. These quantified reference designs allow the
product definition team to assess and define appropriate products as the program progresses.
Ongoing visibility into system and component architectures provides program management with
the basis for decision-making and flexibility in adjusting areas of focus and investment.
The System Exploration Model (Figure 12) represents a pivot point in Hero’s design and this
report. The productivity research and analysis described in Sections 2-5 produces design
requirements, and the innovative designs described in Sections 7-13 satisfy those requirements.
In practice, of course, the division between requirements and design is not nearly so cut and
dried. There were many iterations and compromises that are not adequately described in this
document, but whose existence is understood by anyone who has worked on a complex project.
However, throughout the entire iterative process, the emphasis was on creating an entire system
that achieved a 10x productivity improvement.

6.2 Enabling innovations
The Hero design rests firmly upon five technical foundations, described in more detail in
following sections. At the processor level, extensive chip multithreading (CMT) provided an
efficient way to keep all hardware resources busy performing useful computation (Section 8). At
the interconnect level (Section 9), a combination of proximity communication and silicon

Productive Petascale Computing Page 61 of 139

photonics enabled key hardware and software breakthroughs by providing new levels of
bandwidth at low latency. Also at the interconnect level, the hardware and software supporting
the global address space enabled not only simpler programming models and new system
software and virtualization strategies, but also delivered simpler hardware designs for nodes
(Section 10). At the system software level, creating the abstraction of a single, partially coherent,
shared memory machine using virtualization allowed simpler OS designs while opening new
opportunities for high-level programming (Section 11). Finally, at the tools and languages levels,
technologies in the Fortress language [2], together with associated parallel tools, permitted full
and efficient utilization of all the other innovations by users of the system (Section 12).
These technical innovations were the result of the process outlined in the previous section. The
linkage from overarching productivity goals to design requirements to technical innovations is
shown in Figure 13 with details of the links in Section 6.3. These linkages provide traceability
from the design back to the original productivity goals.
The left side of Figure 13 shows the linkage from productivity goals to design requirements,
while the right side shows the linkage from design requirements to enabling innovations in the
design. For example, the design requirement labeled “Compute Correctly Through Failure” is a
paramount requirement for satisfying the robustness goal, but it also serves the following goals:

• Programmability: Eliminating the need for defensive programming improves application
development productivity.

• Performance: Minimizing fault tolerance overhead and recovery time from failures
significantly increases how much time is spent performing useful computation.

• Administration: Automating failure handling and recovery improves administrative
productivity and reliability.

As shown on the right side of Figure 13, several design innovations enable Compute Correctly
Through Failure. The virtualization-based software stack allows reallocation of compute
resources for efficient recovery; the global address space allows reallocation of memory
resources for efficient recovery; and proximity communication and silicon photonics provide
sufficient communication bandwidth to support system checkpointing effectively.

Productive Petascale Computing Page 62 of 139

Figure 13: Innovations that enable achievement of productivity goals

6.3 Requirements traceability
Figure 13 illustrates high-level linkages among productivity goals, design requirements, and
enabling innovations. The following tables explain the rationale for these linkages, which are key
to requirements traceability. Table 8 traces productivity goals to design requirements, and Table
9 traces design requirements to enabling innovations. Although the traceability is described as
flowing from goals to innovations, the process to develop that flow is highly iterative as
described in Section 6.1.

Productive Petascale Computing Page 63 of 139

Table 8: Productivity goals to design requirements traceability

Productivity
Goals

Design Requirements Rationale

Programmability New Programming Models Address key bottlenecks around expertise and effort with programming
models that are more abstract (less non-domain knowledge needed) and
embody more automation (reducing level of effort).

Programmability Standard Programming
Models

There is a huge legacy of HPC codes and skills, and the community will
evolve slowly; there must be excellent support for legacy technologies as
well as transitional steps toward new programming models such as
OpenMP and PGAS.

Programmability Compute Correctly Through
Failure

Guarding against system failure imposes a burden on application
development in the expertise and effort needed to implement application
checkpointing; computing correctly through failure eliminates this need in
legacy and new programming models.

Portability New Programming Models The abstraction of new programming models by definition excludes
machine-specific programming requirements.

Portability Standard Programming
Models

Even within legacy programming models, a more abstract execution
model reduces the need for machine-specific optimizations.

Performance Dramatic Improvements in
Bandwidth, FLOP/Watt,
Latency (Raw Performance)

Internode bandwidth and latency are the key performance in current
distributed memory machines. Energy costs are becoming a primary limit
to scalability of the largest machines.

Performance Compute Correctly Through
Failure (Effective
Performance)

The amount of time performing useful computation is significantly
increased by integrating system fault tolerance, minimizing both the
overhead costs and recovery time from failures.

Performance Efficient Mode Switching
(Effective Performance)

System checkpointing and hardware resource virtualization make it
possible for jobs to be suspended, relocated, and reprovisioned
efficiently; this makes possible much more efficient job management and
increases total system throughput.

Robustness Dramatic Improvements in
Bandwidth, FLOP/Watt,
Latency

Bandwidth and latency improvements, combined with hardware
virtualization technologies, enable dynamic node sparing for hardware
fault recovery.

Robustness Compute Correctly Through
Failure

Robustness in the face of inevitable hardware failure has become a
critical productivity problem for massive high-end systems; the ability to
compute correctly and continuously through failure is a requirement for
increasing the scale of these systems.

Administration Compute Correctly Through
Failure

Automated failure handling and recovery reduces the human cost of
administration.

Administration Efficient Mode Switching Allows more flexibility in machine configuration and job management.

Productive Petascale Computing Page 64 of 139

Table 9: Design requirements to enabling innovations traceability

Design Requirements Enabling
Innovations

Roles

New Programming Models HPC Languages;
Portable Tools

A new generation of languages embodies the strategies of
abstraction and automation.

New Programming Models Virtualization-Based
Software Stack

Virtualization provides a higher level of abstraction at the
system software layer, making it much easier to build
modern programming languages and tools.

New Programming Models Global Address
Space

A single address space is a key part of system
virtualization, supporting simplified memory abstraction.

Standard Programming
Models

HPC Languages;
Portable Tools

Portable tools make it possible to support legacy codes,
skills, and practices.

Standard Programming
Models

Virtualization-Based
Software Stack

Virtualization enables support of OpenMP on multi-node
systems and efficient support of PGAS languages.

Standard Programming
Models

Global Address
Space

Even within legacy programming models, a more abstract
execution model reduces the need for machine-specific
optimizations

Dramatic Improvements in
Bandwidth, FLOP/Watt,
Latency

Proximity; Silicon
Photonics

Proximity and silicon photonics address key hardware
bottlenecks in providing high-bandwidth, low-latency,
energy-efficient internode communication.

Dramatic Improvements in
Bandwidth, FLOP/Watt,
Latency

Massive
Multithreading

Reduces the intra-node cost of computation in energy
efficiency and latency.

Compute Correctly Through
Failure

Virtualization-based
Software Stack

Allows reallocation of compute resources for efficient
recovery.

Compute Correctly Through
Failure

Global Address
Space

Allows reallocation of memory resources for efficient
recovery.

Compute Correctly Through
Failure

Proximity; Silicon
Photonics

Provides the communication bandwidth needed to
effectively support system checkpointing.

Efficient Mode Switching Virtualization-Based
Software Stack

Allows reallocation of compute resources for efficient
suspension and resumption.

Efficient Mode Switching Global Address
Space

Allows reallocation of memory resources for efficient
suspension and resumption.

Productive Petascale Computing Page 65 of 139

7 Design overview
This section provides an overview of the innovative design that was developed, based on the
productivity research described in previous sections. Sections 8–12 provide more detail of
hardware and software inventions that enable the design. Specifically:

• Section 8: Massive chip multithreading, a processor architecture that provides the ability
to saturate many on-chip cores, even in the presence of irregular high-latency memory
operations.

• Section 9: Proximity communication and silicon photonics, technical innovations that
provide the massive system bandwidth required to support the productivity of a global
shared-memory model.

• Section 10: A system coherence model that supports legacy applications and enables new
highly productive languages and programming models.

• Section 11: System software that provides a robust computing environment across
thousands of nodes.

• Section 12: Development support for highly productive programming and Fortress, a new
programming language that provides a higher level of abstraction more closely
resembling scientific and mathematical expression.

7.1 Hardware overview
Figure 14 depicts a high-level view of the Hero system hardware architecture, which consists of
a large number of interconnected compute and I/O nodes supporting a global shared-memory
address space. Memory within each compute nodes is fully coherent; global shared memory with
managed coherence (Section 10.1) is supported across all nodes in the system. Both the compute
and I/O nodes are based on standard commercial components augmented with optical
interconnect and special hardware, a scalability interface (SIF) that assists with remote memory
operations. Compute nodes have extra memory bandwidth for higher compute performance,
while I/O nodes provide external storage and network connectivity, including an interface to
specialized analysis functions such as visualization.

Productive Petascale Computing Page 66 of 139

Figure 14: Hero hardware architecture

Compute and I/O nodes are interconnected by a multi-stage switching fabric, for example, a
three-stage Clos network of Hero Switches.18 The edge switches and central switches shown in
Figure 14 are both physically Hero Switches; they differ only in topology. An example path in a
three-stage network is shown in Figure 15. A packet originating in the source node for a global
load/store operation uses the SIF to manage remote memory access. The example packet
traverses four optical links and three switches on its way to the destination node. Silicon
photonics connects nodes and switches optically; proximity communication connects elements
within the switch. These innovative technologies provide the low latency, high-bandwidth switch
fabric necessary for high-performance remote memory operations among thousands of nodes.

18 Clos networks [11] are a popular HPC switching fabric due to advantages such as high bisection
bandwidth, low switching delays, high reliability, low-complexity deadlock avoidance, and efficient
routing. The number of stages is the maximum number of switches that must be traversed to get from one
node to any other node. Two nodes connected to the same switch need only traverse that switch, but a
typical path among nodes shown in Figure 15 traverses two edge switches and a central switch. For a
larger network, another set of edge switches could be inserted before the central switches to make a five-
stage network. Technically, the network described in this report is a folded Clos or fat-tree network [34],
because the same edge switches are used for traffic entering and exiting the central switch.

Productive Petascale Computing Page 67 of 139

Figure 15: Path from source to destination node

7.2 Software overview
Hero’s software architecture, shown in Figure 16, supports highly productive programming by
leveraging global shared memory over a high-bandwidth, low-latency switch fabric, and by
introducing a new multi-node execution environment, called a SuperZone, which is built on
extensions to the OpenSolaris™ Zones technologies. Acting in concert, Hero hardware and
software enable a new execution model that provides a global address space and coherence
features that free programmers from low-level memory management. By eliminating the
necessity to manage memory locality, Hero provides revolutionary improvements in
programmability and supports all existing and emerging HPC programming models, including
OpenMP, Autoparallelized Fortran, PGAS, and MPI. Additional productivity gains are provided
by extensive fault tolerance features added throughout the Hero software stack and the advanced
administrative model supported by the Administrative Environment. These features combine
with the Hero File System to support the massive external bandwidth provided by Hero
hardware.

Productive Petascale Computing Page 68 of 139

Figure 16: Hero software architecture

The Hero software stack comprises the following, described in more detail in later sections:
• Fault Tolerant Hypervisor: Based on the current Sun4v hypervisor [45] with extensions

for scaling and fault tolerance. It provides full device virtualization and support for
automated checkpoint and restart.

• Hero Solaris™: Based on the current OpenSolaris operating system [45] with extensions
for multi-node semantics, multi-node execution, predictive self-healing, and automated
checkpoint and restart. It supports multiple file systems (Hero File System, Lustre, ZFS,
NFS, and pNFS) and a broad array of networking options.

• Hero File System: An object-based parallel file system, implementing the T10 OSD
standard with NFS and pNFS support.

• Tools and Libraries: C, C++, Fortran, and UPC compilers, augmented with debugging
and performance monitoring tools and supported by libraries tailored to the global
shared-memory environment of Hero.

• Administrative Environment: Based on the current OpenSolaris management suite,
extended to handle global shared memory, larger node counts and Hero Switch fabric.

For application development Sun created Fortress: a revolutionary new HPC programming
language with a higher level of programming abstraction. Fortress is designed for high-
performance computing with high programmability, supporting new features such as
transactions, specification of locality, implicit parallel computation, and the ability to integrate
third-party libraries into Fortress as if they were designed integrally with the language.

Productive Petascale Computing Page 69 of 139

8 Compute node: massive chip multithreading (CMT)
Based on chip multithreading (CMT), described in Section 8.1, Hero’s compute node
architecture keeps hardware resources busy even in the presence of stalls, high-latency memory
operations, and other processing irregularities. It provides dramatic performance improvements
for HPC codes with long cross-system memory latencies. Even more important for productivity,
it frees programmers from hand-tuning applications to the machine’s exact processor and
memory architecture each time the application ports to a new platform. As described in Section
8.2, the compute node also provides hardware infrastructure for the global address space and
execution model (Section 10). Finally, as described in Section 8.3, the use of commercial
components minimizes cost.

8.1 Chip multithreading (CMT)
By the beginning of the HPCS program, it had become clear that improvements in
microprocessor clock frequency, longer pipelines, and larger cache sizes would be insufficient
for microprocessor performance to keep up with Moore’s Law. As a result, a new design
approach that took advantage of increasing silicon transistor density to place multiple microcores
on a single die was developed. This industry—chip multiprocessor (CMP) microprocessors—is
made possible by semiconductor process improvements, and allows microprocessor performance
to keep up with Moore’s Law.
At the outset of the Phase II program Sun led the industry in massive chip multithreading (CMT)
microprocessors. CMT microprocessors combine CMP microprocessors with multithreading
(MT), in which hardware resources are dynamically allocated to whatever threads need them at
the time. During the program, Sun shipped the Niagara processor with eight cores supporting
four threads each. Sun has maintained the industry lead since the end of Phase II and is now
shipping the Niagara 2 processor with eight cores supporting eight threads each [33].
Hero is based on a variant of the Rock microprocessor [32] [58], which implements a third-
generation checkpoint-based CMT architecture. In this context, a checkpoint is a copy of the full
microprocessor register file. A checkpoint is stored when the executing thread encounters an
unresolved data dependency due to a previous cache miss. Since the state of execution is
preserved, the thread can continue to speculatively “execute ahead” by committing instructions
in a different register file copy. In execute-ahead mode, the processor continues beyond
operations with unknown operands (which are waiting for memory). It speculatively retires the
instructions that can be executed, while it defers instructions with unknown operands for
execution later. When memory operations return, the processor goes back and executes the
deferred instructions. When all deferred instructions have been executed successfully, the
speculative portion is committed and execution proceeds normally until a new execute-ahead
opportunity arises. If the speculation fails, execution is rolled back to the state preserved in the
checkpoint. Execution then resumes, now with many of the outstanding memory operands
present in caches. If the store queue fills up during speculation, the Rock processor still
continues the speculative execution to launch as many memory operations (prefetches) as
possible, but without the ability to commit these speculative instructions later. This
noncommitting speculation is referred to as scout execution. It is even possible to do

Productive Petascale Computing Page 70 of 139

simultaneous scout execution, in which execution proceeds simultaneously at two different
points of the same thread [58].

Rock’s checkpoint-based architecture allowed the development of an innovative out-of-order
instruction pipeline. Instructions are not only executed out of order but also retired out of order.
This resolves issues associated with standard out-of-order pipelines where instructions must be
reordered prior to retirement, which requires complex content-addressable memories (CAMs) to
hold out-of-order instructions. Because it is not limited by the size and power requirements for
complex CAM structures, Rock’s pipeline enables much deeper speculation than conventional
out-of-order architectures: thousands of instructions rather than 32 or 64, which improves single
thread performance and CMT throughput.

Another innovation in Rock’s checkpoint-based architecture is transactional memory [59]: the
ability to perform a set of instructions as a single atomic unit. This means that either all
instructions in the set (transaction) complete fully, or none of them complete. New instructions
such as checkpoint and commit, as well as enhanced micro-architecture structures, enable the
execution of transactions without expensive synchronization instructions. The checkpointing
mechanism is used to checkpoint a thread’s state prior to starting a transaction and to restore it in
case of transaction failure.
Transactional memory enables multiple threads to simultaneously enter a critical code section
and allows programmers to replace complex locks in applications with transactions. This greatly
enhances parallel programming productivity because the system handles all low-level
concurrency control issues and synchronizes concurrent access to shared memory by multiple
threads.

The use of CMT microprocessors strongly influenced the system design, because massive
multithreading:

• Uses all processor resources efficiently by providing multiple threads that can be freely
interchanged on a core, enabling excellent performance/chip and performance/watt.

• Improves performance by dedicating threads to events such as asynchronous system
events and direct message handling, which avoids costly context switches and interrupt
handling.

• Provides concurrency control, making sure that the right operations are taking place at the
right time, without interference or disruption, at high performance.

• Provides the infrastructure that permits a novel software technique to minimize
application jitter (Section 11.3.4).

• Tolerates irregular application behavior (Section 8.1.1).
• Allows the offloading of maintenance and I/O functions (Section 8.1.2) because the

microprocessor hardware can be fully utilized running applications.

8.1.1 Irregular application behavior
To maximize performance, microprocessor hardware must be kept fully utilized. Stalls for
context switches, cache misses, disk access, and the like significantly decrease performance. To
keep the microprocessor busy when a stall occurs, CMT threads can be used both for speculation
on a stalled task (Section 8.1) and for different tasks. Massive multithreading makes it possible

Productive Petascale Computing Page 71 of 139

to saturate pipelines even in the presence of irregular, high-latency memory operations. It
therefore tolerates irregular application behavior and long cross-system memory latencies,
meaning that programmers do not have to structure their programs to avoid these issues, which
has a potentially profound effect on application programmer productivity.

Highly optimized HPC applications are carefully tuned to squeeze the last usable FLOP out of a
pipeline, regularize memory access patterns, maximize locality, and carefully structure
communication patterns to avoid latency. This improves application performance on current
supercomputers optimized for peak FLOPS, but the programming required for manual tuning can
grow the code’s size by an order of magnitude [35]. Massive multithreading supports efficient
execution of applications with irregular behavior, enabling higher productivity programming by
eliminating manual code optimization. It also minimizes the effort required in the software stack
to mitigate irregular application behavior and the tools required to help programmers regularize
application behavior.

8.1.2 Offloading maintenance and I/O functions
Maintenance and I/O processing could have been performed by compute microprocessors,
perhaps using separate threads. However, massive multithreading provides a way to fully utilize
CPU hardware for application processing, so maintenance and I/O functions were offloaded to
other hardware. Application processing is performed on compute nodes, I/O functions are
performed on I/O nodes and special application-specific integrated circuits (ASICs), and service
processors are incorporated into nodes to perform maintenance functions.
An I/O node (see Figure 17) similar to planned commercial products performs I/O functions such
as disk and network access. The use of commercial components reduces costs and provides a
familiar development platform for I/O software developers. Remote memory access is performed
by an ASIC specifically designed for that purpose (Section 8.2).
A dedicated service processor using an out-of-band network performs maintenance processing.
The service processor network provides diagnostics and control to help the system detect, isolate,
and recover from failures. A petascale system contains so much hardware and software that
failures are frequent. This creates requirements for checkpointing and virtualization of hardware
resources to permit the system to compute correctly through failures.

8.2 Hardware support for global shared memory
At the beginning of the HPCS Phase II program, memory coherence was thought to be an HPC
application requirement, necessary to improve productivity by making the system easier to
program. Although providing hardware memory coherence is relatively simple within a single
compute node, hardware memory coherence across a large system demands great hardware
complexity. Also, the non-uniform memory access (NUMA)19 nature of petascale computing
would have made it perform very poorly. Due to the infeasibility of a purely hardware
implementation, the team revisited the requirements; in particular, the actual coherence

19 Memory accesses on a petascale computer are inherently non-uniform because messages from remote
memory take a relatively long transit time, even at the speed of light.

Productive Petascale Computing Page 72 of 139

requirements of applications (Sections 10.1 and 13). The team’s research demonstrated that
global coherence is necessary only at certain points in a typical HPC application; for example, at
the start and end of parallel regions. This central requirement became a fundamental basis of the
design: global load/store semantics supported by a shared global address space with coherence
barriers, known as global shared memory with managed coherence.
The hardware requirements for global shared memory with managed coherence are much simpler
than for full coherence. The Scalability Interface (SIF) ASIC was created to manage remote
memory access and provide global addressability (Section 10.1). The SIF performs the function
of a memory controller for all physical memory addresses that are not resident on the node where
the CPU issuing the memory request resides. It forwards remote memory requests—including
remote prefetch and remote compare and swap operations—that are performed by the node’s
processors or I/O devices. This requires translation of the address to a global memory address
and creation of a transaction that is forwarded to the appropriate compute node. The SIF also
services memory and I/O requests from remote processors. SIF functionality helps hide the
latency penalty of random access fetches across the system interconnect and saturates the system
interconnect bandwidth with random loads and stores.

The SIF handles remote memory requests by using internal address tables to forward each
request to the node where the actual physical memory resides (see Section 10.2.1). The presence
of these additional translation tables also permits the system to virtualize memory space by using
virtual node IDs. This permits the system to remap physical memory from one node to another,
after an application restart, for example. This mechanism enables graceful handling of node
failures and enhances the system configuration flexibility. These features all contribute to the
primary goal of improving productivity by supporting the requirements described in Section 5.
Active messages are an asynchronous mechanism in which a message is delivered to a remote
node and then executed on a thread in the receiving node. Active messages were implemented
for Hero because they allow instructions to be sent to the node with the data for execution,
reducing data transfer and improving performance. They also improve MPI message
performance by implementing a hardware mailbox facility. The SIF provides a user space
interface to hardware that generates, receives, and locally dispatches active messages. It also
implements support for buffering active messages, end-to-end flow control, and dispatch
management to the processor.

8.3 Compute and I/O nodes
To minimize development and production cost, Hero’s compute and I/O nodes are designed for
similarity with Sun’s standard commercial products. Hero components, such as microprocessors
and memory controllers, are the latest-generation components used in commercial products. The
mechanical, power, and cooling infrastructure is essentially identical to standard commercial
nodes.

A high-level diagram of Hero’s compute and I/O nodes appears in Figure 17. Each node is a
standard cache-coherent symmetric multiprocessing (SMP) machine with a CMT
microprocessor, shared L3 cache, memory controllers, and dual inline memory modules
(DIMMs). Each node contains a SIF (Section 8.2) and a fiber optic interface for internode
communication (Section 9). In order to accommodate local and remote memory bandwidth

Productive Petascale Computing Page 73 of 139

requirements for HPC applications, the Hero compute node has more memory controllers and
internode communication capability than the I/O node. The Hero I/O node includes PCI Express
(PCIe) network connectivity for the storage, network, and visualization interfaces shown in
Figure 14 (on Page 66). The service processor is not shown in either node.

Figure 17: Hero nodes

Productive Petascale Computing Page 74 of 139

9 Interconnect: proximity communication and silicon photonics
For the many HPC applications that can consume the compute resources of an entire petascale
system (the so-called capability codes), fast node-to-node access is critical for performance, both
for memory access and computational results. Even massively threaded microprocessors
eventually stall when remote access latencies are large. Without fast remote access, programmers
revert to hand-tuning applications to minimize remote communication (Section 3.10.1). The
productivity benefits of a globally shared memory architecture are lost if remote access is so
slow that it requires programmers to expend significant effort maximizing locality.

Fast remote access requires a high-bandwidth, low-latency interconnect among compute nodes.
Low latency frees programmers from using programming models that are based on latency
hiding. High bandwidth effectively contributes to low latency by reducing contention for
network resources; it also provides the infrastructure necessary for system checkpoints, essential
components of the RAS strategy.
As the HPCS Phase II program began, Sun was developing two new technologies for fast
interconnect: proximity communication (Section 9.1) and wavelength division multiplexing
(WDM) silicon photonics (Section 9.2). Both provide enormous bandwidth and low latency,
which enable higher productivity execution and programming models (Section 10). Proximity
communication and WDM silicon photonics are naturally complementary technologies:
proximity communication provides high-bandwidth, on-module connectivity, and WDM silicon
photonics provides high-bandwidth, off-module connectivity. Together, they make it possible to
build very large systems with uniformly high bandwidth.

9.1 Proximity communication
Proximity communication [14] [21] uses capacitive coupling to enable low latency, high-
bandwidth communication between pairs of neighboring chips. As shown in Figure 18, metal
plates on separate chips create a chip-to-chip capacitor when the chips are placed in close, face-
to-face proximity. The sending side drives one capacitor plate, inducing a small voltage swing on
the receiving capacitor plate; there is no physical connection between the two chips. Because

Figure 18: Proximity communication using capacitive coupling

Proximity communication sends signals
between a face-up chip and a face-down
chip using capacitive coupling. The
face- up chips are payload chips, such as
microprocessors, switches, and caches. In
order to communication between two
payload chips, a face-down chip, called a
bridge, is placed on top of neighboring
payload chips. A signal sent by a payload
chip to a neighboring payload chip crosses
two proximity hops and a bridge chip.

Productive Petascale Computing Page 75 of 139

capacitive coupling enables high signal density, proximity communication offers much higher
performance and consumes significantly less power and area when compared to traditional
interconnects that depend on direct physical contact, such as bonding wires, printed circuit board
traces, and solder balls.

The advantages of this technology arise because the plates on each chip are small: 20 to 30
microns on a side. By comparison, typical C4 solder balls are spaced at least 200 microns apart.
This density advantage dramatically increases chip-to-chip bandwidth for the same area and
significantly reduces power cost compared to current serialized I/O technology. Alternately, the
bandwidth advantage can be used to transmit data that is wide, parallel, and running at the chip's
frequency, rather than narrow, serial, and overclocked. This avoids the latency, complexity, area,
and power overhead of using serializer/deserializer (SerDes) circuits to communicate between
chips, while providing the same or greater bandwidth than SerDes-based I/O at far lower area,
energy, and cost.
Proximity communication presents a number of packaging challenges that were the subject of
extensive investigation during the HPCS Phase II program. To send data reliably at full
bandwidth, plates on the face-to-face proximity connections must be aligned in the X-, Y- and Z-
dimensions within one-third of a plate’s length [21], for example, eight microns for a 24x24-
micron plate. They must remain within these bounds in the face of thermal expansion and
vibration. The primary mechanical alignment mechanism is the use of sapphire microballs that
rest in pyramidal pits on the bridge and payload chips, as shown in Figure 19. The pits are
lithographically etched into the silicon during wafer manufacturing, and the balls are placed in
the pits during assembly. The ball and pit mechanism, along with other mechanical innovations
[57] [67], keeps chip alignment well within required tolerances. The inset in Figure 19 is a
scanning electron micrograph picture of a sapphire microball embedded in an etched silicon pit
fabricated by Sun.

Figure 19: Balls and pits used as a proximity communication alignment mechanism

Productive Petascale Computing Page 76 of 139

9.2 WDM silicon photonics
The essential internode interconnect technology is wavelength division multiplex (WDM) silicon
photonics, which performs transmission, amplification, detection, modulation, and switching of
multiple wavelengths (colors) of light on silicon. Each wavelength can carry a separate signal,
allowing multiple data packets to traverse a single fiber concurrently and resulting in much
higher bandwidth than current technology. The use of silicon photonics and fiber optic cables
offers significant cost, latency, bandwidth, range, and reliability advantages over copper.
Several basic building blocks are needed to build optical transceiver cores into a CMOS die.
These include fiber coupling interfaces, waveguides, wavelength multiplex/demultiplexers,
optical modulators, and optical detectors. Luxtera, an HPCS Phase II partner, had these
components and demonstrated the prototype shown in Figure 20 at the 2005 Supercomputing
Conference (SC|05). This chip has fibers directly attached to the center and can communicate via
proximity communication to other chips. Silicon photonics packaging is described in [51] and
[67].

Figure 20: Packaged silicon photonics chip

9.3 Hero Switch
The Hero Switch incorporates both proximity communication and silicon photonics. It minimizes
remote access latency, maximizes bisection bandwidth, and allows configurations to scale to
thousands of nodes. It consists of a two-dimensional grid of switch chips, like the 4x4 grid
shown in Figure 21, interconnected via proximity communication. Each switch port is
implemented using a fiber optic pair connected to the switch chip using silicon photonics. Up to
eight fiber optic pairs can attach to a switch chip. Each switch chip contains a small low-latency,
cut-through routing switch that steers packets to one of its neighboring switch chips or to one of
the optical fiber pairs connected to the switch chip. A data packet enters the switch via fiber
optics and is routed along a minimum distance path in the proximity communication grid of

Productive Petascale Computing Page 77 of 139

switch chips to its fiber optic exit to another switch or node (see Figure 15). WDM silicon
photonics provides high-bandwidth, low-latency communication among switches and nodes.
Proximity communication provides high-bandwidth, low-latency communication within the
switch.

Figure 21: Example of a Hero Switch

As described in the next section, a high port count switch is advantageous to minimize the
number of switch hops that a packet must traverse, which minimizes remote access latency. By
using a large grid of switch chips, the Hero Switch can be almost arbitrarily large. For the 4x4
grid shown in Figure 21, the Hero Switch can support 64 ports with four fiber pairs (4x4 chips x
four ports per chip) or 128 ports with eight fiber optic pairs. With a larger 8x8 grid and eight
fiber optic pairs, the Hero Switch can accommodate 512 ports. The port speed is 8x Quad Data
Rate (QDR), which is 8-GB/s in and 8-GB/s out, matching the fiber optic link’s data rate. Thus, a
512-port Hero Switch has a total bandwidth of 4-TB/s in and 4-TB/s out. An on-chip
interconnect technology such as SerDes cannot provide the bandwidth and latency necessary for
such a switch, but proximity communication can. With a few nanoseconds per hop [57], the
worst-case latency for proximity communication hops through even an 8x8 switch is a few tens
of nanoseconds.
A lightweight routing protocol is needed to take advantage of the low latency switch fabric
afforded by proximity communication and silicon photonics. The switch fabric protocol defines
the switch entrance and exit ports selected to route packets from a source compute node to a
destination compute node (called source-routing because the ports are preselected at the source
node). In the three-stage Clos network (Section 7.1), it defines three sets of entrance/exit fibers:
two for the edge switches connecting to nodes and one for a central switch that connects edge
switches (Figure 15). The switch fabric protocol minimizes latencies and always selects a
shortest path through the switch fabric.

Productive Petascale Computing Page 78 of 139

The internal switch provides low-latency, high-bandwidth wormhole routing20 throughout the
grid of switch chips. It is deadlock-free by design and provides multiple paths to route around
failures. When a packet arrives via a particular fiber in a Hero Switch, it is routed through the
switch as follows:

• The exit fiber is retrieved from the packet destination source routing;
• The path from entrance fiber to exit fiber through the switch chip grid is determined by

table lookup (the table can be updated to reflect topology changes such as partial failures
and can contain multiple paths for fault tolerance and load balancing);

• A header with the proximity communication path through the switch chip grid is
prepended to the packet (the header is a series of directions through the grid, for example:
go east, then south, then east, then exit on fiber);

• The packet immediately begins wormhole routing to the exit fiber using the first
switching command in the prepended packet header (meaning that it selects a proximity
communication or fiber optic exit from the switch chip); and

• Upon reaching the switch chip containing the exit fiber, the packet header is stripped, and
the packet is sent out the exit fiber.

9.4 System configurations
By using proximity communication as a chip-to-chip interconnect, a very high port-count Hero
Switch can be built without a significant latency penalty. A large switch can connect to many
compute nodes and other switches, allowing the switch fabric topology to be flattened, which
minimizes the number of switching stages. For example, a 3-stage Clos network could connect
thousands of compute nodes using this switch. This is important because each switching stage
adds latency and increases switch hardware cost. Minimizing the number of switch hops also
provides a smooth latency curve in the switch fabric to minimize the impact of locality.
A high-level system architecture using the switch fabric is shown in Figure 22 (same as Figure
14, repeated for convenience). Local compute nodes can communicate through a single edge
switch, while central switches provide access to the entire system.

This hardware architecture can efficiently scale to thousands of nodes for many different
network topologies. Table 10 lists the number of nodes that can be supported for different size
switches in various Clos network configurations. Nodes with multiple ports can also be
connected to multiple networks (sometimes called rails); for example a node with four ports
could be connected to four different Clos networks, increasing the maximum number of nodes
and switches shown in Table 10. Traversing a switch adds latency, so reducing the number of
switching stages also reduces remote memory access latency. The Hero Switch is a single-stage
switch that can scale to 512 or more ports, far in excess of port counts for current single-stage
switches.

20 Wormhole routing/switching is an efficient flow control mechanism that allows the packet’s head to
leave a switch chip before the tail arrives. Thus, a packet could be spread across a number of switch chips
in the grid, creating a worm-like image.

Productive Petascale Computing Page 79 of 139

Figure 22: Hero system architecture

Table 10: System configuration examples using a Clos network

Ports per
Switch

Number of
Stages

Number of
Switches

Maximum Number of
Node Ports

Maximum Number of Nodes
with 4 Ports Each

16 1 1 16 4
16 3 24 128 32
16 5 320 1,024 256
64 1 1 64 16
64 3 96 2,048 512
64 5 5,120 65,536 16,384
512 1 1 512 128
512 3 768 131,072 32,768

Productive Petascale Computing Page 80 of 139

10 Execution model
An execution model describes how hardware architecture directly supports one or more
programming models. It describes what the machine sees, as opposed to what the programmer
writes. As shown in Figure 23, the execution model is at the boundary between hardware and
system software layers, while the programming model is at the boundary between system
software and development environment layers.

Figure 23: Execution versus programming models

The Hero execution model (Section 10.1) does not support all programming models, but it does
provide a global address space and other key features that support established HPC programming
models (Section 3.10.1) and enable newer, higher productivity programming models (Sections
3.10.2 and 3.10.3). The execution model, global shared memory with managed coherence, is
sufficiently abstract that it can be ported across platforms and sufficiently powerful to virtualize
hardware resources. It supports a simplified memory abstraction that frees programmers from
managing memory locality. The Hero execution model provides an execution environment that is
familiar, meaning that it looks, feels, and acts as though Hero is a single SMP machine. In
essence, it is an abstraction that allows programmers to concentrate on algorithms instead of
resource management.

10.1 Global shared memory with managed coherence
Memory coherence was initially thought to be an HPC application requirement. However, a
purely hardware implementation of memory coherence across a system of this size is not feasible
(Sections 8.2 and 13.1). This led the team to revisit the requirements and, in particular, to
analyze in more detail the actual memory requirements of applications expected to run on Hero.
Typical HPC applications alternate between serial and parallel regions, with the vast majority of
time and computation spent in parallel regions in order to take advantage of a supercomputer’s
huge compute resources. The global memory state must be universally visible and consistent
when transitioning from parallel to serial region and vice versa, but not in between. Also, the
transitions are expected to be infrequent. The team considered how Hero’s hardware architecture

Productive Petascale Computing Page 81 of 139

could support these transitions, while also satisfying the requirement for a shared memory model
(Section 5.1.1).

Three features of Hero’s hardware architecture determine what execution models it can support
directly:

• Global addressability: Every CPU can directly address and access any memory location
in the system using standard load/store instructions. This access is made efficient by a
high-bandwidth, low-latency interconnect. Its efficiency depends upon the virtual
memory support described in Section 10.2.

• Remote load/store semantics have specific ordering properties. Individual nodes impose
total store ordering (TSO) on all stores from local processors to local memory. In
addition, all remote stores are seen in program order by the issuing thread. However,
other threads may see stores out of program order.

• Cache coherence: Each node locally supports full hardware cache coherence. There is no
support for full hardware cache coherence at the multi-node system level, which would
be complex and expensive. However, there is combined hardware and software support
that enforces full coherence at designated program points using a special barrier
mechanism, a coherence fence, which is explored more fully in Section 10.3. Hero’s
ability to enforce full coherence at designated points in a program is called managed
coherence.

The extent to which these three features satisfy the requirements of four common parallel
programming models is summarized in Table 11. The programming models are cache-coherent
shared-memory, OpenMP [44], partitioned global address space (PGAS) [19] [42] [61] and
message passing interface (MPI) [38]. The cache-coherent shared-memory programming model
is not a formal standard, but is used to represent the commonly understood set of properties
provided by most SMP machines and relied upon for correct program execution using a form of
threaded concurrency. The other three programming models are current HPC programming
models.

Table 11: Programming model requirements

 Cache-Coherent
Shared-Memory

OpenMP PGAS MPI

Global
Addressability

Required Required Required Local

Remote
Load/Store
Semantics

Required* Required* No** No***

Cache Coherence Full Global Fence^ Fence^ Fence^

* - Full remote load/store semantics are required, because no messaging semantics are available
** - Remote load/store semantics are convenient but not required, because messaging semantics
are available
*** - Remote load/store may improve the implementation’s simplicity and performance
^ - Coherence required at explicit locations where a coherence fence may be inserted

Productive Petascale Computing Page 82 of 139

The cache-coherent shared-memory programming model is not directly supported by Hero
hardware due to a lack of full global cache coherence and global store ordering guarantees, but
direct support for this programming model is not a requirement. However, it is a requirement to
support the other three programming models and future highly productive programming models
(Section 5.1.4). The OpenMP model is directly supported by hardware due to system-wide direct
addressability and direct processor load/store support, along with global coherence fences for
transitions between parallel and serial regions. Auto-parallelized Fortran, the high-
programmability style with Fortran 90 demonstrated in HPCS Phase II research [35] (Section
3.7), offers a model effectively identical to OpenMP, so it is also directly supported. PGAS and
MPI models are also directly supported by Hero hardware, as shown in Table 11. The
productivity gains targeted in the DARPA program require the high-programmability style
presented in HPCS Phase II work (Section 12.3), which is fully supported by the Hero system.

The determination that global coherence is necessary only at certain points in a typical HPC
application became a fundamental basis of Hero’s design. This execution model is called:

Global shared memory with managed coherence—global load/store semantics
supported by a shared global address space with coherence fences.

This execution model is feasible to implement and directly satisfies the shared memory model
(Section 5.1.1) and programming model support (Section 5.1.4) requirements.

10.2 Virtual memory
The execution model provides a foundation for global shared memory access, and the high-
bandwidth, low-latency interconnect enables global shared memory. However, in order to
provide efficient, system-wide load/store access, the Hero system must also provide efficient
mechanisms for virtual memory, address translation, and memory protection.

The system software on each node owns and manages that node’s local memory, with shared
memory mappings across nodes negotiated by system software on the respective nodes. All
nodes have the same view of the entire shared memory region. However, different nodes can
have different page mappings for a memory region, such as where shared code is replicated
locally for performance. Node-local memory mappings are private.
A single SMP machine has three different address space views: the usual physical address space
for physical memory, the (process) virtual address space to which application programmers
write, and the (system) virtual address space that system programmers care about. The system
virtual address space translates from virtual addresses in applications to physical memory
locations and manages constructs such as page tables and swap space. In order to make Hero a
familiar environment with standard shared-memory programming semantics for application and
system programmers, it was necessary to make the same three distinct address spaces appear to
programmers as though they are on a single machine, even though the spaces are actually spread
across many nodes.

• Each Hero node has its own standard physical address space. The system physical
address space is the usual combination of all node physical address spaces; that is, all of
system memory.

Productive Petascale Computing Page 83 of 139

• The multi-node process virtual address space describes system memory from the view of
a single process. This address space is usually spread across portions of many different
nodes throughout the system. There are as many of these spaces on the system as there
are processes that run on multiple nodes. As usual, portions of a virtual address space
may reside in memory, while other portions may reside in other storage such as a disk.

• The global system virtual address space describes a view of the entire Hero system
memory, represented as tuples of <virtual node id : virtual offset>. Virtual node id 0 is
reserved for the local node, so there is no overlap between the global system virtual
address space and the local physical address space of a node. This space provides each
process with a single view of global memory, facilitating shared-memory programming
semantics as described below.

As an example of Hero memory address space mapping, Figure 24 shows the address spaces for
a Hero system that is physically partitioned into two sets of nodes. These partitions have their
own separate physical and virtual address spaces, so global and system in the above definitions
really mean “within a partition.” Although there are some administrative constructs to manage
the assignment of nodes to partitions, application and system programmers view a partition as a
system. Therefore, for the remainder of this document, the Hero system is described as though it
were a single partition, and the terms global and system are used in their natural sense.

There are k processes and m nodes in Partition A. The mapping of processes to nodes is many to
many; any process can be mapped to any set of nodes. The global system virtual address space
manages the many-to-many assignment. In Figure 24:

• Process 1 is assigned to nodes 1, 2, and m.
• Process 2 is assigned to a set of nodes located between nodes 2 and m, disjoint from

Process 1.
• Process k is assigned to nodes 1 and 2.

The facilities that allow processes to overlap and share nodes are described in Section 11.2.

Figure 24: Hero memory address space mapping

Productive Petascale Computing Page 84 of 139

Figure 25 shows details of the address space mapping for a single multi-node process virtual
address space that uses memory in three nodes. The physical address space in a node is divided
into private memory (Node Reserved Page in Figure 25) and memory available to processes
(Home Node Data Space, Global Shared Text Page, and Global Distributed Data Space in Figure
25).

Figure 25: Hero memory address space mapping details

The four memory structures shown in Figure 25 are defined as follows:

• The node uses the Node Reserved Page to run its OS and other private memory
allocations and does not share it with other nodes.

• The Home Node Data Space contains data that resides only in the home node (Node 2 in
Figure 25). The home node is the node in which the process originated, that is, the node
that received a system call from the process. The home node manages global memory
mapping (Section 11.3.1).

• The Global Shared Text Page contains data that all nodes need for the multi-node
process, such as application code. The page is replicated on all nodes to improve
performance by minimizing page mapping over the network. Global Shared Text Page

Productive Petascale Computing Page 85 of 139

data should not be modified because broadcasting global updates would significantly
hurt performance.

• The Global Distributed Data Space contains data, such as application data, that is not
replicated and is distributed across separate nodes.

The multi-node process virtual address space is the customary user virtual address space, for
example 64 bits. Because 64 bits is a very large address space, some portions would be mapped
into memory, some portions would be mapped into disk or other remote storage, but most of the
address space would be unmapped. The global system virtual address space is an innovation that
resides between physical memory and the multi-node process virtual address space; it acts as a
single federated view of global memory for the multi-node process. It enables shared-memory
programming semantics by unifying all process data spread across the nodes.

10.2.1 Address translation
To make Hero a highly productive programming environment, programmers must be able to use
standard load/store semantics and interfaces, for example, by simply writing a load instruction
and a memory reference. The Hero virtual memory system transparently performs the address
translation and handles the request locally or remotely, depending on where the requested data is
located.
The key innovation for transparent remote address translation is the scalability interface (SIF)
ASIC (Section 8.2). The SIF sits on a node’s memory bus and acts like a local memory
controller, but actually connects to the Hero interconnect fabric and provides an interface to
remote memory. When a memory access is requested, the processor’s memory controller
performs its normal functions, but produces an address in the global system virtual address space
of the form <virtual node id : virtual offset>. If the virtual node id is 0, the memory address is on
the local node and is handled normally by the local node memory controller. If the virtual node
id is greater than 0, the memory address is on a remote node, and the SIF acts as a memory
controller for the remote memory request.

The SIF contains tables for mapping a remote virtual address into a physical node id and a virtual
offset for the remote node corresponding to the virtual address. The SIF on the local node
forwards a memory request to the indicated remote node; a receiving SIF on the remote node
also uses table lookups to translate the virtual offset into a physical page id and a physical offset.
The request is then forwarded to local memory controllers on the remote node to be satisfied in
the normal fashion. Finally, the remote SIF returns the result to the SIF on the requesting node.

Figure 26 illustrates address translation for a remote memory request, for example, a store
operation. The memory controller sends a virtual address to its local CPU translation look-aside
buffer (TLB)21, which accesses local memory if the virtual address maps to a local physical
address. In this example, however, the operation is a remote request, and the CPU TLB sends the
virtual address to the SIF, which uses its route table to determine an appropriate remote node and
then routes the request to that node. The SIF on the remote node acts as a TLB in translating the

21 A translation lookaside buffer (TLB) is a CPU cache used to improve the speed of virtual address
translation.

Productive Petascale Computing Page 86 of 139

virtual address to a physical address and then forwards the memory request to the memory
controller on the remote node to perform the indicated operation.

Figure 26: Address translation for remote memory request

10.2.2 Memory protection
Memory protection for remote memory access is a two-phase operation. At the node where the
memory request is made, a local memory controller checks the protection bits for the requested
page. If that check fails, the error is handled normally. If the check succeeds, the memory request
is passed to the remote node containing the physical memory, as shown in Figure 26. Then, at the
SIF on the remote node, an additional check is performed to see if the incoming memory request
is from an approved node. This prevents nonparticipating rogue nodes from corrupting memory
on a remote node. Such faults are reported asynchronously, but should happen only for cases
where the OS of the node that made the memory request is either malicious or corrupted.
To create a multi-node process memory allocation, the local OS on each remote node requests a
mapping from the home node (the node where the process originated). Each remote node maps
its memory and notifies the home node of mapped addresses. Each remote node also updates its
memory protection table in its SIF to indicate that all nodes involved with the multi-node process
are legal sources for memory accesses on this node. When the mapping takes place, all nodes
involved with the multi-node process establish a common mapping; the control domains for each
node assigns pages for that mapping, with protection information for the local process ID
corresponding to the global process initiating the mapping.

Productive Petascale Computing Page 87 of 139

10.3 Synchronization mechanisms
Synchronization mechanisms are used to implement managed coherence. The standard HPC
synchronization mechanism is a barrier: a construct that enforces the property that all threads
must enter the barrier before any thread leaves the barrier. The coherence fence is a special form
of barrier with the following additional property: all stores from all threads must complete and
become visible to all threads before any thread exits the fence. The coherence fence is the
synchronization mechanism used to enforce coherence at designated points in the application—
for example, before and after a parallel execution region. A simple implementation flushes all
dirty cache entries and invalidates all cached data before any thread leaves the fence. To
implement the coherence fence, Hero supports remote cache flush and cache invalidate
operations.
When an application arrives at a coherence fence, the application calls the system software,
triggering a notification to all nodes on which the application is running. When all application
threads have arrived at the fence, the system software initiates a flush-and-invalidate operation
on every CPU where the application is running. When those operations complete, the system
software returns from the fence and allows threads to continue execution. The entire application
is in a fully cache-coherent state at the point where execution resumes. A coherence fence can
have a significant performance impact, but HPC applications are expected to use this construct
infrequently.

Productive Petascale Computing Page 88 of 139

11 System software
To support productivity at petascale, Hero software provides a familiar environment for
applications and system software, allowing programmers to write software as if for a single SMP
machine when they are actually controlling thousand of nodes in a supercomputer. Resource
virtualization is the key enabling technology; it provides the essential flexibility and scalability
necessary to create such an environment. It permits Hero software to support both high
programmability and legacy applications, scaling from single nodes to very large, multi-node
systems. System resource virtualization permits programmers to write logical constructs without
concern for managing physical resources, and it allows the system to change the physical
resources dedicated to an application. It is a very powerful abstraction that enables efficient
mode switching (such as transitions between capability and capacity modes) and hardware
reconfiguration transparent to the applications (such as resource reallocation due to a hardware
failure).
Software for the Hero system, summarized in Figure 27, consists of Hero system software and
the Hero development environment. The Hero system software includes the fault tolerant
hypervisor, Hero Solaris™ OS [45], Hero file system, and Administrative Environment. The
Hero development environment includes compilers, parallel and serial debuggers, and other
programming tools, as well as a variety of performance, I/O, and other libraries and visualization
software. This section describes the Hero system software, starting with a description of its basic
structure and features in Section 11.1. The remainder of Section 11 describes key enabling
technologies that cross system software structural boundaries and work together to support multi-
node applications. Section 12 describes the Hero development environment.

Figure 27: Hero system software

Productive Petascale Computing Page 89 of 139

11.1 System software stack
Running a single OS across a system the size of Hero is infeasible—scheduling is a bottleneck,
kernel algorithms break, 32-bit counters overflow, and so forth. Therefore, the system software
approach is to run the software needed for node resources and home node functionality on every
node, but to run the software needed for multi-node application and system functionality only on
a small, replicated subset of nodes. This approach mitigates some of the most severe scaling
challenges for system software by minimizing system-wide services; it maximizes robustness by
providing extensive redundancy of functionality throughout the system.

Every node hosts instances of a fault tolerant hypervisor, the Hero Solaris OS, and
Administrative Environment services modules. Only a subset of nodes hosts instances of the
Hero File System service modules and system-wide Administrative Environment service
modules. These components collaborate to provide a multi-node application execution
environment that supports highly productive programming models, while also providing
independent system support for each node in the Hero system.

The following subsections describe the hypervisor and operating system, which run on every
node, as well as portions of the file system and administrative components, which run on a subset
of nodes. Sections 11.2 and 11.3 describe system software functionality that provides the multi-
node application execution environment. System-wide administrative functions are described in
Section 11.4.

11.1.1 Fault tolerant hypervisor—virtual machine support
The fault tolerant hypervisor provides the foundation for Hero system software. It is based upon
the current OpenSolaris Sun4v hypervisor, with extensions to provide fault tolerance and
scalability features. It provides full hardware device virtualization to insulate software layers
from hardware failures. The fault tolerant hypervisor also provides state replication for its own
state in order to improve overall robustness in the face of hardware faults. It supports migration
of virtual machines (OS instances and everything running on top of the OS instances) within a
node and across node boundaries and provides support for checkpointing virtual machines.
Virtual machine migration and checkpointing are both essential elements of Hero’s global fault
tolerance strategy.

11.1.2 Hero Solaris™ OS
The Hero operating system is based on OpenSolaris, enhanced with features to increase
robustness and with a limited set of multi-node semantics for applications. OpenSolaris is an
open source project based initially on Sun’s Solaris 10 code base [45]. OpenSolaris is a version
of the UNIX System V operating system, with a long track record of excellence in the areas of
robustness and support for concurrency; it is used extensively on both SPARC® technology-
based and X64-based systems in a wide variety of commercial, industrial, government, and
scientific applications.
Hero Solaris includes new robustness features that extend the current OpenSolaris Fault
Management Architecture to support predictive self-healing over a multi-node system and to
support a new, automated checkpointing technology. Multi-node semantics in Hero Solaris
(Section 11.2) supports memory management, process and thread management, as well as file

Productive Petascale Computing Page 90 of 139

and network I/O across multiple nodes. This support is built on the OpenSolaris Zones and
BrandZ technologies [45]. The intent is that Hero Solaris features will be released under open
source as part of the OpenSolaris environment.

11.1.3 File system
The Hero File System utilizes object-based storage as defined by the T10 object-based storage
device (OSD) standard. Object-based storage helps meet performance and scalability
requirements by distributing space allocation and layout decisions to storage devices and by
eliminating the need for locking to handle multiple writers to a file. Block disk and tape devices
are supported in the Hero File System by using object storage servers. Hero also supports legacy
file systems, including Lustre, NFS, and Parallel NFS (pNFS), along with standard OpenSolaris
file systems such as ZFS.

11.1.4 Administrative Environment
The Administrative Environment is at the boundary of the Hero system software and Hero
development environment; it includes tools that help manage the system and improve application
execution. The Administrative Environment provides standard administrative functions—
including active management of thousands of physical nodes, resource allocation and scheduling,
resource utilization tracking, firmware management, power sequencing, operating system install,
update and boot, host virtualization (including host-level fault management), and network
management. It can define groups of nodes flexibly, as well as implement management activities
and policies in a hierarchical manner.

An important abstraction for a system of Hero’s size is the use of automated policy-based
resource management, including administrative control over the weight assigned to different
resource management policies. The Administrative Environment supports automatically
triggered system/application checkpoints, automatic policy-based preemption, and automated
triggering of resource reassignment using various policies at different levels of sophistication.
During application execution, the Administrative Environment provides troubleshooting tools for
log viewing and event tracking, as well as a telemetry data mining service that analyzes historical
system data to identify patterns, trends, and anomalies in system behavior over time. These
include visual tools to help the administrator monitor systems and track historical system data, as
well as view, search, and associate multiple log files from multiple systems.

11.2 Multi-node support
All layers of Hero system software work together to create a multi-node set of computational
resources for Hero applications. The fault tolerant hypervisor virtualizes hardware resources.
Hero Solaris and the Hero file system provide multi-node containers (SuperZones) in which
applications execute. The Administrative Environment presents the SuperZone as a single logical
computational unit to the application.

11.2.1 Zones
Zones are an operating system abstraction for partitioning systems, allowing multiple
applications in a single operating system instance to run in isolation from one other. This

Productive Petascale Computing Page 91 of 139

isolation prevents processes running within a zone from monitoring or affecting processes
running in other zones, accessing each other's data, or manipulating underlying hardware. Zones,
together with the hypervisor, also provide an abstraction layer that separates applications from
physical attributes of the machine where they are deployed, such as physical device paths and
network interface names.
BrandZ is an OpenSolaris framework that extends the OpenSolaris Zones infrastructure to create
branded zones that contain non-native operating environments. The term “non-native” is
intentionally vague, as the infrastructure allows for the creation of a wide range of operating
environments. Each operating environment is provided by a brand that plugs into the BrandZ
framework. A brand may be as simple as an environment with standard OpenSolaris utilities
replaced by their GNU equivalents, or as complex as a complete Linux user space. Hero Solaris
includes two innovative extensions to the OpenSolaris BrandZ zones framework that make a
multi-node execution environment possible: Unification Zones and SuperZones.
Unification Zones (UZ in Figure 28) are branded zones where the brand supplies a limited set of
system calls and services with multi-node semantics. Multi-node support is provided through
interposition of the brand on system calls, kernel upcalls, and signals. Operations requiring the
participation of more than one node invoke interzone communication mechanisms that allow
Unification Zones on multiple nodes to fulfill the request cooperatively.

SuperZones are multi-node sets of computational resources established by the Administrative
Environment. They act as containers for multi-node applications. A SuperZone is instantiated by
notifications to system software on each node in the SuperZone, and the establishment on each
node of a Unification Zone where the multi-node application’s elements may execute. A
SuperZone may include Unification Zones on one or more nodes and could even comprise all
resources in a system. Figure 28 illustrates an example mapping of Unification Zones, each
running within a node, to a SuperZone running across multiple nodes. The mapping is extremely
flexible: a node could have multiple Unification Zones all contained in the same SuperZone.
Note that the Unification Zone and SuperZone do not extend into the hypervisor layer, because
they do not interpose multi-node semantics on hypervisor calls, although the hypervisor provides
physical resource abstraction for Unification Zones.

Figure 28: Mapping Unification Zones (UZ) to SuperZones

Productive Petascale Computing Page 92 of 139

Unification Zones and SuperZones support allocation and mapping of both local and remote
memory, as shown in Figure 29. This permits applications to allocate data structures that are too
large to fit on a single node, or distribute a data structure across a group of nodes. To maximize
performance predictability, the SuperZone attempts to distribute remote allocations evenly across
nodes assigned to the application.
In Figure 29, the SuperZone comprises Unification Zones residing in nodes 1 through N, and
multi-node process data structures are distributed across those nodes. Application code and
process context are also replicated in those nodes. Communication at hypervisor and OS levels
(shown by arrows between Hero Solaris and the hypervisor on each node in Figure 29) is
necessary to establish a SuperZone.

Figure 29: Application data distribution throughout a SuperZone

To create a SuperZone, a node—usually the node in which a system call occurred (Node 2 in
Figure 29)—is selected as the process home. This home node replicates the process context to
other nodes in the SuperZone (Section 11.3.1). It determines that a multi-node memory
allocation is requested and spreads the mapping of the requested memory (application code and
data) over nodes in its SuperZone. Then, it communicates the proposed mapping to each
Unification Zone in the SuperZone, requesting that they map their portion of the request. Upon
receiving successful responses from all Unification Zones, the proposed mapping is committed,
and the newly mapped memory is available for use by the application. Similar techniques are
used to support process and thread management in a SuperZone.

Productive Petascale Computing Page 93 of 139

11.2.2 File and network I/O support
Hero Solaris provides two basic types of file and network I/O support—a single-system view or
single-node view. The SuperZone construct provides applications with a single view of the Hero
system, meaning applications see a single IP address and a global name space. This allows
programmers to use standard file and network I/O constructs and programming techniques.
Because each node runs Hero Solaris, applications also have a single-node view using a
Unification Zone on a node for independent file and network I/O access. This could be useful for
improved device performance or legacy application support. In either case, I/O support is
provided through I/O nodes (Section 8.3). A virtual Ethernet interface connects compute nodes
and I/O nodes over the Hero interconnect to provide a robust communication channel for legacy
and external communication.
Two principal forms of support are provided for network I/O. To allow legacy codes to run
mostly unmodified, network I/O can be executed using standard interfaces; traffic is routed to the
SuperZone’s home node and the TCP/IP stack is executed there. This provides a single central IP
address for the SuperZone and gives the application—and any outside entity communicating
with it—the appearance that the application is running on a single system for the purposes of
network I/O. Alternatively, Hero Solaris supports network I/O using one or more IP addresses
per Unification Zone, with local TCP/IP stacks. This alternative model enables high degrees of
parallelism in the network I/O arena and is well suited to PGAS and MPI programming models.
Hero tools and libraries on each node also support standard local networking.
Similarly, for file I/O, Hero Solaris provides an interface for legacy single-system semantics—
using the home node for naming—and a more parallel interface where files are accessed
independently from each node in the SuperZone. The system supports a flexible layout, with no
need for direct attached storage at every node, and the capability to isolate the file system
software from application software. To support legacy semantics of various I/O facilities, each
Unification Zone in a SuperZone provides a global context mechanism that allows process
context for a multi-node process to be replicated across all nodes in the SuperZone. This enables
fast name lookups in a multi-node name space and makes it possible to provide multi-node
applications with the appearance of global name spaces for a variety of purposes.

11.2.3 Robustness features
In support of increased system availability, extended OpenSolaris™ Fault Management
Architecture facilities allow Hero to provide a form of federated fault management. This extends
current Sun predictive self-healing technologies to multi-node systems like Hero by providing
facilities for aggregating fault information across multiple nodes and handling faults above the
node level. Federated fault management enables multiple Hero Solaris instances to participate in
the prediction, diagnosis, and healing of system faults. The Fault Management Architecture
saves process state redundantly and restarts processes on failure, making it internally fault
tolerant. This state replication mechanism will also be used to provide fault tolerance for other
Hero system software. In addition, Hero Solaris provides mechanisms that support automated
system checkpoints, described in greater detail in Section 11.3.3.

Productive Petascale Computing Page 94 of 139

11.3 Runtime environment
As mentioned above, the SuperZone provides the core abstraction for running multi-node
applications on Hero. It is a set of one or more Unification Zones that provide high-
programmability applications the limited appearance of a single system. From the perspective of
the Administrative Environment, the SuperZone is a multi-node set of hardware and software
resources that can execute a multi-node application. It is the fundamental unit of logical resource
partitioning for the Hero system and serves as the basic unit for automated system checkpointing.
It is important to differentiate between the standard notion of a single-system image and the
single-system view provided by Hero. A single-system image provides applications with a single
view of all system services. In a multi-node system, this usually means that a single OS image
runs across the entire system. Hero’s single-system view, instantiated as a SuperZone, provides
applications with a single view of all computational resources—memory, files, and I/O—but it
does not provide a single view of all system services. For example, there is neither global
console nor global visualization support. Individual nodes must stream data separately to
visualization engines, rather then sending a single stream controlled by a SuperZone.

11.3.1 Multi-node application support
Within a SuperZone, the Administrative Environment can initiate the execution of a multi-node
application. Examples of such applications include a high-programmability application written in
Fortran, automatically parallelized, and an OpenMP Fortran program. Programming tools mark
these as multi-node applications, which instructs the Administrative Environment to initiate such
an application in a SuperZone.

To create a SuperZone, a multi-node process is created on the home node and then propagated to
other nodes. In Figure 30, Node 2 is the home node and it creates a process in response to a
system call. The system software creates a process on each Unification Zone in the SuperZone
(Nodes 1-N in Figure 30) and replicates the multi-node context from the home node to each of
these processes. This allows the system to create the appearance of multi-node name spaces
without forcing identical naming across the entire system. Using the mechanisms shown in
Figure 29, the application can allocate local and remote memory, including very large allocations
that do not fit on a single node. The home node propagates system calls, as well as signals and
Kernel upcalls, to other nodes in the SuperZone. For example, it can propagate a call to open a
file with a file handle. Internode communication may be at the hypervisor level as well as the OS
level if hardware is involved, such as when a network port is requested.

Productive Petascale Computing Page 95 of 139

Figure 30: Multi-node job creation from the application point of view

After establishing the SuperZone, the application can allocate and use memory, including large
allocations that span multiple nodes. Figure 31 shows an example of memory allocation from the
application’s point of view (see Figure 29 for the physical memory allocation view). The shaded
area in the Unification Zones is actively being used for application data by load/store operations;
the unshaded area in the Unification Zones on the right and left is allocated to the multi-node
process, but not currently used. Each Unification Zone is contained in a single node and is in a
cache-coherence domain. The SuperZone is an aggregation of Unification Zones and is a
managed-coherence domain (Section 10.1). The multi-node process virtual address space shown
extending to the right in Figure 31 is usually much larger than the SuperZone, but most of it is
never allocated (for example, a 64 bit virtual address space).

Figure 31: Multi-node memory allocation from the application’s point of view

Productive Petascale Computing Page 96 of 139

Threads are used throughout the SuperZone to execute parallel regions in the application. Each
thread has full access to all memory allocated by the application, but allocations that are neither
too large nor marked as remote are made locally for improved latency and performance. Because
the semantics of these programming models requires that parallel regions have no memory
dependencies, all threads can execute both local and remote load/store operations; cache
coherence need not be maintained. At the end of a parallel region, code generators insert a
coherence fence operation to preserve programming model semantics (see “managed coherence,”
Section 10.1). Multi-node applications have access to the special file and network I/O facilities
described in prior sections.
Hero also supports multi-node applications using MPI or PGAS programming models. These
applications can be run in a SuperZone or as normal processes on individual nodes. Running in a
SuperZone permits the communication and I/O libraries that implement the programming model
to utilize full multi-node capabilities, including remote allocation and remote load/store
operations. Running as normal processes on individual nodes and communicating using cluster-
like messaging libraries, applications can still benefit from Hero’s low-latency, high-bandwidth
interconnect.

11.3.2 Legacy software support
Hero supports legacy software in several ways. Individual Hero nodes are standard SMP systems
with full hardware cache coherence and many hardware threads. These nodes directly support
applications written for SMP systems, when compiled for the OpenSolaris environment. Hero
also supports MPI and PGAS programs compiled using Hero programming tools and using
libraries provided with the system. As detailed in later sections, Hero offers a variety of
communication and performance libraries to support legacy and high-programmability
languages.

11.3.3 Automated system checkpointing
Checkpointing is the storing of an entity’s state for use in error recovery or other resource
remapping. Hero checkpoints can be defined at the application, node, or system level.
Application checkpoints are a standard HPC defensive programming technique, but their creation
consumes valuable programmer resources and adds complexity to applications. Hero offers
standard support for application and node checkpoints; but Hero Solaris, along with its
programming tools, libraries, and Administrative Environment, also supports a new technology
for automated system checkpointing. This new facility enables Hero to recover quickly from
failures by remapping failed hardware resources to other hardware and restarting from the most
recent checkpoint. It can also be used by operators to temporarily suspend applications when a
critical need for compute resources arises. The same automated checkpointing facility applied at
the application level can obviate the need for programming application checkpoints.

To facilitate system checkpoints, Hero’s code-generation tools automatically insert special code
(safepoints) into Hero applications at locations where it is safe for the application to stop, as
determined by global data-flow and control-flow analysis. At a safepoint, it is possible to take a
snapshot of the entire machine’s state or to checkpoint a subset of the machine, such as an
application running in a SuperZone. Safepoints inserted into the Hero MPI library and other
libraries can accomplish the same goal.

Productive Petascale Computing Page 97 of 139

The checkpoint mechanism is based on the Java HotSpot™ Virtual Machine (VM) mechanism
[43] used to stop the VM for garbage collection. The Administrative Environment sets policies
for the frequency or conditions for checkpointing, It notifies the Hero Solaris image on each
node at what time and for which threads a checkpoint is requested. Hero Solaris sets a flag that
notifies each thread to stop execution when reaching a safepoint. Each thread stopping at a
safepoint notifies the OS that it is stopping (the OS may be a guest OS running on a single node,
rather than Hero Solaris). After all threads have stopped, the OS notifies the Administrative
Environment that the node is ready to checkpoint. After all requested nodes have stopped, the
Administrative Environment initiates a snapshot of the state of all nodes (or a subset, such as a
SuperZone) and coordinates storage and tracking of the snapshots. The hypervisor on each node
manages replication of the virtual node or guest OS state and notifies the Administrative
Environment that the state has been saved. Upon notification of successful state saves for each
node, the Administrative Environment notifies the OS images on each node to continue
execution and notifies Hero Solaris images to restart all their threads.

When a fault occurs, the Administrative Environment can restore a SuperZone’s checkpoint onto
a set of nodes that is different from the set originally running the application. This new set of
nodes must have the same cardinality as the original set, as well as access to the same external
resources. Hero’s virtualized I/O and nonlocal file system support provides an extremely flexible
tool for efficiently performing this hardware remapping. In addition, these mechanisms are
available to the Administrative Environment so it can provide facilities to migrate running
applications off and back onto the system, resulting in a very flexible utilization of the large pool
of resources represented by a Hero system.

Figure 32 shows the creation and restoration of a SuperZone checkpoint. The machine state from
each Unification Zone in Nodes 1 through N is saved to memory at a safepoint, then sent to disk
as a background task while the application continues to run. Alternatively, the safepoint can be
sent directly to disk. This requires less memory, but causes a longer application stall [65]. When
a node fails, the checkpoint can be recovered from memory or disk and mapped to a new set of
nodes, in essence redefining the set of nodes contained in the SuperZone. In Figure 32, Node 1
fails and is replaced by Node N+1. Hero Solaris establishes communication with Node N+1 to
reconstitute the SuperZone, prior to mapping data from Node 1 into Node N+1.

Productive Petascale Computing Page 98 of 139

Figure 32: Automated checkpoint creation and recovery

11.3.4 Application isolation
A challenging problem encountered by applications on very large systems is application jitter, a
performance degradation that occurs when large numbers of concurrently executing threads
attempt to synchronize too frequently. The entire application must wait until the slowest thread
reaches the synchronization point. Typically, the threads are actually running the same code; in
theory, all threads should reach the synchronization point simultaneously. However,
asynchronous behaviors in the system cause context switches or other stalls in some threads.
This can lead to significant performance degradation, as shown in Figure 33. A common solution
to this problem is to minimize these events and make them synchronous, causing the OS to
queue up events until a timer elapses. Then, all CPUs stop executing application threads, in order
to handle the event queues.

Productive Petascale Computing Page 99 of 139

Figure 33: Application jitter

As shown in Figure 33, Hero approaches application jitter in a different fashion. Hero uses space
sharing instead of time sharing, relying on its many execution threads, abundant memory, and
bandwidth resources. All asynchronous system events can be handled by OS threads running on
a dedicated microcore. With handler threads on a dedicated microcore, application threads are
not preempted and continue to run. In addition, since each microcore has its own L1 cache,
application threads do not suffer from the nondeterministic effects of periodic L1 cache
pollution. Further, since Hero has more threads (integer execution units) than floating point units,
the performance impact of the space-sharing approach caused by resource consumption is
minimized. In the worst case, where a full microcore must be dedicated to handling events on
each node, this represents a very small percentage of the compute resources in a system with
hundreds or thousands of nodes. Hero can also support the traditional time-sharing approach to
minimizing jitter, if needed.

11.4 Administrative support
Automation and virtualization (a form of abstraction) throughout the Hero software stack enable
much more effective management of system resources than has been historically possible for
machines at extreme scale. The Administrative Environment leverages the Hero system’s
fundamental properties to address traditional bottlenecks. These mechanisms are managed by
tools that are designed to reduce staff burden and increase overall system utilization.

Productive Petascale Computing Page 100 of 139

As with the system software, the intent of the administrative software is to create a familiar
management environment for system operators. For example, the decision to run a complete
version of Hero Solaris at every node, rather than attempting a single system image approach,
means that many existing tools for managing large, multi-node OpenSolaris systems can be
easily adapted for Hero. This same decision also makes developing new administrative tools
simpler than other approaches such as managing the system’s extreme scale through hierarchical
decomposition.
The Administrative Environment can produce very high application completion rates because of
resource virtualization, predictive self-healing mechanisms, and automatic system checkpointing
for dealing with hardware failures. Automated failure recovery reduces software development
costs associated with application-level checkpointing and eliminates administrative costs
associated with restarting large jobs.

In much the same way as it handles failures, the Administrative Environment leverages
underlying resource virtualization to support job configuration with minimal operator
intervention. These underlying system services enable a dynamic job roll-in/roll-out mechanism
that can suspend, relocate, and restart applications under automatic control in the name of
improved overall system resource utilization. For example, large overheads associated with
draining job queues when switching between capacity and capability modes can be replaced by
highly dynamic job management that adapts to changing workloads without loss of resource
utilization.

Job scheduling procedures can be highly automated in the Administrative Environment. In fact,
they must be automated to allow administrative staff to manage job streams at the scale
supported by a machine of this size. Because job and resource management are efficient and
dynamic, job scheduling can be implemented as a hybrid of highly automated scheduling based
on relatively static policies, as well as contingent scheduling based on management decisions,
job progress, and other externalities.

Finally, the Administrative Environment can access system performance data at every level of
the stack, which supports monitoring of nearly every aspect of system performance. Such
continuous feedback creates an environment of ongoing improvement of resource utilization for
designing application software, job management algorithms, and policy management.

Productive Petascale Computing Page 101 of 139

12 Development support: languages, tools, skills
From the perspective of technology change (Section 3.10), Hero is a transitional system. It is
designed to carry the HPC community through a fundamental shift in the way software is
created, applied, and maintained. This is a difficult but necessary shift, without which the
dramatic productivity gains anticipated by the HCPS program cannot be realized.
This shift starts with the status quo: an extremely skilled community with a decades-long legacy
of applications that were extraordinarily expensive to develop and are increasingly expensive to
maintain as computing platforms evolve. Much of the expense associated with these applications
derives from concerns that are not essential to the scientific problems being addressed, but are
instead related to the details of specific machine architectures (for example, distributed memory
models and parallelism) and to external contingencies (for example, application-level
checkpointing as a defense against frequent system failure).

The end point of this shift is a computational environment in which the execution model is
abstract enough that it can survive many machine generations and coherent enough that a great
many computational requirements can be automated. In this environment, tools can be
constructed that permit problems to be solved in terms of the scientific mission and relevant
mathematics. Furthermore, the execution model and development tools are portable across
platforms and across time, which amplifies the value of the skills of people using them.

12.1 Legacy applications and languages
Hero is an ideal platform for technology migration. The global shared memory model, including
system-wide load/store (Section 10.1), combined with services provided by Unification Zones
and SuperZones, enables the system to directly support established distributed programming
models such as MPI (Section 11.3.2). The same characteristics also provide excellent support for
emerging PGAS languages and ultimately, for high-programmability programming models.
Applications based on established technologies, such as Fortran or a mixture of Fortran and
C/C++ (Section 3.10.1), can be run in a SuperZone as though in a very large shared-memory
processor. Software ensures the memory coherence required by the language. Parallelism can be
introduced by the compiler or with OpenMP directives. In this model, data and thread placement
are entirely under the control of runtime software with guidance from compiler directives. Object
code for access to a remote memory location is identical to that for local memory, so code can be
loaded and run on any portion of the system, from a single node to a SuperZone.

The emerging PGAS family of languages (Co-Array Fortran [42], UPC [61], and Titanium [19],
Section 3.10.2) represents an intermediate step in HPC programming language evolution, since
these languages continue to express data sharing and placement explicitly. Hero architecture is
heavily influenced by the design of PGAS languages, and consequently allows them to be
implemented directly rather than through a communication library. Access to shared variables is
accomplished by direct addressing, while collective and barrier operations are performed using
active messages. Any operation that requires coherence is somewhat inefficient, but such
operations are likely to be infrequent because they are mostly used for debugging and other
special cases. PGAS implementations can also run using Hero as a standard cluster. The
transformation between SuperZone model and cluster model can be handled at load time using

Productive Petascale Computing Page 102 of 139

historical data and a binary optimizer, although this involves more substantial changes to object
code than incorporating specialized libraries.

12.2 Standard development tools
The transition to new computing platforms depends crucially on tool support. For many of the
reasons mentioned in the previous section, existing software development tools can run in a Hero
SuperZone, which presents a complete Hero Solaris execution environment on a (virtual) shared-
memory processor.
For example, existing OpenSolaris compilers share a common infrastructure that provides highly
effective optimization, code generation, and tool support. They all support the following:

• Auto-parallelization of computational loops
• OpenMP support
• Cross-file interprocedural optimization, including automatic inlining
• Debugging support
• Post-link optimization
• Automatic tuning system for choosing optimizations
• Feedback-directed optimization
• Compiler commentary to guide performance tuning

Additional support necessary to ensure memory coherence across node boundaries (managed
coherence, Section 10.1) is supplied automatically by compilers in the form of additional support
libraries that are transparent to programmers. Ongoing performance and scalability improvement
in legacy application support derives from continuing work in refinement of support libraries and
increasing sophistication in collaboration between tools and virtual software operating
environments.
Standard support for debugging in the transitional Hero environment comes from two sources.
The Sun™ Studio dbx debugger provides multithreaded debugging within a node or a
SuperZone; it offers the expected debugger features, including the following:

• Conditional breakpoints
• Watch points (variable change)
• Runtime checking (stray memory reference)
• Fix and continue (modify a function and keep running without restarting)

The dbx debugger works well with any shared memory model, including OpenMP and auto-
parallelized programs. The second debugging resource comprises existing debugging tools for
distributed memory programming that can also be easily adapted to run on the Hero MPI
compatibility platform.

12.3 Highly productive programming
A highly productive programming model requires application codes that are:

• Domain-focused

Productive Petascale Computing Page 103 of 139

• Inherently independent of underlying hardware and software architectures
• Free of difficult, error-prone distractions such as optimization, decomposition,

parallelization, and checkpointing

As with more general software engineering challenges, the key strategies are abstraction and
automation.

In the HPC community, examples can be found of programming technologies that move in this
direction, though none are sufficient to achieve the necessary revolution in productivity:

• MATLAB from Mathworks [37] and Mathematica from Wolfram Research [64] offer
languages and development environments with a focus on programming at higher levels
of abstraction, but at considerable compromise in scaling and performance.

• Auto-parallelizing compilers, such as those supported on OpenSolaris, successfully
automate some kinds of shared memory parallelism within some scale limitations.

• The PGAS family of languages automates some communication aspects of distributed
memory programming when compared with MPI, but with very little additional
abstraction.

Experience with all of these emerging technologies is promising in the areas of abstraction and
automation, although they are not as widely used as one might expect. For example, the
experiments mentioned in Section 3.7 involved rewriting a family of HPC standard benchmarks
from MPI into a high-programmability style using tools that have been available for years. Code
size dropped by an order of magnitude, and a currently available auto-parallelizing compiler for
OpenSolaris produced execution times only 2x greater than the original in many cases, up to
about 100 processors [35]. Adoption of such technologies has been slow for reasons discussed in
Section 3.10.

Hero is designed to enable much more progress in these directions than has been possible on
current and evolutionary systems. At its most basic level, Hero repairs fundamental
computational abstractions that have been abandoned in the name of expensive manual tuning
for performance. Those missing abstractions include:

• Single, global address space
• Virtualized, and thus interchangeable, hardware resources such as processors
• System-level ability to compute correctly through failure

Restoring each of these abstractions reduces the complexity of developing software, which in
turn makes it possible to accelerate progress of automation in such crucial areas as parallelization
and data layout. This encourages a new generation of highly abstract, possibly domain-dependent
languages that can achieve necessary scaling and performance.

12.4 Fortress
Experiments in the design of such languages are underway. For example, Fortress provides a
higher level of abstraction that more closely resembles scientific and mathematical expression,
allowing scientists to program in a familiar notation and easily express inherent algorithm
parallelism [2]. A powerful library mechanism addresses the automation of tedious and error-

Productive Petascale Computing Page 104 of 139

prone coding tasks such as array partitioning. This includes features that support concurrent
execution such as parallel “for” loops and reduction operators such as summation (Σ), as well as
atomic and transactional blocks. Early implementations of Fortress run on contemporary
systems, but growing Fortress into its full potential involves extensive automation similar to that
for which Hero is designed. Importantly, the Fortress effort is an open source project designed to
draw on expertise and insights from a wide community of stakeholders.
Many Fortress language features are designed specifically with productivity in mind. For
example:

• Fortran 90–style array operations reduce programming errors by reducing the amount of
notation needed to express common patterns of computation on arrays (experiment
reported in Section 3.7.2).

• Syntax designed to approximate traditional mathematical notation as closely as possible,
with attention paid to how an integrated development environment (IDE) can further
reformat code into traditional mathematical style, promises to make verifying scientific
programs less error-prone (experiment reported in Section 3.7.1).

• Built-in numeric types designed to align with mathematics used in scientific problems
include floating-point numbers of many sizes, imaginary and complex numbers, intervals
of real numbers, signed and unsigned integers of fixed size, integers of unlimited size,
and rational numbers with no size limits on numerators or denominators.

• Automatic dimensional analysis that statically detects programming errors missed by
ordinary type checking.

• Extended aggregate types expressed using mathematical syntax and concepts, including
arrays, vectors, matrices, tensors, sets, multisets, lists, maps, and hash tables.

• Powerful reduction operations over aggregates and over arbitrary parameterized
expressions reduce programming errors.

• All operations, including control structures, fundamentally designed for parallelism.
• Transactional memory constructs promise to make programs more robust in the presence

of failure than using locks.
• User-definable data distributions give programmers more control over data placement,

including dynamic redistribution.
• Automatic storage management relieves programmers of the need to track and explicitly

deallocate memory.
• Fortress code interoperates with other commonly used programming languages.

Furthermore, Fortress is fundamentally an extensible language. Extensions, implemented by the
Fortress language mechanism, play two significant productivity-related roles. First, the library is
where core functionality, including mediation between code and hardware resources, is
implemented. At this level, many powerful HPC functions can be implemented, including syntax
and type extensions, fine-grained control over parallelism, special purpose solvers, contract and
invariant checking, automatic testing support, and many more. Second, extensibility invites the
creation of libraries whose purpose is to create domain-specific programming languages with
concepts, syntax, types, and solvers that are highly specialized for particular problem classes.

Productive Petascale Computing Page 105 of 139

12.5 Portability: applications, tools, and skills
As the productivity team studies revealed, the lack of portability that represents such a
significant perceived bottleneck in the HPC community is not just a matter of application and
architectural features, but also includes tools and programming skills.

Hero is designed to address the familiar aspects of portability, as discussed in the previous
section. High-programmability code is by definition abstract, eliminating confounding
requirements that are not essential to the problems being solved: data decomposition,
parallelization, and checkpointing. This makes the code highly portable only if other elements of
the environment are also portable: tools and the skills acquired by programmers using those
tools.

A good example of this phenomenon is an ongoing preference in the HPC community for
FORTRAN 77 over Fortran 90/95. Project managers report that this choice is dictated by lack of
confidence that high-quality Fortran 90/95 compilers will be available on all future platforms for
20 to 30 years, the anticipated lifetime of successful HPC applications.

This phenomenon extends to many other kinds of development tools, where valid concerns about
future availability conspire to make software development tools be seen as risks to project
success, rather than a pathway to productivity (Section 3.8). In fact, there is no path to a
productivity revolution without tools, and in particular without portable tools that make people
and skills portable, as well [62]. This observation is based on data from the productivity studies
reported earlier and it applies to a wide variety of technologies that support HPC programming:
languages, compilers, libraries, analyzers, and many more.

Part of Hero’s design includes embracing cross-platform open source development tools in as
many areas as possible. This means that HPC programming skills, once acquired, become as
portable as high-programmability applications. In addition, a shared, standard tool suite is
subject to ongoing research and improvement in performance, scalability, and correctness, rather
than the ongoing “wheel reinvention” now experienced by the HPC programming community.

Productive Petascale Computing Page 106 of 139

13 The interplay of design decisions
This section provides an example of how the design process described in Section 6 was used to
ensure that the design described in Sections 7-12 satisfied Hero requirements. The requirement
with the most pervasive influence on Hero’s design was the need to support both new and
existing HPC programming models. Although the ultimate architectural solution is described as a
straightforward combination of new technologies and innovations, this solution was the product
of a multiyear effort that included many false starts and design tradeoffs. It required a complete
reconsideration of supercomputer design, with a focus on the three design tenets described in the
introduction: focus on whole system properties, rethink system layers, and leverage new
technologies.

The Hero design objective was to create a system that would satisfy the DARPA 10x
productivity improvement challenge. Productivity requirements indicated that the best way to
achieve this goal was to create the façade of a single system environment by using abstraction
and automation. This would allow application developers, system programmers, and operations
personnel to use familiar tools and processes to program and operate a petascale system almost
as easily as if it were an SMP machine. Within such an environment:

• Highly productive programming models could eventually replace MPI.
• The system could achieve a significant fraction of its rated maximum performance

without extensive tuning.
• The level of effort required to develop and maintain applications could drop by an order

of magnitude.

Unfortunately, the most obvious ways to create this single-machine façade ran straight into a
wall of technological limitations. This created the dilemma described in Section 13.1—finding
an alternative that was technologically feasible while retaining the important productivity
advantages of a single-system environment. Fortunately, new technologies were becoming
available in the Hero time frame that helped solve this issue. These technologies and additional
design constructs developed during the HCPS Phase II program are described in Section 13.2.
Finally, Section 13.3 describes how new technologies were integrated into a single-system view
that satisfies DARPA productivity requirements.

13.1 The dilemma
The team’s initial assumption was that supporting a highly productive HPC programming model
would require a fully cache-coherent, SMP-style machine with a single OS instance running
across the machine to provide a single-system image. Hardware engineers set about designing
the coherence mechanism, while the performance modeling team worked on performance
estimates. Cache coherence for hundreds of nodes, even with Hero’s high-bandwidth and low-
latency interconnect, proved a daunting challenge. Detailed engineering work revealed that full
cache coherence across the entire machine would fail to meet several system constraints, most
notably cost, time to market, and performance. In addition, the complexity of a single-system
image on a petascale system was vexing, and there were serious doubts about its robustness.
Distributed shared memory (DSM) was explored as an alternate way to implement a petascale
SMP-style machine. A review of the literature, combined with analyses of several possible

Productive Petascale Computing Page 107 of 139

schemes, showed that this solution would fail to achieve adequate scalability and performance.
Scalability issues arose from the need to track entries for all pages on all nodes in the system. A
petascale memory system would require mapping tables that consume a substantial fraction of
each node’s memory. Furthermore, bandwidth utilization and latency of page updates would
create significant issues at extreme scale.
Caught between the productivity-based requirement for a new programming model and the
inadequacy of prior shared-memory schemes, the team revisited the productivity data and
analyses that informed this requirement. A more detailed analysis (Section 10.1) revealed that
the actual requirement was weaker than full system-wide cache coherence. The productivity
bottleneck could be broken by providing a combination of global addressability and the ability to
make the machine fully coherent at well-defined points in the computation (see Table 11). This
would permit a programming model extremely well aligned with OpenMP parallelism, the
PGAS family of languages, and new high-programmability languages, without the cost or
complexity of full hardware cache coherence or DSM’s performance and scaling problems.

13.2 Technology enablers
Although the analyses showed that global cache coherence was not required, new hardware and
software constructs were still needed to enable global addressability and global virtual memory
capability (global shared memory), along with mechanisms to support the limited form of cache
coherence required (managed coherence). This required many innovative hardware capabilities
that became available in the Hero time frame and led to the development of many other hardware
and software mechanisms. These innovations and their roles in supporting global shared memory
with managed coherence include the following:

• Programmers are reluctant to use global shared memory on a large system, due to long
cross-system memory latencies that cripple performance. The Hero massive chip
multithreading (CMT) microprocessor (Section 8.1) keeps hardware resources busy even
in the presence of stalls, high-latency memory operations, and other processing
irregularities. This provides dramatic performance improvements for HPC applications
with long cross-system memory latencies and makes global shared memory feasible.

• Productivity benefits of a globally shared memory architecture will be lost if remote
access is so slow that it requires programmers to expend significant effort maximizing
locality. The Hero high-bandwidth, low-latency system interconnect (Section 9) provides
the fast remote access among compute nodes necessary to enable highly productive,
global shared-memory programming.

• The SIF ASIC (Section 8.2) provides hardware support for a fully shared global address
space, with extra features to improve the performance of legacy applications and
virtualization support for robustness. It performs the memory controller’s function for all
physical memory addresses not resident on the node where the request originated. The
SIF makes address translation for remote memory accesses transparent to the application
(Section 10.2.1), which allows the application to use standard shared-memory semantics
for remote accesses. In addition, SIF functionality helps hide the latency penalty of
random access fetches across the system interconnect.

Productive Petascale Computing Page 108 of 139

• The typical Hero system application consumes the resources of many nodes, so its
process virtual address space spans many nodes. The innovative global system virtual
address space (Section 10.2) resides between physical memory and the multi-node
process virtual address space. By unifying all process data spread across nodes, it acts as
a single federated view of global memory for the multi-node process, so that shared-
memory programming semantics can be used.

• The SuperZone software mechanism (Section 11.2) is a key technology for producing a
system-wide application environment without the complexity of either fully cache-
coherent SMP hardware or a single-system image across the entire machine. A
SuperZone is a multi-node set of computational resources that acts as a container for a
multi-node application. It comprises a set of Unification Zones: containers that reside
only in a single node but have built-in multi-node semantics. Multi-node support is
provided through the interposition of these multi-node semantics on system calls, kernel
upcalls, and signals. Operations that require the participation of more than one node
invoke interzone communication mechanisms in the SuperZone.

• A coherence fence (Section 10.3) is a synchronization mechanism used to enforce
managed coherence: memory coherence at designated points in the application. The
coherence fence is a special form of memory barrier that makes sure all stores from all
threads must complete and become visible to all threads before any thread exits the fence.
A simple implementation flushes all dirty cache entries and invalidates all cached data
before any thread leaves the fence. To implement the coherence fence, Hero supports
remote cache-flush and cache-invalidate operations. The application is fully cache
coherent when it exits a coherence fence.

13.3 A single-system view
Hero’s hardware and software mechanisms, notably the ones described in the previous section,
collaborate to create a single-system view for application software. This view supports the Hero
execution model (shared global memory with managed coherence) and provides the architectural
support necessary for a highly productive programming environment. Figure 34 shows how the
Hero system architecture supports a single-system view using the following layers:

• The interconnect layer provides fast access to remote memory.
• The node layer provides transparent address translation for remote memory using SIF and

processing resources that hide cross-system memory latencies.
• The fault tolerant hypervisor (FTH) layer supports the creation of Unification Zones

(UZs) and SuperZones by providing robust access to hardware resources.
• The Hero Solaris OS layer provides UZs that interpose on standard system calls to

provide multi-node semantics for operations such as memory allocation and mapping.
Note that there can be multiple OS instances in the OS layer (two are shown in Figure 34)
because a guest OS could be running an application in a Hero node, although it would not
participate in a SuperZone.

• In the zone layer, the SuperZone, stitched together from individual UZs on each node,
provides a virtual execution environment (or container) for program execution. The

Productive Petascale Computing Page 109 of 139

application sees only the SuperZone, even though it is actually running as local threads
on many nodes.

The SuperZone mechanism, using the SIF to provide global addressability, presents a single
view of the system to applications, while enabling independent operating systems on individual
nodes. UZs also provide mechanisms for sharing information such as file handles across the
SuperZone without requiring each node to map files to the same ID. Interposition allows the
global ID to be mapped to the appropriate local ID on each node. This gives applications
transparent access to the system’s full memory and I/O resources without the complexity and
overhead of a single OS managing the entire system. Thus, Hero satisfies programming model
productivity requirements without full system cache coherence and without a single-system
image.

Figure 34: Application single-system view

Figure 34 illustrates the complex interdependence of Hero architectural features necessary to
satisfy DARPA’s 10x productivity goal. Such a design could not have been created without an
integrated design team that focused on whole-system properties and completely redesigned
system layers in order to exploit new technologies.

Productive Petascale Computing Page 110 of 139

14 Conclusions
Recognizing that increasing hardware performance is no longer sufficient to drive the
productivity gains needed by the HPC community, the DARPA HPCS Phase II challenge was to
develop petascale computing systems that deliver at least 10x more productivity. Sun’s response
to that challenge was to study the entire nature of supercomputer productivity, identify
productivity bottlenecks, and use the results of these studies to guide the design of a
revolutionary supercomputer that could achieve the desired productivity improvement.
Although the HPCS community has traditionally regarded productivity as either a hardware or
programming issue, Sun’s analyses revealed that real productivity is a system-wide problem. It is
not a property of isolated aspects of hardware or software processes, but of the way these work
together over time, meaning that productivity must be considered as a whole-system property.
Considering productivity as a system-wide problem led to systematic analyses of supercomputer
productivity in its full context: this includes people, organizations, goals, practices, and skills in
addition to processors, disks, memory, and software.

Sun’s analyses identified a wide range of productivity bottlenecks in system hardware and
software, system administration, software development practices, and runtime environments.
Viewed as a systems problem, however, two overarching issues stand out: expertise and effort.
The expertise bottleneck reflects the fact that developing software for current HPC systems
requires expertise in several distinct, complex disciplines and that such expertise cannot be
acquired without long experience. The effort bottleneck reflects the fact that development,
parallelization, verification, validation, porting, and maintenance of HPC applications are now
largely manual tasks for which the development platform, execution, and administrative
environments provide little effective assistance.

These analysis results illustrate why conventional approaches (such as increasing hardware
performance) have failed to solve the productivity problem. This is summarized in the Hero
system strategic goal: to provide a system that significantly reduces the development effort and
level of expertise required to achieve a given level of machine utilization. Though simple in its
expression, this goal implies paradigm shifts in the capabilities provided by supercomputers and
in the skills and practices required to develop and deploy HPC applications. This goal demands a
productivity-driven, top-to-bottom reevaluation of supercomputer hardware and software design.
To implement this strategy, Sun created an interdisciplinary, highly collaborative design process.
The productivity team, of which the authors were members, combined expertise in computer
hardware, system software, software engineering, computational science, and cultural
anthropology. Following Sun’s iterative System Exploration Model, design teams worked in
collaboration with one another and with the productivity team to make critical design tradeoffs.
Hero’s design drew heavily on emerging technologies, such as those in the areas of chip
interconnect and resource virtualization, to make possible an innovative memory architecture for
high-productivity programming.
The Hero design represents a systematic application of two strategic design principles:
abstraction and automation. At the user level, this implies providing languages, tools, and a
runtime environment that abstract from machine details and allow scientists to write and
maintain programs in terms of problem domains (for example, fluid mechanics). At the system

Productive Petascale Computing Page 111 of 139

and software layers, this implies tools for automating routine tasks such as memory management,
parallelization, and job control. At the hardware layer, this implies new approaches to memory
management, localization, and reliability.
Gordon Bell once said: “The fastest, most reliable and least expensive components of a computer
system are those that aren’t there.” It could also be said that the fastest, most reliable, and least
expensive code is that which doesn’t need to be written. Sun’s approach was to eliminate
programming tasks that scientist-programmers may be insufficiently prepared to perform and
that distract from their most important goal: advancing science.

Productive Petascale Computing Page 112 of 139

15 Acknowledgements
The authors are grateful to all members of Sun’s HPCS productivity team, as well as HPCS
program colleagues who contributed to this effort. Particular thanks to collaborators in the case
studies: Eugene Loh, Douglass Post, Richard Kendall and Walter Tichy, and to Tom Nash and
Philip Johnson, whose work has deepened our understanding of the productivity problem.
This material is based upon work supported by DARPA under Contract No.NBCH3039002.

Productive Petascale Computing Page 113 of 139

16 References

[1] S. Ahalt and K. Kelley, “Blue-Collar Computing: HPC for the Rest of Us,” ClusterWorld
2(11), November 2004. See also <http://www.osc.edu/bluecollarcomputing/>.

[2] E. Allen, D. Chase, J. Hallett, V. Luchangco, J. Maessen, S. Ryu, G. Steele Jr., and S.
Tobin-Hochstadt, The Fortress Language Specification Version 1.0, Sun Microsystems,
Inc., 2008. <http://research.sun.com/projects/plrg/fortress.pdf>

[3] M. Ardis, N. Daley, D. Hoffman, H. Siy, and D. Weiss, “Software product lines: a case
study,” Software Practice and Experience 30(7) June 2000, pp. 825-84.

[4] D. Bader, K. Madduri, J. Gilbert, V. Shah, J. Kepner, T. Meuse, and A. Krishnamurthy,
“Designing Scalable Synthetic Compact Applications for Benchmarking High Productivity
Computing Systems,” CTWatch Quarterly, 2(4B), November 2006 B.
<http://www.ctwatch.org/quarterly/articles/2006/11/designing-scalable-synthetic-compact-
applications-for-benchmarking-high-productivity-computing-systems>

[5] B. Boehm, Software Engineering Economics, Prentice Hall, 1981.

[6] F. Brooks, The Mythical Man Month (Anniversary Edition), Addison-Wesley, 1995.

[7] J. Carver, R. Kendall, S. Squires, and D. Post, “Software Development Environments for
Scientific and Engineering Software: A Series of Case Studies.” In Proceedings of the 29th
international Conference on Software Engineering (May 20–26, 2007). International
Conference on Software Engineering. IEEE Computer Society, Washington DC, pp. 550-
559.

[8] B. Chamberlain, D. Callahan, and H. Zima. “Parallel Programmability and the Chapel
Language,” International Journal of High Performance Computing Applications, August
2007, 21(3): 291-312.

[9] B. Chamberlain, S. J. Deitz, and L. Snyder, “A comparative study of the NAS MG
benchmark across parallel languages and architectures,” Proceedings of the ACM
Conference on Supercomputing, 2000.

[10] A. Cockburn, Agile Software Development, Addison-Wesley, 2001.

[11] W. Dally and B. Towles, Principles and Practices of Interconnection Networks, Morgan
Kaufmann, 2004.

[12] Defense Advanced Research Project Agency (DARPA) Information Processing
Technology Office, High Productivity Computing Systems (HPCS) Program.
<http://www.darpa.mil/ipto/programs/hpcs/>

[13] E. Dijkstra, “The structure of the ‘THE’ multiprogramming system.” Communications of
the ACM 11(5) May 1968, pp. 341-346.

Productive Petascale Computing Page 114 of 139

[14] Robert Drost, R. D. Hopkins, Ron Ho, Ivan Sutherland, "Proximity communication," IEEE
Journal of Solid-State Circuits, 39(9), pp. 1529-1535, September 2004.

[15] S. Faulk, J. Gustafson, P. Johnson, A. Porter, W. Tichy, and L. Votta, “Measuring High
Performance Computing Productivity,” International Journal of High Performance
Computing and Applications: Special Issue on HPC Productivity (ed. Kepner), vol. 18, no.
4, Winter 2004, pp. 459-473.

[16] E. Goldratt, Theory of Constraints, North River Press, 1999.

[17] J. Gosling B. Joy, G. Steele, and G. Bracha, Java Language Specification, Third Edition,
Addison Wesley, 2005.

[18] S. Graham, and M. Snir, “The NRC Report on the Future of Supercomputing,” CTWatch
Quarterly, 1(1), February 2005. <http://www.ctwatch.org/quarterly/articles/2005/02/nrc-
report/>

[19] Hilfinger, P. N., Bonachea, D., Gay, D., Graham, S., Liblit, B., Pike, G., and Yelick, K.
2001 Titanium Language Reference Manual. Technical Report. UMI Order Number: CSD-
01-1163, University of California at Berkeley.

[20] C. Holland, DoD Research and Development Agenda for High Productivity Computing
Systems (White Paper), Pentagon, Washington DC, June 2001.

[21] D. Hopkins, A. Chow, R. Bosnyak, B. Coates, J. Ebergen, S. Fairbanks, J. Gainsley, R. Ho,
J. Lexau, F. Liu, T. Ono, J. Schauer, I. Sutherland, and R. Drost, “Circuit techniques to
enable 430 Gb/s/mm/mm proximity communication,” IEEE International Solid-State
Circuits Conference (ISSCC), February 2007, pp. 368-369.

[22] IBM, “X10: The New Concurrent Programming Language for Multicore and Petascale
Computing.” <http://x10-lang.org/>

[23] P.M. Johnson, H. Kou, M. Paulding, Q. Zhang, A. Kagawa, and T. Yamashita, “Improving
software development management through software project telemetry,” IEEE Software,
22(4), July–Aug. 2005, pp. 76-85.

[24] P. Johnson and M. Paulding. “Understanding HPCS development through automated
process and product measurement with Hackystat,” Proceedings of the Second Workshop
on Productivity and Performance in High-End Computing, San Francisco, California,
2005.

[25] R. Kendall, J. Carver, A. Mark, D. Post, S. Squires, and D. Shaffer, Case Study of the
Hawk Code Project, Los Alamos National Laboratory Report LAUR-05-9011, 2005.

[26] R. Kendall, A. Mark, D. Post, S. Squires, and C. Halverson, Case Study of the Condor
Code Project, Los Alamos National Laboratory Report LA-UR-05-9291, 2005.

Productive Petascale Computing Page 115 of 139

[27] R. Kendall, Douglass Post, Susan Squires, and Jeff Carver, Case Study of the Eagle Code
Project, Los Alamos National Laboratory, Report LA-UR-06-1092, 2006.

[28] R. Kendall, Douglass Post, and Andrew Mark, Case Study of the NENE Code Project,
CMU/SEI-2006-TN-044, Software Engineering Technical Note, January 2007.

[29] R. Kendall, Jeff Carver, David Fisher Dale Henderson, Andrew Mark, Douglass Post, Cliff
Rhodes and Susan Squires, “Development of a Weather Forecasting Code: A Case Study,”
IEEE Software 25(4), July–August 2008, pp. 59-65.

[30] J. Kepner, “HPC Productivity: an Overarching View,” International Journal of High
Performance Computing and Applications: Special Issue on HPC Productivity (ed.
Kepner), 18(4), Winter 2004, pp. 393-397.

[31] J. Kepner, “HPC Productivity Model Synthesis,” International Journal of High
Performance Computing Applications: Special Issue on HPC Productivity 18(4),
November 2004.

[32] G. K. Konstadinidis, et al., “Architecture and Physical Implementation of a Third
Generation 65 nm, 16 core, 32 Thread Chip-Multithreading SPARC Processor,” IEEE
Journal of Solid-State Circuits, 44(1), January 2009.

[33] A. S. Leon, et al., “A Power-Efficient High Throughput 32-Thread SPARC Processor,”
IEEE Journal of Solid-State Circuits, 42(1), January 2007.

[34] C. Leiserson, “Fat-trees: Universal networks for hardware efficient supercomputing,”
IEEE Transactions on Computers, 34(10), October 1985.

[35] E. Loh, M. Van De Vanter and L. Votta, “Can Software Engineering Solve the HPCS
Problem?” Second International Workshop on SE HPC Sys Applications, May 2005.

[36] P. Luszczek, J. Dongarra, D. Koester, R. Rabenseifner, B. Lucas, J. Kepner, J. McCalpin,
D. Bailey, and D. Takahashi. Introduction to the HPC Challenge Benchmark Suite, March
2005. <http://icl.cs.utk.edu/hpcc/pubs>

[37] The Mathworks, MATLAB. <http://www.mathworks.com/>

[38] MPI Forum, MPI: A Message-Passing Interface Standard, version 1.1, June 1995.
<http://www.mpi-forum.org/docs/docs.html>

[39] MPI Forum, MPI: A Message-Passing Interface Standard, version 2.1, July 2008.
<http://www.mpi-forum.org/docs/docs.html>

[40] Declan Murphy, Thomas Nash, Lawrence Votta, Jr., and Jeremy Kepner, “A System-wide
Productivity Figure of Merit,” CTWatch Quarterly, 2(4B), November 2006 B.
<http://www.ctwatch.org/quarterly/articles/2006/11/a-system-wide-productivity-figure-of-
merit/>

Productive Petascale Computing Page 116 of 139

[41] NASA, The NAS Parallel Benchmarks (NPB), NASA Advanced Supercomputing
Division. <http://www.nas.nasa.gov/Resources/Software/npb.html>

[42] Numrich, R. W. and Reid, J. 1998. Co-array Fortran for parallel programming, SIGPLAN
Fortran Forum, 17(2) August 1998, pp. 1-31.

[43] OpenJDK, “The HotSpot Group.” <http://openjdk.java.net/groups/hotspot/>

[44] OpenMP <http://www.openmp.org/>

[45] OpenSolaris <http://www.opensolaris.org>

[46] C. Pancake, A Collaborative Effort in Parallel Tool Design. Technical Report. UMI Order
Number: 94-80-14, Oregon State University, 1994. Also appeared in Proceedings of the
Second Workshop on Environments and Tools for Parallel Scientific Computing, J.
Dongarra and B. Tourancheau eds., SIAM, 1994, pp. 112-119.

[47] C. Pancake, Establishing Standards for HPC System Software and Tools. Technical
Report. UMI Order Number: 97-60-04, Oregon State University, 1997.

[48] D. Post, R. Kendall, and E. Whitney, “Case Study of the Falcon Code Project,”
Proceedings Second International Workshop on Software Engineering for High
Performance Computing System Applications, St. Louis, Missouri, May 15, 2005.

[49] D. Post and L. Votta, “Computational Science Demands a New Paradigm”, Physics Today,
58(1), 2005, pp. 35-41.

[50] D. Post and R. Kendall, “Large-Scale Computational Scientific and Engineering Project
Development and Production Workflows,” USE OF HIGH PERFORMANCE
COMPUTING IN METEOROLOGY, Proceedings of the Twelfth ECMWF Workshop,
Reading, U.K. October 30 – November 3, 2006, edited by George Mozdzynski, World
Scientific Publishing Co. October, 2007, p. 284. ISBN 978-981-277-588-7. An abbreviated
version appeared as CTWatch Quarterly, 2(4B), November 2006 B.
<http://www.ctwatch.org/quarterly/articles/2006/11/large-scale-computational-scientific-
and-engineering-project-development-and-production-workflows/>

[51] Reflex Photonics, “Light on board OE-ASIC.” http://www.reflexphotonics.com/light-on-
board-oe-asic.htm

[52] V. Sarkar, C. Williams, and K. Ebcioglu, “Application Development Productivity
Challenges for High-End Computing”, First Workshop on Productivity and Performance
in High-End Computing, Madrid, Spain, 2004.

[53] J. Segal, “Some Problems of Professional End User Developers”, Proceedings of the IEEE
Symposium on Visual Languages and Human-Centric Computing. VLHCC. IEEE
Computer Society, Washington, DC, September 23-27, 2007, pp. 111-118.

Productive Petascale Computing Page 117 of 139

[54] S. Squires, M. Van De Vanter, and L. Votta, “Software Productivity Research In High
Performance Computing,” CTWatch Quarterly, 2(4A), November 2006 A.
<http://www.ctwatch.org/quarterly/articles/2006/11/software-productivity-research-in-
high-performance-computing/>

[55] S. Squires, M. Van De Vanter, and L. Votta, “Yes, There Is an ‘Expertise Gap’ In HPC
Applications Development,” Proceedings of the Third Workshop on Productivity and
Performance in High-End Computing (PPHEC’06), Austin, Texas, February 12, 2006.

[56] S. Squires, W. Tichy and L. Votta. “What Do Programmers of Parallel Machines Need? A
Survey.” Proceedings of the Second Workshop on Productivity and Performance in High-
End Computing, San Francisco, California, 2005.

[57] T. Sze, M. Giere, B. Guenin, N. Nettleton, D. Popovic, J. Shi, S. Bezuk, R. Ho, R. Drost,
and D. Douglas, “Proximity Communication Flip-Chip Package with Micron Chip-to-chip
Alignment Tolerances,” Electronic Components and Technology Conference (ECTC), San
Diego, California, May 26–29, 2009.

[58] M. Tremblay and S. Chaudhry, “A Third-Generation 65 nm 16-core 32-thread plus 32-
scout-threads SPARC Processor,” IEEE ISSCC Dig. Tech. Papers, February 2008, pp. 82-
83.

[59] Transactional Memory, Sun Microsystems. http://research.sun.com/spotlight/2007/2007-
08-13_transactional_memory.html

[60] R. Trotter and J. Schensul, “Methods in Applied Anthropology,” Handbook of Methods in
Cultural Anthropology, H. Russell Bernard (ed.), Walnut Creek, California, Altamara
Press, 1999.

[61] UPC Consortium, UPC Language Specifications, v1.2, Lawrence Berkeley National Lab
Tech Report LBNL-59208, 2005.

[62] M. Van De Vanter, D. Post and M. Zosel, “HPC Needs a Tool Strategy,” Second
International Workshop on SE HPC Systems Applications, May 2005.

[63] L. Wang, K. Pattabiraman, Z. Kalbarczyk, R. Iyer, L. Votta, C. Vick, “Modeling
Coordinated Checkpointing for Large-Scale Supercomputers,” International Conference
on Dependable Systems, June 2005.

[64] Wolfram Research, Mathematica <http://www.wolfram.com/>.

[65] A. Wood, S. Nathan, T. Tsai, C. Vick, L. Votta, “Multi-Tier Checkpointing for Peta-Scale
Systems,” International Conference on Dependable Systems, June 2005.

[66] R. Yu, Case Study Research: Design and Methods, SAGE Publications, 2002.

Productive Petascale Computing Page 118 of 139

[67] X. Zheng, J. Lexau, D. Rolston, J. Cunningham, I. Shubin, R. Ho, A. Krishnamoorthy,
“BGA Package Integration of Electrical, Optical, and Capacitive Interconnects,” Electronic
Components and Technology Conference (ECTC), San Diego, California, May 26–29,
2009.

Productive Petascale Computing Page 119 of 139

17 NAS BT code modification experiment
An experienced HPC programmer was asked to add new functionality to one of the benchmarks
(NAS BT I/O) rewritten in the experiment described in 3.7.2, as might be done during the
maintenance phase of an application’s life cycle. The task was to add checkpoint-style I/O in
several different programming models:

• High-programmability style with Fortran 90: Exploiting simplifications made during the
previous experiment, the important state is contained in a single array for which high-
level array operations are available.

• Serial FORTRAN 77: Standard FORTRAN I/O for reading and writing array contents.
• MPI – simple: Parallel I/O with naïve use of the MPI I/O API.
• MPI – optimized: Parallel I/O optimized use of the MPI/IO API, with collective I/O

operations.

The task required supporting four operations: setup, write, read, and close. Table 12 (repeated
from Section 3.7.2) shows the amount of code required for the task, using each of the four
programming models. The total lines of code (LOC) required for each model give a rough
measure of the code’s complexity and the expected lifetime maintenance cost for this segment.

Table 12: NAS BT I/O code modification - lines of code
Programming Model Setup Write Read Close Total LOC

High-programmability w/F90 1 1 1 1 4
Serial FORTRAN 77 7 19 20 1 47
MPI - simple 25 22 23 1 71
MPI - optimized 144 12 13 1 170

The code for each of these styles follows.

17.1 High-programmability style with Fortran 90

Setup
open(20,file="btio.dat",status="unknown",form="unformatted")

Write
write(20) u ! write entire array, including boundary cells

Read
read(20) u ! read entire array, including boundary cells

Close
close(20)

Productive Petascale Computing Page 120 of 139

17.2 Serial FORTRAN 77

Setup
 if (node.eq.root) record_length = 40/fortran_rec_sz
 call mpi_bcast(record_length, 1, MPI_INTEGER,
 > root, comm_setup, ierr)

 open (unit=99, file=filenm,
 $ form='unformatted', access='direct',
 $ recl=record_length)

Write
 do cio=1,ncells
 do kio=0, cell_size(3,cio)-1
 do jio=0, cell_size(2,cio)-1
 iseek=(cell_low(1,cio) +
$ PROBLEM_SIZE*((cell_low(2,cio)+jio) +
$ PROBLEM_SIZE*((cell_low(3,cio)+kio) +
$ PROBLEM_SIZE*idump)))

 do ix=0,cell_size(1,cio)-1
 write(99, rec=iseek+ix+1)
$ u(1,ix, jio,kio,cio),
$ u(2,ix, jio,kio,cio),
$ u(3,ix, jio,kio,cio),
$ u(4,ix, jio,kio,cio),
$ u(5,ix, jio,kio,cio)
 enddo
 enddo
 enddo
 enddo

Read
 do cio=1,ncells
 do kio=0, cell_size(3,cio)-1
 do jio=0, cell_size(2,cio)-1
 iseek=(cell_low(1,cio) +
$ PROBLEM_SIZE*((cell_low(2,cio)+jio) +
$ PROBLEM_SIZE*((cell_low(3,cio)+kio) +
$ PROBLEM_SIZE*ii)))

 do ix=0,cell_size(1,cio)-1
 read(99, rec=iseek+ix+1)
$ u(1,ix, jio,kio,cio),
$ u(2,ix, jio,kio,cio),
$ u(3,ix, jio,kio,cio),
$ u(4,ix, jio,kio,cio),
$ u(5,ix, jio,kio,cio)
 enddo
 enddo
 enddo
 enddo

Close
close(unit=99)

Productive Petascale Computing Page 121 of 139

17.3 MPI - simple

Setup
 integer ierr

 iseek=0

 if (node .eq. root) then
 call MPI_File_delete(filenm, MPI_INFO_NULL, ierr)
 endif

 call MPI_Barrier(comm_solve, ierr)

 call MPI_File_open(comm_solve,
 $ filenm,
 $ MPI_MODE_WRONLY + MPI_MODE_CREATE,
 $ MPI_INFO_NULL,
 $ fp,
 $ ierr)

 call MPI_File_set_view(fp,
 $ iseek, MPI_DOUBLE_PRECISION, MPI_DOUBLE_PRECISION,
 $ 'native', MPI_INFO_NULL, ierr)

 if (ierr .ne. MPI_SUCCESS) then
 print *, 'Error opening file'
 stop
 endif

Write
 do cio=1,ncells
 do kio=0, cell_size(3,cio)-1
 do jio=0, cell_size(2,cio)-1
 iseek=5*(cell_low(1,cio) +
$ PROBLEM_SIZE*((cell_low(2,cio)+jio) +
$ PROBLEM_SIZE*((cell_low(3,cio)+kio) +
$ PROBLEM_SIZE*idump)))

 count=5*cell_size(1,cio)

 call MPI_File_write_at(fp, iseek,
$ u(1,0,jio,kio,cio),
$ count, MPI_DOUBLE_PRECISION,
$ mstatus, ierr)

 if (ierr .ne. MPI_SUCCESS) then
 print *, 'Error writing to file'
 stop
 endif
 enddo
 enddo
 enddo

Read
 do cio=1,ncells
 do kio=0, cell_size(3,cio)-1
 do jio=0, cell_size(2,cio)-1
 iseek=5*(cell_low(1,cio) +

Productive Petascale Computing Page 122 of 139

$ PROBLEM_SIZE*((cell_low(2,cio)+jio) +
$ PROBLEM_SIZE*((cell_low(3,cio)+kio) +
$ PROBLEM_SIZE*ii)))

 count=5*cell_size(1,cio)

 call MPI_File_read_at(fp, iseek,
$ u(1,0,jio,kio,cio),
$ count, MPI_DOUBLE_PRECISION,
$ mstatus, ierr)

 if (ierr .ne. MPI_SUCCESS) then
 print *, 'Error reading back file'
 call MPI_File_close(fp, ierr)
 stop
 endif
 enddo
 enddo
 enddo

Close
call MPI_File_close(fp, ierr)

17.4 MPI - optimized

Setup
 integer ierr
 integer combined_ftype
 integer mstatus(MPI_STATUS_SIZE)
 integer sizes(4), starts(4), subsizes(4)
 integer cell_btype(maxcells), cell_ftype(maxcells)
 integer cell_blength(maxcells)
 integer info
 character*20 cb_nodes, cb_size
 integer c
 integer cell_disp(maxcells)

 call mpi_bcast(collbuf_nodes, 1, MPI_INTEGER,
 > root, comm_setup, ierr)

 call mpi_bcast(collbuf_size, 1, MPI_INTEGER,
 > root, comm_setup, ierr)

 if (collbuf_nodes .eq. 0) then
 info = MPI_INFO_NULL
 else
 write (cb_nodes,*) collbuf_nodes
 write (cb_size,*) collbuf_size
 call MPI_Info_create(info, ierr)
 call MPI_Info_set(info, 'cb_nodes', cb_nodes, ierr)
 call MPI_Info_set(info, 'cb_buffer_size', cb_size, ierr)
 call MPI_Info_set(info, 'collective_buffering', 'true', ierr)
 endif

 call MPI_Type_contiguous(5, MPI_DOUBLE_PRECISION,
 $ element, ierr)
 call MPI_Type_commit(element, ierr)
 call MPI_Type_extent(element, eltext, ierr)

 do c = 1, ncells

Productive Petascale Computing Page 123 of 139

c
c Outer array dimensions ar same for every cell
c
 sizes(1) = IMAX+4
 sizes(2) = JMAX+4
 sizes(3) = KMAX+4
c
c 4th dimension is cell number, total of maxcells cells
c
 sizes(4) = maxcells
c
c Internal dimensions of cells can differ slightly between cells
c
 subsizes(1) = cell_size(1, c)
 subsizes(2) = cell_size(2, c)
 subsizes(3) = cell_size(3, c)
c
c Cell is 4th dimension, 1 cell per cell type to handle varying
c cell sub-array sizes
c
 subsizes(4) = 1

c
c type constructors use 0-based start addresses
c
 starts(1) = 2
 starts(2) = 2
 starts(3) = 2
 starts(4) = c-1

c
c Create buftype for a cell
c
 call MPI_Type_create_subarray(4, sizes, subsizes,
 $ starts, MPI_ORDER_FORTRAN, element,
 $ cell_btype(c), ierr)
c
c block length and displacement for joining cells -
c 1 cell buftype per block, cell buftypes have own displacment
c generated from cell number (4th array dimension)
c
 cell_blength(c) = 1
 cell_disp(c) = 0

 enddo
c
c Create combined buftype for all cells
c
 call MPI_Type_struct(ncells, cell_blength, cell_disp,
 $ cell_btype, combined_btype, ierr)
 call MPI_Type_commit(combined_btype, ierr)

 do c = 1, ncells
c
c Entire array size
c
 sizes(1) = PROBLEM_SIZE
 sizes(2) = PROBLEM_SIZE
 sizes(3) = PROBLEM_SIZE

c
c Size of c'th cell
c

Productive Petascale Computing Page 124 of 139

 subsizes(1) = cell_size(1, c)
 subsizes(2) = cell_size(2, c)
 subsizes(3) = cell_size(3, c)

c
c Starting point in full array of c'th cell
c
 starts(1) = cell_low(1,c)
 starts(2) = cell_low(2,c)
 starts(3) = cell_low(3,c)

 call MPI_Type_create_subarray(3, sizes, subsizes,
 $ starts, MPI_ORDER_FORTRAN,
 $ element, cell_ftype(c), ierr)
 cell_blength(c) = 1
 cell_disp(c) = 0
 enddo

 call MPI_Type_struct(ncells, cell_blength, cell_disp,
 $ cell_ftype, combined_ftype, ierr)
 call MPI_Type_commit(combined_ftype, ierr)

 iseek=0
 if (node .eq. root) then
 call MPI_File_delete(filenm, MPI_INFO_NULL, ierr)
 endif

 call MPI_Barrier(comm_solve, ierr)

 call MPI_File_open(comm_solve,
 $ filenm,
 $ MPI_MODE_WRONLY+MPI_MODE_CREATE,
 $ MPI_INFO_NULL, fp, ierr)

 if (ierr .ne. MPI_SUCCESS) then
 print *, 'Error opening file'
 stop
 endif

 call MPI_File_set_view(fp, iseek, element,
 $ combined_ftype, 'native', info, ierr)

 if (ierr .ne. MPI_SUCCESS) then
 print *, 'Error setting file view'
 stop
 endif

Write
 integer mstatus(MPI_STATUS_SIZE)
 integer ierr

 call MPI_File_write_at_all(fp, iseek, u,
$ 1, combined_btype, mstatus, ierr)
 if (ierr .ne. MPI_SUCCESS) then
 print *, 'Error writing to file'
 stop
 endif

 call MPI_Type_size(combined_btype, iosize, ierr)
 iseek = iseek + iosize/eltext

Productive Petascale Computing Page 125 of 139

Read
 integer mstatus(MPI_STATUS_SIZE)
 integer ierr

 call MPI_File_read_at_all(fp, iseek, u,
$ 1, combined_btype, mstatus, ierr)
 if (ierr .ne. MPI_SUCCESS) then
 print *, 'Error reading back file'
 call MPI_File_close(fp, ierr)
 stop
 endif

 call MPI_Type_size(combined_btype, iosize, ierr)
 iseek = iseek + iosize/eltext

Close
call MPI_File_close(fp, ierr)

Productive Petascale Computing Page 126 of 139

18 Glossary
One lesson of the interdisciplinary research that characterized Sun’s participation in the HPCS
program is that there is no single common vocabulary among participants, an issue that is
exacerbated by a focus on very advanced technologies. The following list describes common
terms used in the research and design leading to Hero.
Active messages: asynchronous mechanism in Hero that delivers a (executable) message to a
remote node for execution on a thread in the receiving node
Administrative Environment (AE): software layer at the boundary of the Hero system software
and the Hero development environment; it provides tools that help manage the system and tools
that help improve application execution

Applications: computer programs that are most directly related to the objectives in using a
computer—for example, simulating fluids or molecules—in contrast to other computer software
such as middleware or system software; referred to in the HPC community as codes
Application jitter: performance degradation that results when system software disrupts even a
few threads or processes in an application with tight synchronization
Application-specific integrated circuit (ASIC): complex integrated circuit customized for a
particular use
BrandZ: in OpenSolaris, extends the OpenSolaris Zones infrastructure to create Branded Zones;
zones that contain non-native operating environments [45]

Cache coherency: consistency of data when its value is no longer stored in a single location
(main memory), but is replicated and cached throughout a large system for performance reasons

Cache-coherent shared memory (CCSM): commonly understood set of properties provided by
most SMP machines and relied upon for correct execution of programs using a form of threaded
concurrency
Capability mode: in HPC, using a large computing resource for few large jobs, each of which
demands the large resource; cf. capacity mode
Capacity mode: in HPC, using a large computing resource for many small jobs, none of which
demands such a large resource for itself; cf. capability mode
Checkpointing: storing an entity’s state (for example, thread, application or system) for use in
error recovery or other resource remapping
Chip multiprocessor (CMP): placing multiple microcores on a single die

Chip multithreading (CMT): combining CMP microprocessors with multithreading
Co-Array Fortran: an emerging PGAS language based on FORTRAN [42], see partitioned
global address space <http://www.co-array.org/>
Code, codes: what the HPC community calls programs, cf. Applications

Coherence fence: a special barrier mechanism that enforces full coherence at designated points
in a program

Productive Petascale Computing Page 127 of 139

Content-addressable memories (CAM): special type of computer memory designed to search
its entire memory in a single operation

Cultural Anthropology: systematic study of culture, a complex phenomenon that includes
interrelated economic systems, political systems, social organizations, and belief systems;
applied in this research to understanding the context in which supercomputers are used
Defense Advanced Research Projects Agency (DARPA) <http://www.darpa.gov/>

Development environment: collection of software tools, libraries, and other structure to support
software development

Distributed shared memory (DSM): system implementation in which each node of a cluster
has access to a large shared memory, in addition to each node's limited, nonshared private
memory
dbx: standard Sun Studio debugger, used for multithreaded debugging within a Hero node or
SuperZone
Execution model: hardware architectural support for a programming model

Exploratory programming: in software engineering, describes a kind of software development
where requirements are not given a priori, but whose development is part of the development’s
goal (observed in this report to describe scientific programming characteristic of the mission
partners)

Fault Management Architecture: OpenSolaris technology that aggregates fault information
and performs prediction, diagnosis, and healing [45]

Fault tolerant hypervisor: in OpenSolaris, the lowest software layer, supports the creation of
Hero Unification Zones and SuperZones by providing robust access to hardware resources; see
OpenSolaris, Unification Zones, SuperZones
Floating point operations per second (FLOPS), also FLOP: measure of computer
performance
FORTRAN 77: serial, universally supported version of Fortran

Fortran 90, Fortran 95: modernized versions of Fortran
Fortress: Sun’s new programming language, provides a higher level of abstraction more closely
resembling scientific and mathematical expression [2]
<http://projectfortress.sun.com/Projects/Community>

Global addressability: a program’s ability to read or write any memory location in a large,
physically distributed computer system with the same simple instructions, whether or not that
location is local to the instruction’s issuance
Hackystat: tool that collects data from multiple streams on a server and can produce many
different kinds of activity reports and analyses spanning many time frames [23]
<http://code.google.com/p/hackystat/>

Hero: Sun’s revolutionary petascale supercomputer, designed to meet DARPA’s HPCS
requirements

Productive Petascale Computing Page 128 of 139

Hero Solaris: the Hero operating system, based on OpenSolaris and enhanced with features to
support increased robustness and a limited set of multi-node semantics for applications,
including SuperZones and Unification zones; see OpenSolaris, SuperZones, Unification zones
High Performance Computing (HPC)
High Productivity Computing Systems (HPCS): DARPA program [12]
IDE: integrated development environment

I/O: input/output; often referring to network or storage devices
Interconnect: a mechanism for passing electrical signals among computer chips

Jitter: see application jitter
Life cycle: refers to the steps in creating and maintaining a product or application

LOC: lines of code; approximate measure of the code’s complexity
Luxtera: Sun partner during HPCS Phase II; see silicon photonics <http://www.luxtera.com/>

MATLAB: programming language characterized by extensive use of higher level (more
abstract) library functions that are specialized for the kind of scientific and numerical
programming common in HPC applications [37] <http://www.mathworks.com/>
Message passing interface (MPI): application programmer interface for distributed memory
programming that uses message-oriented communication between computational nodes together
with protocol and semantic specifications for how its features must behave (the predominant
HPC parallel programming model today) [38] [39] <http://www.mpi-forum.org/docs/docs.html>
Microcore: core set of computing resources such as a floating point pipeline; a chip
multiprocessor (CMP) usually contains several microcores that may share some resources such
as caches

Mission partners: organizations that plan to use the HPCS-produced supercomputers, including
the U.S. Departments of Energy and Defense

Multi-node: multiple nodes in a single system, zone or domain
Multiprocessor: multiple processors on a single chip (CMP)

Multithreading: ability to execute multiple software threads on a single microcore, sharing the
microcore computing resources

NAS: NASA Advanced Supercomputing division
NAS BT: NAS parallel benchmark using a block-tridiagonal solver to simulate fluid flow

NAS BT I/O: NAS parallel benchmark based on NAS BT but adding an I/O component
NAS CG: NAS parallel benchmark using a conjugate-gradient method to solve a sparse linear
system
NAS MG: NAS parallel benchmark testing the performance of a multigrid solver

Productive Petascale Computing Page 129 of 139

NAS parallel benchmarks (NPB): set of programs designed by NASA’s Advanced
Supercomputing division to help evaluate performance of parallel supercomputers
<http://www.nas.nasa.gov/Resources/Software/npb.html>
Nonuniform memory access (NUMA): computer memory design where memory access time
depends on the memory’s location relative to the accessing processor
OpenMP: existing and ubiquitous HPC shared-memory parallel programming model based on
Fortran and C/C++ language, using explicit directives to specify concurrency [44]
<http://www.openmp.org/>

OpenSolaris: open source version of the Solaris Operating System [45]
<http://www.opensolaris.org>

Parallel programming: developing software that will, at execution time, be characterized by
many computational processes taking place concurrently

Partitioned global address space (PGAS): family of emerging languages for HPC
programming (Co-Array Fortran [42], Titanium [19] and UPC [61]), characterized by explicit
expression of distributed-memory parallelism as per-node private memory, combined with
globally shared memory

Petascale: adjective that loosely refers to the ability to perform a quadrillion (1015) operations
per second

Port, porting: migration of an application from one computing platform to another, often
requiring substantial modification in the HPC community

Productivity (DARPA HPCS program goals): ability to develop and deploy high-performance
supercomputer applications at acceptable time and cost [30]

Productivity (economics): value divided by cost of goods or services produced
Productivity (supercomputer): holistic metric of a computer’s usefulness, taking into account its
real value to end users and all the costs associated with acquiring, maintaining, and using it
Programming model: programming language together with its execution, memory, and
parallelism semantics as exposed to the programmer; cf. execution model
Proximity communication: Sun’s technology that uses capacitive coupling (extreme proximity
without direct physical interconnection) between pairs of neighboring chips to enable very low-
power, low-latency, high-bandwidth communication [14] [21]

Reliability, availability, serviceability (RAS)
Remote load/store: operations to load data from or store data to remote memory locations in a
large, physically distributed computer system
Safepoints: locations in a program where it is safe for the program to stop, as determined by
global data flow and control-flow analysis
Scalability interface (SIF): special-purpose ASIC in Hero that provides hardware support for a
fully shared global address space

Productive Petascale Computing Page 130 of 139

Scale: in HPC, refers to the degree of parallelism achieved by an application, expressed as the
number of processors that can be used effectively; as a verb, to modify an application to achieve
a higher degree of parallelism
Silicon photonics: technology that performs transmission, amplification, detection, modulation,
and switching of light on silicon; WDM silicon photonics switches multiple wavelengths (colors)
of light on silicon [51] [67]; see Luxtera

Single-system image: provides applications with a single view of all system services, which
usually means that there is a single OS image running across the entire (multi-node) system; cf.
single-system view
Single-system view: provides applications with a single view of all computation resources—
memory, files, and I/O, but does not support all system services; cf. single-system image
Space sharing: running multiple jobs concurrently on a large computer, each one on a physically
disjoint portion of the system; cf. time sharing
SuperZone: a software construct in Hero Solaris: stitched together from individual Unification
Zones (UZs) to provide a virtual execution environment (or container) for program execution
Switch: hardware component of a chip interconnect that routes signals from source to destination

Switching fabric: topological arrangement of a set of switches to interconnect all compute and
I/O nodes

Symmetric multiprocessing (SMP): multiprocessor computer architecture where two or more
identical processors (or microcores) connect to a single shared main memory; usually implies
cache coherence
System Exploration Model (SEM): Sun’s HPCS Phase II process for concurrent, highly
collaborative design
Time sharing: running multiple jobs on a large computer by having them take turns accessing
computational resources; cf. space sharing
Titanium: an emerging PGAS language, based on the Java programming language [19]; see
partitioned global address space
Total store ordering (TSO): guarantee that all load/store operations from a given processor (or
microcore) appear in memory in the same order they were issued by the processor
Transactional memory: a program’s ability to perform a set of instructions as a single atomic
unit [59]
Unification Zone (UZ): Hero Solaris software construct in a Hero node that interposes on
standard system calls to provide multi-node semantics for operations such as memory allocation
and mapping

UPC: an emerging PGAS language, based on the C programming language [61]; see partitioned
global address space <http://upc.gwu.edu/>

Productive Petascale Computing Page 131 of 139

Utilization: also machine utilization; a proxy metric for productivity commonly used in the HPC
community, defined as a percentage of potentially available floating point operations consumed
by an application during execution
Validation: checking that an application achieves its intended objective, for example, correctly
simulating some physical phenomenon
Verification: checking that a computer component (for example, a software program) behaves
according to its design, correctly implementing a prescribed algorithm
Wavelength division multiplexing (WDM), see silicon photonics

Workflow: description of possible tasks and their sequences in the use of a computer system

Productive Petascale Computing Page 132 of 139

19 Sun HPCS Phase II publications

19.1 Productivity
Stuart Faulk, John Gustafson, Philip M. Johnson, Adam Porter, Walter F. Tichy, Lawrence G.
Votta, “Measuring HPC Productivity,” International Journal of High Performance Computing
Applications: Special Issue on HPC Productivity, J. Kepner (editor), 18(4), Winter 2004
(November).
John Gustafson, “Purpose-Based Benchmarks,” International Journal of High Performance
Computing Applications: Special Issue on HPC Productivity, J. Kepner (editor), 18(4), Winter
2004 (November).

Douglass Post, Lawrence G. Votta, “Computational Science Requires a New Paradigm,” Physics
Today 58(1), pp. 35-41, January 2005.

Susan Squires, Walter F. Tichy, Lawrence G. Votta, “What Do Programmers of Parallel
Machines Need? A Survey,” Second Workshop on Productivity and Performance in High-End
Computing (P-PHEC), San Francisco, California, February 13, 2005.
Philip M. Johnson and Michael G. Paulding, “Understanding HPC Development through
Automated Process and Product Measurement with Hackystat,” Second Workshop on
Productivity and Performance in High-End Computing (P-PHEC), San Francisco, California,
February 13, 2005.
Eugene Loh, Michael L. Van De Vanter, and Lawrence G. Votta, “Can Software Engineering
Solve the HPCS Problem?” Proceedings Second International Workshop on Software
Engineering for High Performance Computing System Applications, St. Louis, Missouri, May
15, 2005.
Michael L. Van De Vanter, Douglass Post, Mary Zosel, “HPC Needs a Tool Strategy,”
Proceedings Second International Workshop on Software Engineering for High Performance
Computing System Applications, St. Louis, Missouri, May 15, 2005.

Richard Kendall, Jeff Carver, Andrew Mark, Douglass Post, Susan Squires, Dolores Shaffer,
Case Study of the Hawk Code Project, Los Alamos National Laboratory, Report LA-UR-05-
9011, 2005.
Richard Kendall, Douglass Post, Susan Squires, Christine Halverson, Case Study of the Condor
Code Project, Los Alamos National Laboratory Report LA-UR-05-9291, 2005.
Susan Squires, Michael L. Van De Vanter, and Lawrence G. Votta, “Yes, There Is an ‘Expertise
Gap’ in HPC Application Development,” Third Workshop on Productivity and Performance in
High-End Computing (P-PHEC), Austin, Texas, February 12, 2006.

Russell Brown, Ilya Sharapov, “Parallelization of a Molecular Modeling Application:
Programmability Comparison Between OpenMP and MPI,” Third Workshop on Productivity and
Performance in High-End Computing (P-PHEC), Austin, Texas, February 12, 2006.

Richard Kendall, Douglass Post, Susan Squires, and Jeff Carver, Case Study of the Eagle Code
Project, Los Alamos National Laboratory, Report LA-UR-06-1092, 2006.

Productive Petascale Computing Page 133 of 139

Susan Squires, Michael L. Van De Vanter, and Lawrence G. Votta, “Software Productivity
Research In High Performance Computing," CTWatch Quarterly, 2(4A), November 2006 A.
<http://www.ctwatch.org/quarterly/articles/2006/11/software-productivity-research-in-high-
performance-computing/>

Declan Murphy, Thomas Nash, Lawrence Votta, Jr., and Jeremy Kepner, “A System-wide
Productivity Figure of Merit,” CTWatch Quarterly, 2(4B), November 2006 B.
<http://www.ctwatch.org/quarterly/articles/2006/11/a-system-wide-productivity-figure-of-
merit/>

Jeffrey C. Carver, Richard P. Kendall, Susan Squires, Douglass E. Post, “Software Development
Environments for Scientific and Engineering Software: A Series of Case Studies,” Proceedings
of the 29th International Conference on Software Engineering, IEEE Computer Society,
Washington, DC, pp. 440-559, May 20–26, 2007.

Richard Kendall, Jeffrey C. Carver, David Fisher, Dale Henderson, Andrew Mark, Douglass
Post, Clifford E. Rhoades Jr., Susan Squires, "Development of a Weather Forecasting Code: A
Case Study," IEEE Software 25(4), July–August 2008, pp. 59-65.

19.2 Hardware

19.2.1 Proximity communication
Robert Drost, Craig Forrest, Bruce Guenin, Ron Ho, Ashok V. Krishnamoorthy, Danny Cohen,
John E. Cunningham, Bernard Tourancheau, Arthur Zingher, Alex Chow, Gary Lauterbach, and
Ivan Sutherland. “Challenges in Building a Flat-Bandwidth Memory Hierarchy for a Large-Scale
Computer with Proximity Communication,” Proceedings of the 13th Symposium on High
Performance interconnects, pp. 13-22, August 17–19, 2005, HOTI, IEEE Computer Society,
Washington, DC.
Robert Drost, R. D. Hopkins, Ron Ho, Ivan Sutherland, "Proximity communication," IEEE
Journal of Solid-State Circuits, 39(9), pp. 1529-1535, September 2004.
Robert Drost, Ron Ho, R. D. Hopkins, Ivan Sutherland, "Electronic alignment for proximity
communication," Digest of Technical Papers. ISSCC. 2004 IEEE International Solid-State
Circuits Conference, pp. 144-518 Vol.1, pp. 15-19, February 2004.
Robert Drost, R. D. Hopkins, Ivan Sutherland, “Proximity Communications,” IEEE Custom
Integrated Circuits Conference, pp. 469-472, September 2003.
Ron Ho, Jonathan Gainsley, Robert Drost, “Long Wires and Asynchronous Control,”
Proceedings 10th International Symposium on Asynchronous Circuits and Systems, pp. 240-249,
April 19––23, 2004.
Jon Lexau, Xuezhe Zheng, Jonathan Bergey, Ashok V. Krishnamoorthy, Ron Ho, Robert Drost,
John E. Cunningham, “CMOS Integration of Capacitive, Optical, and Electrical Interconnects,"
Proceedings International Interconnect Technology Conference (IITC), pp. 78-80, June 4–6,
2007.
Ron Ho, Tarik Ono, Frankie Liu, R. D. Hopkins, Alex Chow, Justin Schauer, Robert Drost,
"High-Speed and Low-Energy Capacitively-Driven On-Chip Wires," IEEE International Solid-
State Circuits Conference, 2007. ISSCC 2007. Digest of Technical Papers, pp. 412-612,
February 11–15, 2007.

Productive Petascale Computing Page 134 of 139

Ron Ho, Tarik Ono, Frankie Liu, R. D. Hopkins, Alex Chow, Justin Schauer, Robert Drost,
"High-Speed and Low-Energy Capacitively-Driven Wires," IEEE Journal of Solid State Circuits,
43(1), pp. 52-60, January 2008.
R. D. Hopkins, Alex Chow, Robert Bosnyak, Bill Coates, Jo Ebergen, Scott Fairbanks, Jonathan
Gainsley, Ron Ho, Jon Lexau, Frankie Liu, Tarik Ono, Justin Schauer, Ivan Sutherland, Robert
Drost, "Circuit Techniques To Enable 430 Gb/s/mm^2 Proximity Communication," Digest of
Technical Papers, IEEE International Solid-State Circuits Conference (ISSCC), pp. 368-9,
February 2007.
Jo Ebergen, Alex Chow, Bill Coates, Justin Schauer, R. D. Hopkins, "An asynchronous high-
throughput control circuit for proximity communication," 12th IEEE International Symposium
on Asynchronous Circuits and Systems, 2006. pp. 9-33, March 13–15, 2006.
Alex Chow, R. D. Hopkins, Ron Ho, Robert Drost, "Measuring 6D Chip Alignment in Multi-
Chip Packages," 2007 IEEE Sensors, pp.1307-1310, October 28–31, 2007.

19.2.2 Optical interconnect
John E. Cunningham, Daniel Beckman, Xuezhe Zheng and Ashok V. Krishnamoorthy, “Scaling
VCSEL performance for 100Terabits/s Systems,” (invited paper) Proceedings of the SPIE,
Volume 6124, pp. 204-214, 2006.
John E. Cunningham, David K. McElfresh, Leon D. Lopez, Dan Vacar, and Ashok V.
Krishnamoorthy, "Scaling Vertical-Cavity Surface-Emitting Laser Reliability for Petascale
Systems," Applied Optics 45(25), pp. 6342-48, September 2006.
John E. Cunningham, Ashok V. Krishnamoorthy and Maxim Abashin, Kazuhiro Ikeda, Chia-Ho
Tsaiand, Yeshaiahu Fainman, Uriel Levy, “Design, fabrication and characterization of
subwavelength based slab lens in Silicon,” Optical Society of America Topical Meeting on
Nanophotonics, Connecticut, April 2006.
John E. Cunningham and Ashok V. Krishnamoorthy, “Silicon photonics for High For
Productivity Computing Systems,” Tech Report, October 16, 2005.
Ashok V. Krishnamoorthy and John E. Cunningham, “Optical interconnects for high-
productivity computing systems,” Tech Report, October 14, 2005 and presentation at OSA
(invited talk) Frontiers in Optics Annual Meeting, Tucson, Arizona, October 2005.

Jon Lexau, Ron Ho, Robert Drost, Ashok V. Krishnamoorthy, John E. Cunningham, Jonathan
Bergey, and Barmak Mansoorian, “LoPI (the Chip),” Sun Tech Report, August 26, 2006.

John E. Cunningham, D. Beckman, Xuezhe Zheng, Dawei Huang, Theresa Sze, Ashok V.
Krishnamoorthy, “PAM-4 Signaling over VCSELs with 0.13µm CMOS,” Optics Express 14(25),
pp. 12028-38, December 2006.
John E. Cunningham, D. Beckman, David K. McElfresh, Craig Forrest*, Danny Cohen*, and
Ashok V. Krishnamoorthy, “Scaling VCSEL Reliability Up to 250Terabits/s of System
Bandwidth,” in Adaptive Optics: Analysis and Methods/Computational Optical Sensing and
Imaging/Information Photonics/Signal Recovery and Synthesis Topical Meetings on CD-ROM,
Technical Digest, Optical Society of America, 2005.

Productive Petascale Computing Page 135 of 139

Uriel Levy, Yeshayahu Fainman, Ashok V. Krishnamoorthy and John E. Cunningham, “Novel
Slab Lens Based on Artificial Graded Index Medium,” in Adaptive Optics: Analysis and
Methods/Computational Optical Sensing and Imaging/Information Photonics/Signal Recovery
and Synthesis Topical Meetings on CD-ROM, Technical Digest, Optical Society of America,
2005.
Ashok V. Krishnamoorthy, D. Huang, Theresa Sze, Robert Drost, Ron Ho, H. Davidson, and
Rick Lytel, “Challenges and potentials for multiterabit-per-second optical transceivers,”
Biophotonics/Optical Interconnects and VLSI Photonics/WBM Microcavities, 2004 Digest of the
LEOS Summer Topical Meetings, pp. 28-30, June 2004.
D. Huang, Theresa Sze, Ashok V. Krishnamoorthy, D. Beckman, S. Fazelpour, H. Davidson, J.
Cooley, and Rick Lytel, "The chip-multithreading architecture and parallel optical
interconnects," Biophotonics/Optical Interconnects and VLSI Photonics/WBM Microcavities,
2004 Digest of the LEOS Summer Topical Meetings, pp. 28-30, June 2004.
Ashok V. Krishnamoorthy and Rick Lytel, “Interconnects for Large Scale Computing Systems,”
(invited talk) IEEE IHSDS Workshop, Santa Fe, New Mexico, May 2004.
Xuezhe Zheng, Jon Lexau, Jonathan Bergey, John E. Cunningham, Ron Ho, Robert Drost,
Ashok V. Krishnamoorthy, “Optical Transceiver Chips based on Co-Integration of Capacitively
Coupled Proximity Interconnects and VCSELs,” IEEE Photonics Technology Letters, 19(7), pp.
453-455, April 2007.
Uriel Levy, Maxim Abashin, Kazuhiro Ikeda, Ashok V. Krishnamoorthy, John E. Cunningham,
and Yeshaiahu Fainman, “Inhomogenous Dielectric Metamaterials with Space-Variant
Polarizability,” Physical Review Letters. 98(15), June 2007.

19.2.3 Packaging
Xuezhe Zheng, Jon Lexau, David Rolston, John E. Cunningham, Ivan Shubin, Ron Ho, Ashok
V. Krishnamoorthy, “BGA Package Integration of Electrical, Optical, and Capacitive
Interconnects”, Electronic Components and Technology Conference (ECTC), San Diego,
California, pp. 26-29, May 2009.
T. Sze, M. Giere, B. Guenin, N. Nettleton, D. Popovic, J. Shi, S. Bezuk, R. Ho, R. Drost, and D.
Douglas, “Proximity Communication Flip-Chip Package with Micron Chip-to-chip Alignment
Tolerances”, Electronic Components and Technology Conference (ECTC), San Diego,
California, pp. 26-29, May 2009.

19.3 Software

19.3.1 Runtime executive
Christopher A. Vick, Michael Paleczny, “The Application of Virtual Machine Technology to
Peta-Scale Systems,” (position paper) Language Runtimes 2004 Workshop.
L. Wang, Karthik Pattabiraman, Z. Kalbarczyk, Ravishankar K. Iyer, Lawrence G. Votta,
Christopher A. Vick, Alan Wood, “Modeling coordinated checkpointing for large-scale
supercomputers,” Proceedings International Conference on Dependable Systems and Networks,
2005. DSN 2005, pp. 812-821, June 28-July 1, 2005.

Productive Petascale Computing Page 136 of 139

Alan Wood, Swami Nathan, Tim Tsai, Christopher A. Vick, Lawrence G. Votta, and Anoop
Vetteth, “Multi-Tier Checkpointing for Peta-Scale Systems,” in Supplemental Proceedings of the
International Conference on Dependable Systems and Networks (DSN-2005), pp. 112-121, June
28-July 1, 2005, Yokohama, Japan.

19.3.2 Programming languages (Fortress)
Eric Allen, David Chase, Joe Hallett, Victor Luchangco, Jan-Willem Maessen, Sukyoung Ryu,
Guy L. Steele Jr., Sam Tobin-Hochstadt, The Fortress Language Specification Version 1.0, Sun
Microsystems, 2008. <http://research.sun.com/projects/plrg/fortress.pdf>
Joseph J. Hallett, Semantics and Type Soundness Proof of a Core Fragment of Fortress with
Hidden Type Variables, Sun Microsystems, March 2007.
<http://research.sun.com/projects/plrg/Publications/core-fortress.pdf>
Joseph J. Hallett, Sukyoung Ryu, Formal Semantics for MCJ, Sun Microsystems, June 2004.
<http://research.sun.com/projects/plrg/Publications/mcj-semantics.pdf>
Sam Tobin-Hochstadt, Eric Allen, "A Core Calculus of Metaclasses," Twelfth International
Workshop on Foundations of Object-Oriented Languages, Long Beach, California, 2005.
Eric Allen, Victor Luchangco, and Sam Tobin-Hochstadt, Encapsulated Upgradable
Components, Sun Microsystems, April 2005.
<http://research.sun.com/projects/plrg/Publications/components.pdf>
Eric Allen, David Chase, Victor Luchangco, Jan-Willem Maessen, and Guy L. Steele Jr.,
"Object-Oriented Units of Measurement," 19th Annual ACM Conference on Object-Oriented
Programming, Systems, Languages, and Applications, SIGPLAN Notices 39(10), pp. 384-403,
October 2004.
Arvind and Jan-Willem Maessen, "Memory Model = Instruction Reordering + Store Atomicity,"
Proceedings of the 33rd Annual international Symposium on Computer Architecture, pp. 29-40,
IEEE Computer Society, Washington, DC, June 17–21, 2006. .
Yossi Lev and Jan-Willem Maessen, "Towards a Safer Interaction with Transactional Memory
by Tracking Object Locality," Workshop on Synchronization and Concurrency in Object-
Oriented Languages (SCOOL), San Diego, California, October 2004.
<http://urresearch.rochester.edu/retrieve/4804/lev.pdf>
Jan-Willem Maessen, and Arvind, "Store Atomicity for Transactional Memory," Multithreading
in Hardware and Software: Formal Approaches, Design and Verification (TV06), Seattle,
Washington. <http://www.cs.utah.edu/tv06/tv06proceedings.pdf>
Jan-Willem Maessen, and Arvind, "Store Atomicity for Transactional Memory," Electron. Notes
Theor. Comput. Sci., 174(9), pp. 117-137, 2007.

19.3.3 Administration
David Vengerov, “A Reinforcement Learning Framework for Utility-Based Scheduling in
Resource-Constrained Systems,” in Future Generation Computer Systems [to appear 2008].
Revised and extended version of the Sun Labs technical report TR-2005-141.
David Vengerov, “A Gradient-Based Reinforcement Learning Approach to Dynamic Pricing in
Partially-Observable Environments,” Future Generation Computer Systems, 24(7), pp. 687-693,
July 2008.

Productive Petascale Computing Page 137 of 139

David Vengerov, “A Reinforcement Learning Framework for Online Data Migration in
Hierarchical Storage Systems,” Journal of Supercomputing, 43(1), pp. 1-19, January 2008.
David Vengerov, “A Reinforcement Learning Approach to Dynamic Resource Allocation,”
Engineering Applications of Artificial Intelligence. 20(3), pp. 383-390, April 2007.
David Vengerov, Lykomidis Mastroleon, Declan Murphy and Nick Bambos, Adaptive Data-
Aware Utility-Based Scheduling in Resource-Constrained Systems, Sun Labs Technical Report
Number: TR-2007-164, April 23, 2007.

19.3.4 File system
Andrew Hastings and Alok Choudhary, “Exploiting Shared Memory to Improve Parallel I/O
Performance,” in Proceedings of the 13th European PVM/MPI Users Group Meeting, Springer-
Verlag, September 2006.

19.3.5 Visualization
http://www.tacc.utexas.edu/research/users/features/remotevis.php
Feature article about Maverick use for scientific research.
http://virtualgl.sourceforge.net/
VirtualGL open source site, offering documentation and downloads for VirtualGL and
TurboVNC software.

http://chromium.sourceforge.net/
Chromium open source site, offering documentation and downloads.

19.3.6 Interval arithmetic
Eldon Hansen and G. William Walster, Global Optimization Using Interval Analysis, New York:
Marcel Dekker, Inc., 2004.
Gregory R. Ruetsch, “An interval algorithm for multi-objective optimization.” Structural and
Multidisciplinary Optimization 30(1), pp. 27–37, 2005.
G. William Walster, Eldon Hansen, “Using pillow functions to efficiently compute crude range
tests,” Numerical Algorithms 37(1-4), pp. 401-415, December 2004.
Eldon Hansen and G. William Walster, “Solving Overdetermined Systems of Interval Linear
Equations,” Reliable Computing 12(3), pp. 239-243, June 2006. Also electronically published
April 26, 2006. http://dx.doi.org/10.1007/s11155-006-7221-8

19.4 Performance analysis
Ilya Sharapov, Robert Kroeger, Guy Delamarter, Matthew Ramsay, Razvan Cherevesan. “A
Case Study in Top-Down Performance Estimation for a Large-Scale Parallel Application,” In
Proceedings of the Eleventh ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pp. 81-89, New York, New York, March 29–31, 2006. PPoPP ’06, ACM.
Russell A. Brown, David A. Case, “Second derivatives in generalized Born theory,” Journal of
Computational Chemistry 27(14), pp. 1662-1675, 2006.

Productive Petascale Computing Page 138 of 139

Russell A. Brown, Ilya Sharapov, “High Scalability Parallelization of a Molecular Modeling
Application: Performance and Productivity Comparison Between OpenMP and MPI
Implementations,” International Journal of Parallel Programming 35(5), pp. 441-458, October
2007.
Lodewijk Bonebakker, Andrew Over, Ilya Sharapov, “Working Set Characterization of
Applications with an Efficient LRU Algorithm,” in Formal Methods and Stochastic Models for
Performance Evaluation, Springer Lecture Notes in Computer Science 4054, pp. 78-92, 2006.
Pramod Rustagi, Ilya Sharapov, “Projecting Performance of LS-DYNA Implicit for Large
Multiprocessor Systems,” LS-DYNA International Users Conference, 2006.
Razvan Cheveresan, Matthew Ramsay, Chris Feucht, Ilya Sharapov, “Characteristics of
Workloads Used in High Performance and Technical,” 21st ACM International Conference on
Supercomputing (ICS ’07), Seattle, Washington, June 2007.
Russell A. Brown, Ilya Sharapov, “Performance and Programmability Comparison Between
OpenMP and MPI Implementations of a Molecular Modeling Application,” in OpenMP Shared
Memory Parallel Programming, Springer Lecture Notes in Computer Science 4315, pp 349-360,
2008.

19.5 RAS architecture
Kenny C. Gross and Wendy Lu, “Early Detection of Signal and Process Anomalies in Enterprise
Computing Systems,” Proc. of the IEEE International Conference on Machine Learning and
Applications (ICMLA), pp. 204-210, June 2002.
Timothy K. Tsai, Kalyan Vaidyanathan, Kenny C. Gross, “Low-Overhead Run-Time Memory
Leak Detection and Recovery.” Proceedings of the 12th Pacific Rim international Symposium on
Dependable Computing, pp. 329-340, PRDC, IEEE Computer Society, Washington DC,
December 18–20, 2006.
Long Wang, Karthik Pattabiraman, Zbigniew Kalbarczyk, Ravishankar K. Iyer, Christopher A.
Vick, Lawrence G. Votta, Alan Wood, “Modeling coordinated checkpointing for large-scale
supercomputers,” Proceedings International Conference on Dependable Systems and Networks,
2005. DSN 2005, pp. 812-821, June 28–July 1, 2005.
Alan Wood, Swami Nathan, Timothy K. Tsai, Christopher A. Vick, Lawrence G. Votta, Anoop
Vetteth, “Multi-Tier Checkpointing for Peta-Scale Systems,” International Conference on
Dependable Systems and Networking DSN2005, Tokyo, Japan, June 28–July 1, 2005.
Zbigniew Kalbarczyk, Ravishankar K. Iyer, and Long Wang, “Application fault tolerance with
Armor middleware,” Internet Computing, IEEE 9(2), pp. 28-37, March–April 2005.
Alan Wood, Swami Nathan, “RAS by the Yard,” 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, DSN '07, pp. 606-611, June 25–28, 2007.
Qinghuai Gao, “Parallel Rendering Pipeline: Design, High Level Algorithms and Analysis,”
in Milestone 5 supplementary materials.

Productive Petascale Computing Page 139 of 139

20 About the authors
Michael L. Van De Vanter was a member of Suns’s HPCS productivity team, specializing in
software development technologies and practices. His work at Sun Microsystems Laboratories
focuses on highly productive developer tools: previously as Principal Investigator of the Jackpot
Project, developing technologies that transferred into the NetBeansTM IDE, and currently
developing tools specialized for the development of a next generation Virtual Machine.

Alan Wood was Sun’s HPCS RAS lead and fault tolerance architect. He is currently a
Distinguished Engineer at Sun Microsystems Laboratories, doing research on switch
architectures using proximity communications. His other research interests include energy-
efficient reliability and energy utilization modeling. Previously, he created hardware and
software reliability and availability models in several industries.
Christopher Vick was Sun’s HPCS software architect and developed the Hero execution model.
He is currently a Distinguished Engineer at Sun Microsystems Laboratories, investigating
implementation of legacy ISAs such as SPARC and x64 by dynamic translation to a new,
simpler ISA. His past work at Sun includes development of the HotSpot Java Virtual Machine
and leading research in virtualization technologies.

Stuart Faulk was a consultant for Sun’s HPCS productivity team. He is an Associate Research
Professor in Computer and Information Science at the University of Oregon. His research
interests include software productivity, software architecture, software product-lines, and
assistive technology for the cognitively disabled.
Susan Squires was the anthropologist on Sun’s HCPS productivity team tasked with tracking
the workflow of HPC computational scientists, learning how HPC teams organizes the work, and
investigating how organizational environments do or do not support the scientists and their team.
She is now the senior social scientist at the Technology Research for Independent Living Centre,
Trinity College Dublin.

Lawrence G. Votta, Jr. was the principal investigator, productivity lead, for Sun's HPCS
program and a coauthor of Sun’s HPCS phase II and phase III proposals. He is now working
(through his consulting company, Brincos Inc.) on leveraging high performance computational
engineering to manage the maintenance and evolution of complex systems. The Computational
Research and Engineering Acquisition Tools and Environments program is in the third year of its
ten year mission in the Modernization Office of the US Department of Defense.

Produ
ctive Petascale Com

pu
tin

g: Requ
irem

en
ts, H

ardw
are, an

d Softw
are

Van

 D
e Van

ter, W
ood, Vick, Fau

lk, Squ
ires, Votta

SM

LI TR-2009-183

Sun Microsystems Laboratories
16 Network Circle
Menlo Park, CA 94025

	Cover: Productive Petascale Computing: Requirements, Hardware, and Software
	Abstract: TR-2009-183
	Copyright Information
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	2 Characterizing productivity in High-Performance Computing (HPC)
	3 Productivity bottlenecks in HPC
	4 Strategic development goals for Hero
	5 Productivity requirements for Hero
	6 From requirements to design
	7 Design overview
	8 Compute node: massive chip multithreading (CMT)
	9 Interconnect: proximity communication and silicon photonics
	10 Execution model
	11 System software
	12 Development support: languages, tools, skills
	13 The interplay of design decisions
	14 Conclusions
	15 Acknowledgements
	16 References
	17 NAS BT code modification experiment
	18 Glossary
	19 Sun HPCS Phase II publications
	20 About the authors: Michael L. Van De Vanter, Alan Wood, Christopher Vick, Stuart Faulk, Susan Squires, and Lawrence G. Votta, Jr.
	Back Cover

