
Building Flexible, Low-Overhead Tooling
Support into a High-Performance Polyglot VM

Extended Abstract

Michael L. Van De Vanter
Oracle Labs

michael.van.de.vanter@oracle.com

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors—Debuggers, Run-time environ-
ments

Keywords Virtual Machine, Instrumentation, Optimiza-
tion, Debugging, Tools

1. Introduction
The disconnect between programming languages and the
developer tools needed to make them useful has grown wide
since the days of programming systems with integral tool
support, such as Self (1989), Smalltalk (1980), and Lisp
(1965). Tools now are typically an afterthought: expensive
to develop, delivered late if ever, and arrive with undesirable
performance trade-offs.

The time has come to build modern programming sys-
tems. We can do that by embedding flexible, reusable, low-
overhead instrumentation and tool support deeply into mod-
ern Virtual Machines. We can “have it all” (Van De Vanter
2015), but only if we can re-establish close collaboration be-
tween language engineers (who optimize utilization of ex-
pensive machines) and tool builders (who optimize utiliza-
tion of expensive people).

2. Truffle-Graal
The Truffle Instrumentation and Debugging Framework is a
tightly coupled extension under development for the open
source polyglot (multi-language with interoperability) Graal
platform (Würthinger et al. 2013). The primary goal for the
framework is to simplify construction of tools needing dy-
namic access to execution state in this very high performance
runtime environment. A secondary goal is to encourage ad-
vanced tool development and experimentation by offering
public API access. The difficult challenge is to do all this
without impact on runtime performance.

Inspiration for a new approach to this challenge comes
from two sources: a generalized interposition model devel-

This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0).

MoreVMs’17 April 3, 2017, Brussels, Belgium
Copyright c© 2017 held by owner/author(s).

oped to support Aspect Oriented Programming in language
VMs (Haupt and Schippers 2007) adapted to AST interpreta-
tion, combined with dynamic optimization and deoptimiza-
tion from Self (Hölzle et al. 1992). It is now possible for
an Instrumentation client to dynamically (and safely) insert
into an executing program an instrumentation probe that in-
curs near zero performance cost until actually used to access
(or modify) execution state.

The framework includes:

1. Low-level, extremely low-overhead execution event in-
terposition, built directly into Graal’s high-performance
runtime;

2. The ability to dynamically inject code fragments (for
example breakpoint conditions) into running code where
they will be fully optimized together with surrounding
code;

3. Reusable language-agnostic instrumentation services, re-
quiring minimal per-language specialization, that operate
smoothly across language interoperation boundaries; and

4. Versatile APIs for constructing many kinds of client tools
without VM modification.

We have demonstrated that in fully optimized code the
framework itself has near-zero overhead (Seaton et al. 2014).
We have yet to find any reason why Truffle instrumentation
should not be permanently enabled, as well as the services
that use it.

3. Technology
Functional aspects of the Instrumentation and Debugging
Framework exploit Truffle’s fundamental execution model:
AST interpretation implemented in a high-level program-
ming language (Java). Runtime events of interest to tools,
for example execution of a statement, correspond to transfer
of interpreter control from one AST node (parent) to another
(child) and back. The framework captures events by insert-
ing a wrapper node between parent and child that acts as a
proxy with respect to guest language semantics. The wrapper
also reports two execution events: one just before the child

http://creativecommons.org/licenses/by-nd/4.0/


executes (where a debugger might suspend execution) and
another just after (where a tool might trace value propaga-
tion).

Clients of the framework can install any number of event
listeners. Each listener receives event notifications from
(possibly multiple) locations specified by a combination of
source location and symbolic tags on nodes (provided by
language implementors) that identify useful AST sites such
as statements and expressions. Event notification provides
access to execution state (e.g. current stack) via Java APIs
that are shared by all Truffle language implementations and
are thus largely language-agnostic. Clients may also pro-
vide fragments of guest language code to be evaluated in
the lexical context of event sites, for example as breakpoint
conditions.

Performance aspects of the Instrumentation and Debug-
ging Framework exploit Truffle’s fundamental optimization
model by implementing as much framework code as possi-
ble as nodes embedded in running ASTs. Low-level instru-
mentation support is written to be indistinguishable from the
executing program from the perspective of dynamic opti-
mization. Instrumentation branches that have no effect, for
example disabled breakpoints, compile away completely
in the fast path. Instrumentation (or client) code that can-
not be supported in the fast path triggers deoptimization,
which is an essential capability of the platform’s optimiza-
tion strategy. Memory footprint is minimized by making all
instrumentation-related AST modifications lazy, carried out
only when execution reaches a site marked as inconsistent
with respect to current client requests, again using funda-
mental features of the platform’s optimization model.

4. Applications
Although originally conceived as a support layer for pro-
gramming tools, Truffle Instrumentation now supports a
growing number of platform features.

The Truffle Debugging API is a core service of the Graal
platform, dependent on instrumentation services and devel-
oped in close collaboration with platform developers. Truffle
language implementors are asked to provide a small amount
of language-specific information, including how to display
certain program elements such as values and class names,
and identifying which stack frames and slots are implemen-
tation artifacts and should be hidden.

The public API is growing. Support for frame popping
and reentry is currently under development, as well as data-
collection APIs for coverage and profiling. Two clients in-
ternal to the project now depend on the Debugging API: the
NetBeans IDE (via a specially developed JPDA adapter) and
a REPL-style shell with debugging commands.

Some otherwise difficult language features have been ad-
dressed by instrumentation.

• A Ruby programmer may at any time call set trace func,
which requires that a specified block of code be executed

dynamically before each statement in the running pro-
gram. This feature is notorious for confounding perfor-
mance, but can run fully optimized using Truffle instru-
mentation.

• The R language includes an interactive shell that must be
prepared at any time to turn on stepping through speci-
fied methods, which is easily addressed using techniques
similar to those used in the platform’s Debugging API.

Sometimes the framework serendipitously proves helpful
to collaborating platform engineers. For example, a very few
lines of instrumentation code recently implemented an unan-
ticipated program requirement: the need to timebox pro-
grams by terminating execution when a specified amount of
time has passed. A remote agent for platform management
under development is conveniently implemented within the
instrumentation framework, where it dynamically provides
data gathering, debugging, and other services with extremely
low overhead.

A growing number of tools that depend on Truffle instru-
mentation have been developed by third parties. A PhD dis-
sertation at UC Irvine used a very early version of Truffle in-
strumentation to build a low-overhead framework for event
profiling, applied it to Truffle implementations of Python and
Ruby, and performed cross-language comparisons of bench-
mark implementations (Savrun-Yeniçeri et al. 2015). A mas-
ters thesis at the University of Tartu (Estonia) used Truffle
instrumentation for three (increasingly general) implementa-
tions of dynamic method reloading for Truffle-implemented
languages (Pool et al. 2016).

5. Status and future work
We plan to extend the kinds of execution events that can be
captured beyond the few mentioned here. Possibilities in-
clude other syntactic elements such as expressions, but also
events that do not always have syntactic counterparts such
as exceptions or object allocations. Work is underway on
other platform services, including ones that gather data such
as coverage, profiling, and data dependency. Finally, we ex-
pect to continue supporting and encouraging experimenta-
tion with tools that might otherwise require prohibitively dif-
ficult VM modification.

Acknowledgments
The Virtual Machine Research Group at Oracle Labs and the
Institute of System Software at the Johannes Kepler Univer-
sity Linz created the language implementation technologies
that make Truffle Instrumentation possible.

References
M. Haupt and H. Schippers. A machine model for aspect-oriented

programming. In Proceedings of the European Conference on
Object-Oriented Programming, Proceedings of the European
Conference on Object-Oriented Programming, pages 501–524,



Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 3-540-73588-
7, 978-3-540-73588-5.

U. Hölzle, C. Chambers, and D. Ungar. Debugging optimized
code with dynamic deoptimization. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’92, pages 32–43. ACM Press, 1992.

T. o. Pool, A. R. Gregersen, and V. Vojdani. Trufflereloader:
A low-overhead language-neutral reloader. In Proceedings of
the Workshop on the Implementation, Compilation, Optimiza-
tion of Object-Oriented Languages and Programming Systems,
ICOOOLPS ’16, 2016.

G. Savrun-Yeniçeri, M. L. Van De Vanter, P. Larsen, S. Brunthaler,
and M. Franz. An efficient and generic event-based profiler
framework for dynamic languages. In Proceedings of the In-
ternational Conference on the Principles and Practice of Pro-
gramming in Java, PPPJ ’16, pages 102–112. ACM Press, 2015.

C. Seaton, M. L. Van De Vanter, and M. Haupt. Debugging at full
speed. In Proceedings of the Workshop on Dynamic Languages
and Applications, DYLA ’14, pages 2:1–2:13, New York, NY,
USA, 2014. ACM Press. ISBN 978-1-4503-2916-3.

M. L. Van De Vanter. Building debuggers and other tools: We can
have it all. A Position Paper. In Proceedings of the Workshop
on the Implementation, Compilation, Optimization of Object-
Oriented Languages and Programming Systems, ICOOOLPS
’15. ACM Press, 2015.

T. Würthinger, C. Wimmer, A. Wöß, L. Stadler, G. Duboscq,
C. Humer, G. Richards, D. Simon, and M. Wolczko. One vm
to rule them all. In Proceedings of the 2013 ACM International
Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software, Onward! 2013, pages 187–204, New
York, NY, USA, 2013. ACM Press. ISBN 978-1-4503-2472-4.


	Introduction
	Truffle-Graal
	Technology
	Applications
	Status and future work

