
s,

-
r
le,
r-
ly
ge
-
rk,
ts,
re
of

t-

-
it-
re
,

g
ise
nal
ed

a-
ol

fill
t

he
t
al
n

m),
y
at

Replacing Copies with Connections: Managing Software
across the Virtual Organization

IEEE 8th International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises
Stanford University, California, USA, 16-18 June 1999

Tobias Murer

TIK (Computer Engineering and Networks Laboratory)
ETH Zürich, 8092 Zürich, Switzerland

murer@acm.org

Michael L. Van De Vanter

Sun Microsystems Laboratories
901 San Antonio Road, UMTV29-112

Palo Alto, CA 94303 USA
Michael.VanDeVanter@Eng.Sun.COM
Abstract
The Internet, the World Wide Web, JavaTM technology, and
software components are changing the software business.
Activities traditionally constrained by the need for intense
information management increasingly involve cooperating
organizations. Information management tools and tech-
niques do not scale well in the face of this organizational
complexity. Informal sharing, based largely on manual
copying of information, cannot meet the demands of the
task as size and complexity increase. Formal approaches to
sharing information are based on groupware tools, but
cooperating organizations do not always enjoy the trust or
commonality of sophisticated infrastructure, methods, and
skills that this approach requires. The application web is a
simple, loosely coupled, highly flexible strategy for infor-
mation sharing that bridges the gap. Extensive information
relevant to different parts of the software life cycle is inter-
connected in a simple, easily described way; such connec-
tions permit selective information sharing by a variety of
tools and in a variety of collaboration modes that vary in
the amount of organizational coupling they require.

1. Introduction

The software business is changing, much as many other
businesses have changed. The product life cycle increas-
ingly takes place within so-called virtual organizations that
require close cooperation across a variety of organizational
boundaries[3]. In the software business this trend is sup-
ported and accelerated by emerging technologies: the
World Wide Web, software components, and JavaTM tech-
nology [5].

Essential to the working of virtual organizations is the
management and sharing of information, a task for which
the increasingly connected world of the Internet is well
suited. How new technologies are actually used by organi-
zations, however, is a different matter. Current approaches
fall into two general categories: informal techniques based
on manual copyingof information across organizational
boundaries, and formal arrangements based on shared tools

that can be broadly calledgroupware. Neither approach is
well adapted to the world of virtual software organization
and neither address the whole software life cycle.

Manual copying, for example manually installing soft
ware from the Internet, from CD-ROMs, or via othe
media, fails as systems scale in complexity. It is unreliab
and it disconnects software from information that is impo
tant throughout the software life cycle. In contrast, high
evolved groupware tools have been developed to mana
complex information reliably. Software configuration man
agement systems permit concurrent non-interfering wo
support specification of complex aggregations of par
enforce process rules, and keep project history. Softwa
managed by such systems resides in a complex web
information, without which it would be of little use to the
organization. Although often difficult to use, no large sof
ware project can succeed without such tools.

Groupware tools are clearly important for virtual soft
ware organizations; efforts to date have focused on explo
ing the new infrastructure to support distributed groupwa
tools [4]. This follows a common pattern where a new
emerging technology is initially used to extend existin
mechanisms in a process that remains otherw
unchanged. But the new technologies and organizatio
patterns change the way people work. Groupware design
for tightly coupled organizations fails to address organiz
tional and cultural issues such as autonomy, divergent to
preferences, and variations in methods and skills.

This suggests that a complementary strategy might
the gap between the informality of copying and the tigh
coupling of groupware tools. Such a strategy, called t
application web, is being investigated jointly by the Fores
project at Sun Microsystems Laboratories and the Virtu
Software House project at ETH Zürich. The applicatio
web is characterized bysimplicity (all information is
accessed web-style, using a simple global naming syste
autonomy(applications consist of parts developed by man
organizations, but information is retained and managed
is origin), and connectivity (relevant information about
software is accessible throughout its life cycle).
© 1999 Sun Microsystems, Inc., © 1999 IEEE



er

-
ss
ion

on-
is
er
y.

al
es
lls
ni-

te
ct

nt,
on
a-
er
rd.

ve
ion

a
of

s a
ic
e
o
).

na-

ing
its
n-

es
on-
ni-

h
ach
oci-
c-
This paper discusses the application web strategy,
beginning with an assessment of the current situation and
the forces at work. This is followed by observation of how
these same forces conspire to limit the growth of virtual
organizations and the quality of the products they can pro-
duce. The concept of the application web is then discussed
in general terms, followed by suggestive scenarios based
on current work with the JP and VSH prototypes.

2. Forces changing the software business

The motivation for the proposed strategy arises from
forces, both technological and organizational, that are
reshaping the software business.

2.1. Technology: the connected world

Most compelling is the connectivity that accompanies
widespread adoption of Internet technology, in particular
the technical infrastructure provided by the World Wide
Web: global naming system, simple protocols, and means
to exchange and present information. The web permits cre-
ation of new technologies, gives leverage to others, and has
emerged as the universal infrastructure for the kind of glo-
bal cooperation required by virtual organizations.

A phenomenon of the Internet has been the widespread
adoption of Java technology, a software platform whose
dynamic behavior permits new kinds of flexibility and
cooperation. The language is based on classes that can be
composed into applications based on interfaces (APIs);
interfaces, combined with platform neutrality and HTML-
based documentation extracted from source code, encour-
age code sharing. The common conduit for such sharing is
downloading collections of classes over the Internet, for
example Java libraries, plug-ins, tools, and applets.

The runtime behavior of a Java application is dynamic
and flexible. Classes are loaded lazily by the Java virtual
machine at runtime from a variety of sources: file systems
and networks. Each user of a Java application effectively
defines a system composition by specifying a class search
path: an ordered list of file system paths and URLs that are
to be searched by name for required classes. This allows
users to compose systems from classes that may not have
been compiled and built together, as long as interface
requirements and binary compatibility rules among them
are fulfilled. Users can extend and modify the behavior of
applications by managing the runtime class path.

Java technology is predated by the component-based
approach to system construction [12], but the two now
enjoy considerable synergy. Emerging component models
such as plug-ins, JavaBeansTM, and Enterprise JavaBeansTM

add more features to be used for system composition.
Reflection facilities in Java permit components to negotiate

dynamically whether their interfaces match and wheth
required services are supported.

2.2. Rise of the virtual organization

A virtual organization is a dynamic network of organi
zations that cooperate for mutual benefit [3], a busine
model that presents new challenges. Geographic dispers
may increase, but even more important is the added aut
omy represented by organizational boundaries. In th
respect, one also sees virtual organizations within larg
organizations whose parts often exercise similar autonom
Significantly for the software business, organization
autonomy is typically reflected by heightened differenc
of infrastructure, methods, tool preferences, and ski
when compared with single software development orga
zations.

Members of virtual software organizations coopera
more or less tightly at all phases of the software produ
life cycle: construction, deployment, runtime manageme
as well as services such as consulting. An applicati
might consist of software developed by several organiz
tions. It might be deployed and managed by two oth
organizations and supported by consultants from a thi
For the purpose of discussion we define aconfigurationfor
Java to be a collection of Java software that can mo
across organizational boundaries to support collaborat
within a virtual software organization. A configuration
might be a class library, a plug-in for some framework,
JavaBean, or a stand-alone application: any collection
software intended to be used, via a known interface, a
unit.1 Although such units of code may be used in dynam
settings, for example plug-ins, it is understood that th
units have static properties of interest (for example, wh
wrote them, and what level of quality assurance is given
The central issue at organizational boundaries is coordi
tion and sharing of informationabout these properties,
without which configurations would be useless.

3. Limits faced by the new model

The very factors that engender synergy among emerg
forces described in the previous section also create lim
on the scale to which the new model can grow. The dime

1. The term “configuration” carries a great many meanings. Using it to
mean “unit of software sharing” is somewhat non-standard, but it captur
the intended notion that it is more than just a collection of classes. A c
figuration is assumed to have been constructed carefully by some orga
zation for some purpose; it is very likely one of a family of versions, eac
representing successive refinement; it may be one of many variants, e
representing special needs from its consumers; it presumably has ass
ated documentation describing its use as well as interoperability restri
tions; and it has presumably been subjected to quality control.



ls
d
nd
s.
n
ra-

ent
.
l-
no

d
re
ra-
to
uilt
en

lf-
ing

uire
ch
ow

nt
e
ed

y
ual
n-

n
in
it
to
te.
d
f

kes
as
ra-
at
es,

en

re
n

sion of scale described here is not part of familiar prob-
lems: the size of a system’s parts or the complexity of its
assembly. This scale is characteristic of the virtual organi-
zation, where increased organizational complexity adds
new problems to the old ones.

This section describes how current technologies fail in
the presence of this challenge. Three inherent weaknesses
in Java technology (described below) demonstrate how the
whole software life cycle is affected: software construction
(interface specification), deployment (configuration man-
agement), and management (runtime support). The com-
mon theme underlying these issues is that information
about software must cross organizational boundaries, but
that current approaches to sharing information actuallydis-
connect software from essential information.

3.1. Java interface specification

Using classes created by others requires information
about how they work. At one extreme (and the most
heavily used) are simple syntactic descriptions of the sort
represented by interfaces written in Java and their embed-
ded comments. But syntax is too weak (and comments sel-
dom adequate) to assure interoperation. If the syntax for
interfaces and comments were adequate then the avalanche
of books describing Java platform classes would not be
needed. At the opposite extreme, complete semantic
descriptions of class behavior are widely understood to be
infeasible in general, let alone scalable.

Intermediate mechanisms to address this problem have
been proposed [15] but not widely used. A more organiza-
tional approach, suitable for this context, suggests that the
key is to complement syntactic information with informa-
tion normally available only in the originating organization
[10]. Such “originator level” information specifies exactly
and completely the context in which particular versions of
a configuration have been constructed and are intended to
be used, information essential throughout the life cycle. For
all but the most widely used software, however, such infor-
mation has been traditionally communicated informally,
through informal documents, personal communication, and
folklore. Unfortunately, this is precisely the kind of infor-
mation from which software becomes disconnected when it
crosses organizational boundaries.

3.2. Defining configurations

Connecting pieces of software together is only part of
the job of constructing software systems; they must be
built, run, and tested together. When delivered quality is
important, deployment takes place in aggregations (which
we call configurations) accompanied by assurances from
the originating organization. Unfortunately, Java technol-

ogy offers no concrete notion of configuration and no too
for doing this reliably. Configurations are typically bundle
as collections of classes in file system hierarchies, a
deployed in containers (JAR files) that mimic file system
Installation involves copying files into local storage. Whe
a Java application requires more than one such configu
tion, the user is responsible for ensuring correct placem
in local storage, and for constructing a correct class path

The deployment model for Java software effectively de
egates system composition to end users, who have
“originator level” information about configurations beyon
what is present in a weak (and mutable) file system. The
is no assurance, essential in many contexts, that configu
tions being used actually correspond to what is desired,
what was purchased, to what is assumed to have been b
and tested. Furthermore it obscures responsibility wh
software does not perform as expected.

A simple hedge is to deploy Java applications as se
contained bundles, but this does not address the emerg
component models such as beans and plug-ins that req
such end-user configuration. Furthermore, this approa
does not scale as applications and the Java platform gr
in size. Some kind of sharing is essential.

Scalable solutions rely on configuration manageme
tools, whose services help with the construction of larg
software systems. However these tools are mainly design
for inter-organization coordination; such tools typicall
export the same kinds of class collections as in the man
scenario. Once again, the delivered configuration is disco
nected from essential information.

3.3. Managing applications

The information deficit worsens when a Java applicatio
is launched. Other than specification of the name for a ma
class, Java technology offers no runtime notion of what
means to be an application, nor does it offer any way
start them, stop them, and investigate their runtime sta
The runtime configuration of an application is create
dynamically by the automatic, on-demand loading o
classes via searching through multiple sources. This ma
it nearly impossible to answer such questions such
which versions of the classes are loaded, which configu
tions they were loaded from, where are documents th
apply to them, does the application need any more class
and if so where can they be found, and so on.

The runtime state of an application has essentially be
disconnected from its origin, making it very difficult to
analyze behavior and diagnose problems without mo
contextual information than is typically available whe
organizational boundaries have been crossed.



-
h as
ft-

th
-
-

de
rd
re
oy-
f
ic
ar-
to

e
oft-
r-
ed

n-
f

ge-
er
le
r-
n
h-
to
-

ts.
all
e
b

s.
er-
my
s.
st

er-
me
to
ent,

m-
3.4. Context lost at organizational boundaries

Virtual organizations collaborate because it is to their
advantage. Unfortunately organizational boundaries tend to
impede the flow of information important to that collabora-
tion, as shown by three examples in the context of Java
software development. As with all problems of complexity,
this can be managed in the small, but it effectively limits
how large virtual organizations can become and how reli-
able their products can be.

Tools such as configuration management systems are
seldom practical in virtual organizations. First, the design
of such tools usually presume trusted participants, which is
not the case in a context where cooperating organizations
guard intellectual property and share information only as
needed. Second, autonomous organizations differ in
aspects such as culture, processes, methods, competencies,
and skills; the same tools will not be effective or acceptable
for all of them. Finally, such tools have buy-in overhead
that is not always appropriate to the dynamic nature of vir-
tual organizations.

Information flow across organizational boundaries con-
tinues to be dominated by informal, manual copying, with
the two serious drawbacks already mentioned. First, it is an
unreliable way to cache information produced elsewhere.
Second, it typically lacks the rich information available in
the original context where software is constructed. Conse-
quently software interoperation is be based on published
interfaces alone; there is precious little information about
configurations beyond simple aggregation; and issues aris-
ing at runtime cannot be resolved by tracing backward reli-
ably from running software to additional information.

4. The application web

A strategy for addressing these issues is being explored
jointly by the Forest Project at Sun Microsystems Labora-
tories and the Virtual Software House (VSH) project at
ETH Zürich. This section introduces this strategy.

4.1. The JP, GIPSY, and VSH projects

The Forest project’s JP software development environ-
ment addresses problems of scale in Java software develop-
ment with fundamentally reliable and scalable Java
software construction technologies [6]. These include an
object repository, a configuration management system for
all human-created information, a reliable builder based on
functional programming, and tools written in the Java pro-
gramming language that run in the repository. JP keeps a
complete history of human work performed (each build is
based on a closed-world, immutable prescription that can
be rebuilt reliably at any time), automates management of

derivedinformation computed by builds (which the devel
oper never sees unless needed), and connects tools suc
editors to its repository [13]. JP supports a federated so
ware development model among multiple JP sites.

The VSH project complements the JP environment wi
focus on both the traditional scale of configuration com
plexity, as well as the emerging complexity of organiza
tions. It is investigating new business opportunities ma
available by the emerging technology and the trend towa
virtual organizations, based on earlier work on softwa
component development and cross-organization depl
ment investigated in the GIPSY project [8][9]. A goal o
the VSH project is a service architecture for electron
component-based software construction, deployment, m
keting and consulting services in ways that will scale in
the emerging development models.

From this collaboration has emerged a rethinking of th
JP development model and its relevance to the entire s
ware life cycle, as well as the addition of distributed se
vices that would support the collaborative models propos
by the VSH project.

4.2. Connectivity throughout the life cycle

Central to the application web strategy is rich interco
nectivity among information that spans the life cycle o
software products: construction, deployment, and mana
ment. This is based on the now familiar experience in oth
domains on the World Wide Web, a fundamentally simp
model, but with the addition of restrictions and new se
vices applicable to the realm of software. The applicatio
web might in some instances approximate “extranet” tec
nology, where organizations selectively provide access
internal information, but it must be more dynamic and flex
ible than most current single-focus extranets.

This proposed notion of connectivity has two aspec
First, it is desirable to keep a configuration connected to
its information captured on the web during its whole lif
cycle. This makes it possible to query the application we
for complete, precise, relevant information at all time
Second, it connects organizations with a set of useful s
vices that strike the required balance between autono
and cooperation on the part of participating organization

For this to succeed, an application web must be almo
as simple to operate as the World Wide Web for basic op
ations such as deployment and management. At the sa
time it must be as powerful as JP, for example, in order
support complex operations such as shared developm
configuration management, and building.

4.3. Global naming

Connectivity of the sort described above requires a co



ing
sed

oft-
ven
me
of

he
lly
age

in
rve

ism
ny
a-

ng
n.
st
es-
th
n
for

to-
ch-

en
ort,
g

-
n.
r-

e

r-
d
o
r-

ed
as
mon, reliable way to refer to information, as for example
URLs name information in the World Wide Web. Such a
naming system must be global but must also reflect the par-
ticular demands of the software life cycle, for example by
including versioning

4.4. Autonomy

Organizations, even when collaborating within a virtual
organization, try to retain as much autonomy as possible.
The application web must find the right balance between
granting autonomy and providing sufficient support for
information sharing and cooperations. The application web
approach addresses this challenge with two features. First,
the shared model of data needed to exchange information is
kept as simple as possible, following the lead of the World
Wide Web. Second, information sharing can take place on
more than one architectural layer, each appropriate to the
task and particular organizational boundary.

4.5. Service layers

The simplicity of the application web, through which
collaborating organizations connect, is made possible by a
layered approach that permits different degrees of coupling
between organizations, depending on the phase of the life
cycle involved and the kind of collaboration needed.

Closely collaborating development organizations might
connect by a more complex shared application builder ser-
vice such as JP federated building. In this model, build
scripts (analogous to makefiles) in one JP repository can
build against and aggregate software that may originate in
another JP repository without requiring manual copying.

More loosely collaborating organizations might provide
less access, for example the ability to run configuration
directly out of its original repository, but with access to the
rich contextual information available in the repository.
Even more limited, and very simple, browsing services
could be available, making available only a carefully con-
trolled subset of repository information to suit particular
relationships, for example a consultant simply browsing
documentation related to a running application somewhere.

5. Application web services

The application web strategy is based on a layered
approach in which a number of basic services are available
to support a variety of collaboration models.

5.1. Naming and versioning

A fundamental service of the web is a simple, globally
scalablenaming systemfor versioned configurations dis-

tributed across organizations The design of such a nam
system, an extension of the JP naming system, is discus
in more detail elsewhere [14].

The JP approach is based on versioned packages of s
ware, sources and related documentation, that are gi
globally unique names in an extension of the package na
space for Java. Even though there is no concrete notion
“package” in the Java language, one is provided by t
tools so that software can be reliably bundled into globa
agreed-upon names. It is intended that a versioned pack
name, e.g.com.sun.labs.forest.jp.util.7, have the same mean-
ing everywhere. Not all JP versioned packages conta
sources and documentation directly. Some packages se
only to aggregate other package versions, a mechan
permitting the recursive descriptions of systems of a
size. These kinds of packages play the role of “configur
tions” in the JP system.

5.2. Persistence, immutability, and caching

Any connected, sharing-based approach requires stro
guarantees about the lifetimes of important informatio
Participating organizations that export information mu
ensure that information be durable, immutable, and acc
sible for as long as it is needed by its collaborators. Wi
suitable restrictions of this sort, published information ca
be managed by reliable, automatic cache management
ensuring timely access by all concerned. Reliable au
matic caching therefore replaces unreliable manual ca
ing, as long as basic guarantees can be made.

Repositories that provide persistent bindings betwe
versioned package names and their contents supp
among other services, WWW browsing and queryin
throughout the application web’s name space.

5.3. Configurations

As defined earlier, a “configuration” in the application
web is simply the unit of software sharing, possibly con
taining a collection of sources and related documentatio
But, as in the JP model, it might itself be composed recu
sively of other configurations, not all of which may hav
originated in the same organization.

Globally unique names, combined with persistent sto
age, allow configurations to be efficiently implemente
without copying, carrying instead only references t
included sub-configurations. In building, as for other se
vices, copying is then done by automatic caching.

5.4. Reliable building

Versioned packages contain sources from which deriv
information, for example binaries, are computed. Just



ing
o-
he
e

s
s
se
at
to
he
on

no-
nts

on-
e,

a-
ise
o-

sup-

a-
y
d

s
his
as
d

es
er-

on

tion
the name of a package always refers to the same thing
everywhere, so should the derived form; this demands that
building be location independent, a guarantee provided by
the JPbuild system.1 At the same time, the result of each
build should be arranged to contain enough information for
tools to trace back to the originating context in cases where
more information is required.

This mechanism permits a wide variety of collaboration
models at organizational boundaries where build systems
can communicate. For example, a client organization might
contract to use software from an originating organization
with full source access, in which case build scripts in the
client organization might simply import software as if it
were local, relying on the build system to cache and build
the sources in the local context. In other cases, the client
organization might purchase only the right to request built-
to-order packages, in which case part of each system build
might take place in the repository of the originating organi-
zation, based on a call between the two builders that speci-
fies the parameters of the build (e.g. compiler flags).

5.5. An abstraction for applications

Configurations may be libraries, but they may also be
intended to code with more specific structure, for example
plug-ins, JavaBeans, and runnable applications. The appli-
cation web supports abstractions for such cases, permitting
interactions among many tools such as application loaders,
inspectors, and debuggers.

5.6. Application deployment and management

Applications can be located on web, using browsing ser-
vices, and launched by simply pressing a button without
copying or installing anything. Adeployment servicepre-
cisely collects the relevant executable application parts
directly from their source at the originating organization.
An application management servicesupervises running
applications, and manages links to the precise origins of all
involved application parts. By following these links, a cli-
ent can reliably locate additional information about the
application directly from the source.

5.7. Application inspection

An inspection serviceallows remote investigation of the
class and object structure of running applications. For

every loaded class, a link leads back to the correspond
source at the providing organizations. An application pr
vides hooks to navigate through the object structure of t
application. Again, for every object, a link leads back to th
corresponding source published on the web.

5.8. Managing access to information

Although the current exploration of this strategy ha
focused on providing more information to more partie
throughout more parts of the software life cycle, the rever
is equally important. It must be possible to guarantee th
shared information be reliably managed with respect
which parties can see which information at what times. T
loosely coupled approach proposed here is a good start
this point, since it presumes that each organization auto
mously manages a repository of information that represe
its intellectual property.

6. Application scenarios

A prototype has been used to explore the proposed c
cept of an application web. Scenarios from that prototyp
described in this section, involve a web of four organiz
tions and demonstrate how organizations exploit prec
knowledge about applications and the connectivity pr
vided by the web.

6.1. A web setting

This web spans four organizations.HealthPro, a health
care organization, uses a graphical business process
port application,ProcessEdit, provided byProcessPro, a
business process tool vendor. To implement this applic
tion, ProcessProuses a graph layout package provided b
GraphPro, an organization specialized in graph model an
layout software.HealthProcontracts an external consulting
organization,ConsultPro, which provides assistance a
needed to operate the application. The scenarios in t
connected world of organizations include activities such
developing, deploying, locating, running, managing an
inspecting an application. A participating organization us
different services to access the web with respect to its int
est into a particular phase of the application life cycle.

GraphProoffers two versions of its package (com.graph-
pro.graph.layout.1 and com.graphpro.graph.layout.2). Pro-
cessProoffers four versions ofProcessEdit(version 4 is
namedcom.processpro.tool.processedit.4and usescom.graph-
pro.graph.layout.2). GraphProandProcessProprovide fed-
erated browsing, development and deployment services
the web.HealthPro provides browsing, application man-
agement and inspection services, whereas organiza
ConsultPro offers online consulting services.

1. A corollary of the requirement that a package build be location inde-
pendent is that it also be time independent: it always gives the same
results. JP makes this guarantee by permitting only immutable package
versions to be built, and by requiring that their build scripts be completely
closed functional programs.



y

ch
ces
of
ith
.
te
ns
to

e
n

l-
le,
e

ut
ds
s
ot

ap-
e
al
s
en

re
d

ous
he
es
ng

li-
s
e

a-
ton-
s.
-
u-

le
of
r
d

6.2. Scenario: simple application management

A HealthPromanager connects to the application web
using the browsing service to locate version 4 ofPro-
cessEditpublished atProcessPro’s web server. The man-
ager launches the application immediately by pressing a
button. The deployment service collects the relevant exe-
cutable application parts directly fromProcessPro
(com.processpro.tool.processedit.4) andGraphPro(com.graph-
pro.graph.layout.2). The application management service at
HealthPro lists the running application including hyper-
links to the web locations of all involved application parts.
By following these links, the manager can locate precise
additional information about the application provided by
ProcessProandGraphPro, such as documentation, sources
or license information.

The scenario illustrates simple cooperations based on
comprehensible and reliable services that take advantage of
the shared knowledge and connectivity in the web. The
shared, versioned name space allows for simple application
location. The deployment and management service support
application launching without any prior installation. Links
from parts of a running application to their origins in the
web allows to reliably access useful additional information
about the application.

6.3. Scenario: a customer special version

HealthPro, unsatisfied with version 4 ofProcessEdit,
asks for additional functions. A developer atProcessPro
receives the request, which names the configuration, and
builds a variant using the JP federated development ser-
vices of ProcessProand GraphPro. The HealthPro man-
ager is notified and can launch the new version
(com.processpro.tool.processedit.4.healthpro.1) from the web
immediately.

The scenario illustrates how the shared naming system
allows for precisely named application parts including ver-
sion and configuration information which is essential for
cooperations across organizations. The JP federated devel-
opment service is a more sophisticated service allowing for
cooperative software development across organizations.
The web concept including autonomous evolution makes it
possible for new application versions to be made immedi-
ately available and to be launched without installation.

6.4. Scenario: remote online consulting

A HealthPromanager contacts a consultant atConsult-
antProin order to learn more about the new version ofPro-
cessEditthat is currently running. The consultant remotely
connects to HealthPro’s application management and
inspection services. Every part of the running application

contains links to original information published directly b
ProcessProand GraphPro. This allows the consultant to
find precise information about the running application su
as sources, documentation, design artifacts, debug tra
and more. The inspection service permits investigation
the application’s dynamic object structure, once again w
hyperlinks reliably leading to the implementation sources

The scenario illustrates how a consultant has remo
access to extensive information about running applicatio
at the customer site. This also includes links and access
the origin of the application. Applications can also b
investigated at object granularity. The precise informatio
is fundamental for effective consulting.

7. Related work

The Vesta project [7], from which some of JP’s techno
ogies are derived, pursued reliability in the face of sca
but only in the traditional dimensions of application siz
and compositional complexity

Goals for the JP project include those of Vesta, b
added, among others, the ability to perform complex buil
across multiple distributed sites [6][13]. However, thi
required that all sites run JP software, and support did n
extend through the full software life cycle.

Bischofberger et. al. make a related argument about c
turing information available in the context where softwar
originally gets created [2]. Their emphasis is on inform
communication, not only more formal information such a
sources and documents, and how it is very important wh
organizational boundaries are crossed.

Several projects have explored how to take softwa
configuration management global. For example Noll an
Scacchi propose an integration layer between autonom
repository servers and their clients that would provide t
appearance of a central repository [11]; this presum
much more infrastructure sharing and process-coupli
than does the application web approach.

8. Conclusions and outlook

We have been exploring a new strategy, called the app
cation web, that will permit collaborating but autonomou
organizations to reliably share information throughout th
life cycle of software products. The design of the applic
tion web addresses the need for a balance between au
omy and cooperation, all in the context of reliable service

The problem of information impedance at organiza
tional boundaries, which arises where tight tool-based co
pling is impractical, is addressed with a simple, but flexib
approach to sharing information that permits a variety
collaboration models, including tightly-coupled tools, fo
example for federated building and possibly distribute



-
e-

-

-

”

configuration management, but also simpler relationships
such as application downloading and WWW browsing. The
unreliable drudgery of manual copying of information, an
approach that does not scale well, is replaced with links
that permit automatic caching.

Prototype versions of these services have been imple-
mented in the context of the JP software development envi-
ronment, whose object repositories rely on an experimental
implementation of orthogonal persistence for the Java plat-
form [1]. The effect is to create a web of knowledge about
each software artifact, quite a different view of the software
life cycle than is customary. It adds a kind of connectivity
becoming common on the WWW, but it is still imple-
mented on top of the kind of reliable services that large
scale software development demands.

It is expected that such a strategy will open up new busi-
ness opportunities for software development of the sort
envisioned by the Virtual Software House: software ser-
vices available on the Web; consistent, up-to-date, con-
nected software catalogues; reliable software bundling and
deployment; component seeking and matching; component
interoperability checking; online consulting; pay per use;
and many others yet to be imagined.

9. Acknowledgments

This work benefits greatly from the vision of Mick Jor-
dan, Principal Investigator of the Forest Project at Sun
Microsystems Laboratories and coauthor of JP. The VSH
project is supported by Prof. Albert Kündig at ETH Zürich
and funded by the Swiss Priority Program of the Swiss
National Science Foundation. Yuval Peduel made helpful
comments on early drafts of this paper.

10. Trademarks

Sun, Sun Microsystems, JavaBeans, Enterprise Java-
Beans, and Java are trademarks or registered trademarks of
Sun Microsystems, Inc. in the United States and other
countries.

References

[1] M. P. Atkinson, L. Daynes, M. Jordan, T. Printezis, and S.
Spence, “An Orthogonally Persistent Java”,ACM SIGMOD
Record, Volume 25, Number 4, December 1996.

[2] W. R. Bischofberger, T. Kofler, K.-U. Mätzel, and B.
Schäffer, “Computer Supported Cooperative Software Engineer-
ing with Beyond-Sniff”,Proc. 7th Conf. Software Eng. Environ-
ments (SEE), Noordwijkerhout, The Netherlands, IEEE Computer
Society Press, Los Alamitos, CA, USA, 1995, pp. 135-143.

[3] W. Davidow and M. Malone,The Virtual Organization:
Structuring and Revitalizing the Corporation For the 21st Cen-

tury, Burlingame Books, 1992.

[4] G. E. Kaiser and S. E. Dossick, “Workgroup Middleware
for Distributed Projects”,IEEE Seventh International Workshops
on Enabling Technologies: Infrastructure for Collaborative
Enterprises, June 1998, pp. 63-68.

[5] J. Gosling, W. N. Joy, and G. L. Steele,The Java Language
Specification, Addison-Wesley, 1996.

[6] M. Jordan and M. L. Van De Vanter, “Modular system
building with JavaTM packages”,Proceedings. 8th Conference on
Software Engineering Environments, IEEE Computer Society
Press, Los Alamitos, CA, USA, 1997, pp.155-63.

[7] R. Levin and P. McJones,The Vesta Approach to Configu-
ration Management, Research Report 105, Digital Equipment
Corporation Systems Research Center, June 1993.

[8] T. Murer, “The Challenge of The Global Software Pro-
cess”,Proceedings of the Second International Workshop on
Component-Oriented Programming (WCOP-97), TUCS General
Publication No. 5, September, 1997 andECOOP’97 Workshop
Reader, Springer LNCS Vol. 1357, 1998.

[9] T. Murer and D. Scherer, “Structural unity of product, pro
cess and organization form in the GIPSY process support fram
work”, Proceedings. 8th Conference on Software Engineering
Environments, IEEE Computer Society Press, pp. 93-100.

[10] T. Murer, D. Scherer, and A. Würtz, “Improving Compo-
nent Interoperability Information”,Workshop on Component-Ori-
ented Programming at ECOOP’96 (WCOP-96), June 1996.

[11] J. Noll and W. Scacchi, “Supporting Distributed Configura
tion Management in Virtual Enterprises”,Proc. 7th International
Workshop Software Configuration Management (ICSE 97 SCM
7), Springer LNCS 1235, 1997, pp. 142-160.

[12] C. S. Szyperski,Component Software: Beyond Object-Ori-
ented Programming, Addison Wesley, 1998.

[13] M. L. Van De Vanter, “Coordinated editing of versioned
packages in the JP programming environment”,System Configu-
ration Management. ECOOP’98 SCM-8 Symposium. Proceed-
ings, Springer, Berlin, Germany, 1998, pp.158-73.

[14] M. L. Van De Vanter and T. Murer, “Global Names: Sup-
port for Managing Software in a World of Virtual Organizations
Ninth International Symposium on System Configuration Man-
agement (SCM-9), September 1999, Toulouse, France.

[15] Selected workshop papers.Proceedings of the Second
International Workshop on Component-Oriented Programming
(WCOP-97) TUCS General Pub. No. 5, September, 1997 and
ECOOP’97 Workshop Reader, Springer LNCS Vol. 1357, 1998.


	Replacing Copies with Connections: Managing Software across the Virtual Organization
	Tobias Murer
	TIK (Computer Engineering and Networks Laboratory) ETH Zürich, 8092 Zürich, Switzerland
	murer@acm.org
	Abstract
	1 . Introduction
	2 . Forces changing the software business
	2.1 . Technology: the connected world
	2.2 . Rise of the virtual organization

	3 . Limits faced by the new model
	3.1 . Java interface specification
	3.2 . Defining configurations
	3.3 . Managing applications
	3.4 . Context lost at organizational boundaries

	4 . The application web
	4.1 . The JP, GIPSY, and VSH projects
	4.2 . Connectivity throughout the life cycle
	4.3 . Global naming
	4.4 . Autonomy
	4.5 . Service layers

	5 . Application web services
	5.1 . Naming and versioning
	5.2 . Persistence, immutability, and caching
	5.3 . Configurations
	5.4 . Reliable building
	5.5 . An abstraction for applications
	5.6 . Application deployment and management
	5.7 . Application inspection
	5.8 . Managing access to information

	6 . Application scenarios
	6.1 . A web setting
	6.2 . Scenario: simple application management
	6.3 . Scenario: a customer special version
	6.4 . Scenario: remote online consulting

	7 . Related work
	8 . Conclusions and outlook
	9 . Acknowledgments
	10 . Trademarks
	References
	[1] M. P. Atkinson, L. Daynes, M. Jordan, T. Printezis, and S. Spence, “An Orthogonally Persisten...
	[2] W. R. Bischofberger, T. Kofler, K.-U. Mätzel, and B. Schäffer, “Computer Supported Cooperativ...
	[3] W. Davidow and M. Malone, The Virtual Organization: Structuring and Revitalizing the Corporat...
	[4] G. E. Kaiser and S. E. Dossick, “Workgroup Middleware for Distributed Projects”, IEEE Seventh...
	[5] J. Gosling, W. N. Joy, and G. L. Steele, The Java Language Specification, Addison-Wesley, 1996.
	[6] M. Jordan and M. L. Van De Vanter, “Modular system building with JavaTM packages”, Proceeding...
	[7] R. Levin and P. McJones, The Vesta Approach to Configuration Management, Research Report 105,...
	[8] T. Murer, “The Challenge of The Global Software Process”, Proceedings of the Second Internati...
	[9] T. Murer and D. Scherer, “Structural unity of product, process and organization form in the G...
	[10] T. Murer, D. Scherer, and A. Würtz, “Improving Component Interoperability Information”, Work...
	[11] J. Noll and W. Scacchi, “Supporting Distributed Configuration Management in Virtual Enterpri...
	[12] C. S. Szyperski, Component Software: Beyond Object-Oriented Programming, Addison Wesley, 1998.
	[13] M. L. Van De Vanter, “Coordinated editing of versioned packages in the JP programming enviro...
	[14] M. L. Van De Vanter and T. Murer, “Global Names: Support for Managing Software in a World of...
	[15] Selected workshop papers. Proceedings of the Second International Workshop on Component-Orie...




	Michael L. Van De Vanter
	Sun Microsystems Laboratories 901 San Antonio Road, UMTV29-112 Palo Alto, CA 94303 USA
	Michael.VanDeVanter@Eng.Sun.COM


