
Can Software Engineering Solve the HPCS Problem?

Eugene Loh
Sun Microsystems Inc.

16 Network Circle, UMPK16-303
Menlo Park, CA 94025 USA

+1 831 655-2883
eugene.loh@sun.com

Michael L. Van De Vanter
Sun Microsystems Inc.

16 Network Circle, UMPK16-304
Menlo Park, CA 94025 USA

+1 650 786-8864
michael.vandevanter@sun.com

Lawrence G. Votta
Sun Microsystems Inc.

18 Network Circle, UMPK18-216
Menlo Park, CA 94025 USA

+1 650 786-7514
lawrence.votta@sun.com

ABSTRACT

The High Productivity Computing Systems (HPCS) program
seeks a tenfold productivity improvement. Software Engineering
has addressed this goal in other domains and identified many
important principles that, when aligned with hardware and
computer science technologies, do make dramatic improvements
in productivity. Do these principles work for the HPC domain?

This case study collects data on the potential benefits of perfective
maintenance in which human productivity (programmability,
readability, verifiability, maintainability) is paramount. An HPC
professional rewrote four FORTRAN77/MPI benchmarks in
Fortran 90, removing optimizations (many improving distributed
memory performance) and emphasizing clarity.

The code shrank by 5-10x and is significantly easier to read and
relate to specifications. Run time performance slowed by about
2x. More studies are needed to confirm that the resulting code is
easy to maintain and that the lost performance can be recovered
with compiler optimization technologies, run time management
techniques and scalable shared memory hardware.

Categories and Subject Descriptors
D.2.0 [Software Engineering]. D.1.3 [Programming
Techniques]: Concurrent Programming –parallel programming

Keywords
High Performance Computing, Software Productivity, Software
Maintenance, HPCS

1. INTRODUCTION
The High Performance Computing (HPC) community faces a
crisis on two fronts: concerns about correctness demand increased
verification [16], and programming itself is becoming more
complex due to growing problem sizes and the need for massive

parallelism. The HPC productivity bottleneck is moving from
machines to people, much as it has in other domains, but Software
Engineering has had little impact, in no small part by failing to
address traditional HPC priorities. Successful application of
Software Engineering principles and practices must be grounded
in the particular practices and priorities of HPC, and must be
substantiated with cost-benefit data.

The case study presented here starts collecting that data. Based on
well-known HPC benchmark codes, the study establishes a
baseline evaluation of benefits from a perfective maintenance
exercise in which manual optimizations are discarded and modern
programming language abstractions are exploited for readability.

The outcome is dramatic. Code shrank, in most cases by a factor
of 10, and the relationship between code and specification,
previously inaccessible, became evident. The former is known to
reduce software cost, and the latter is an essential step toward
verification. Run time performance typically suffered by a factor
of 2, a penalty that may be neutralized by automatic optimization
and parallelization at both compile and run time.
These results emphasize the need for empirical studies and for a
data-driven evaluation of solutions in the context of HPC. Related
benefits such as requirements tracing and portability must also be
quantified and brought into the cost-benefit equation. The study
also casts light on the HPC community’s pursuit of performance
at the expense of human effort. A credible cost-benefit analysis
starts with “modern” implementations, and explicitly includes
human productivity [6].

This research is part of the High Productivity Computing Systems
(HPCS) program, funded by the Defense Advanced Research
Projects Agency (DARPA) to “create new generations of high end
programming environments, software tools, architectures, and
hardware components” from the perspective of overall
productivity rather than unrealistic benchmarks [5].
Section 2 describes the study design. Section 3 presents the
results, followed by further analysis in Section 4. Section 5
discusses the findings in the broader context of the program, and
mention of related work appears in section 6.

2. THE EXPERIMENT
This is an exercise in perfective maintenance: changing programs
in ways that do not affect essential functionality but which
improve maintainability [12][17].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SE-HPCS’05, May 15, 2005, St. Louis, Missouri, USA.
Copyright is held by Sun Microsystems,Inc. 1-59593-117-
1/05/0005...$5.00.

This material is based upon work supported by DARPA under Contract No. NBCH3039002 and will be presented at the Second
International Workshop on Software Engineering for High Performance Computing System Applications, St. Louis, May 15, 2005

2.1 Hypothesis
This empirical study has elements of both a quasi-experiment [8]
and a case study [19] – the quasi-experiment due to the repeated
test (treatment of reordering maintenance and performance goals)
of different benchmarks and a case study due to the single
professional subject. The use of hypotheses allow us to test and
explore the amount of code size reduction and the amount of
performance expense. For completeness there are two hypotheses.
H1: Perfective maintenance will not reduce the code size.

H2: Perfective maintenance will not change execution
performance.

2.2 Experimental Setting
The subject is a computational physicist with fifteen years of
experience in the computing industry, conventionally trained to
prioritize performance over maintainability. The experiment was
performed using a modern software engineering development
environment and workstation for development and a target
supercomputer for benchmark execution.

2.3 Experimental Design
The subject revised four parallel benchmarks relevant to the HPC
community (external validity): three of the NAS Parallel
Benchmarks (NPB) [13][15] and the ASCI sPPM benchmark [10],
all written in FORTRAN 77 [2]. This report refers to both the
NPB benchmark specifications, which date back to the NPB1
release, and the NPB serial and parallel (MPI) implementations,
which are part of the NPB2.3 release [13].

The goal of the perfective maintenance task was to prioritize
maintainability over performance:
• remove specialized code for distributed memory;
• remove source level optimizations;

• use abstractions provided by Fortran 90 [7], a modern
superset of FORTRAN 77; and

• remove code known to be not portable.
The dependent variables are code size and execution performance
on the target system.
The construct validity threats are summarized as: do we think
what and how we are changing and removing from the code
accomplishes the priority shift? Clearly, the treatment
accomplishes much of the priority shift, and the issue is one of
how much more could be accomplished. The results in the next
section allay much of this concern.

The internal validity addresses the concern of undetected
influences on the dependent variables code size and execution
performance. Inspection of the code and executing benchmark test
limit the possibility and magnitude of any influences.

Finally, the external validity threats are effects that limit our
ability to generalize the experiment. Specifically, we are studying
benchmarks here – kernels of computation – to expect the ratio of
size reduction to execution performance is not relevant and thus
not a threat. We would like to generalize to the kernels of major
computational codes. How the benchmarks are created, calibrated
and maintain address this validity threat.

3. DATA
Table 1 summarizes quantitative results of the experiment,
expressed both as reduction in lines of code (LOC) and run time
performance penalty; measurement details appear in Appendix A.
Each benchmark is discussed separately below, followed by
comments on qualitative results. The experiments appear in the
order they were conducted. Some learning about Fortran 90 and
computational fluid dynamics occurred during the experiments.

Table 1: Summary of Results

Benchmark LOC
before

LOC
after

Size
reduction

Slowdown

NAS BT 3687 484 8x 3x
NAS MG 1701 150 11x 2x?/6x?
NAS CG 839 81 4x/10x ≥2x
ASCI sPPM 13606 1358 10x 2x
Approximately 2x of the size reduction was due to removal of
explicit parallelism, a result consistent with other studies of the
size contribution of MPI [4][9].

3.1 NAS BT Benchmark
BT is a “synthetic application,” representative of applications
involving computational fluid dynamics. The subject had general
familiarity with NAS Parallel Benchmarks, but none with BT. The
experiment took approximately two weeks of full time effort.

Table 2 summarizes code size changes between the reference
implementation and revised code. These summaries are
approximate, given the difficulty of precise accounting.

Table 2: NAS BT Lines of Code

LOC Description
NPB

(MPI)
NPB

(serial)
Revised

Global declarations 269 246 19
Main program 105 74 54
Initialize 201 148 19
Time step & solve 1165 596 62
Exact solution 13 13 35
Compute dU/dt 625 596 82
Compute left-hand sides 717 716 102
Self test 247 228 111
Inter-process comm.. 345 0 0
Total 3687 2617 484

Reductions varied considerably, for example:
• Global declarations shrank for three reasons: removal of

confusing intermediate constants (manual optimizations);
adoption of Fortran 90 array syntax and module support; and
removal of variables that didn’t need to be global.

• The main program and self test contain code for which little
improvement was possible.

• Initialize was reduced by relocating some code, removing
unnecessary code (previously hard to detect because of code
complexity), and adopting Fortran 90 array syntax.

• Time step & solve showed the greatest reduction: removing
hand optimizations and exploiting Fortran 90 array syntax
and MATMUL. As the code clarified, comments (not
counted in the LOC results) also shrank.

• Exact solution acquired related bits of code from elsewhere.

• Time differential dU/dt shrank, not only by exploiting
Fortran 90 features (bringing the code in much closer
alignment with the specification), but also by detection and
removal of approximately 300 lines of redundant code.

One of the most striking results was a dramatic increase in
correspondence between specification and code (section 3.6).

The revised code exhibited a 2.7x slowdown on the class W data
set (one of several specified as part of the NAS Parallel
Benchmarks) when compared to the original implementation.

3.2 NAS MG Benchmark
MG is a “kernel” benchmark, intended to characterize multigrid
computations. It is much shorter than BT: the specification is 2.5
pages of PDF, in contrast to 30 pages for BT. The subject, who
had prior implementation experience with the benchmark, set out
to simplify the NPB reference code, but eventually rewrote it from
scratch in a few hours. The experiment took about one working
day over a period of a week. Table 3 summarizes changes in code
size between the reference implementation and the revised code.

Table 3: NAS MG Lines of Code
LOC Description

NPB
(MPI)

NPB
(serial)

Revised

Global declarations 80 89 0

Main program 201 160 35

Initialize v 202 213 35

Operators 281 277 80

Communications 665 144 0

Other 272 124 0

Total 1701 1007 150

Code reductions were similar to those for the BT benchmark, and
the result was similarly more concise and readable.

The revised code performs poorly, largely due to a compiler
problem (believed fixable) with stencil performance for array
syntax. It appears that the code autoparallelizes reasonably well, at
least to conventional scales. Details appear the full report [11].

3.3 NAS CG Benchmark
CG is another “kernel” benchmark, approximately as complex as
MG and much simpler than BT. It is intended to characterize
conjugate gradient computations. The subject had prior
implementation experience with the benchmark. The experiment
took place over two days with most of the effort going to
simplifying the NPB code and working with sparse matrices.
Table 4 summarizes changes in code size between two of the
reference implementations and the revised code.

Table 4: NAS CG Lines of Code
LOC Description

NPB
(MPI)

NPB
(serial)

Revised

Core functionality 839 309 81

Data fabrication 197 197 158

Total 1036 506 239

The relative compactness of the derived code derives from much
the same phenomena reported for the BT and MG benchmarks.

A significant portion of the perfective maintenance effort (and the
resulting code) for CG involved reverse engineering an arcane
data fabrication algorithm used in the original code. The
algorithm, which is not fully determined in the specification, must
be reproduced exactly in order to satisfy correctness checks.
Using other reasonable algorithms for fabricating matrix data
would permit overall code reduction closer to 10x.
The revised code autoparallelizes well. More details on scalability
appear in the full report [11].

3.4 ASCI sPPM Benchmark
sPPM is a computational fluid dynamics (CFD) benchmark that
uses the "simplified" Piecewise Parabolic Method (sPPM). Its
performance targets were 1 teraflops and beyond for procurements
within the Accelerated Strategic Computing Initiative (ASCI) [1].
Although not a "real application," sPPM is the most complex of
the four codes studied. The shock-wave physics is handled with
fairly involved numerical algorithms. Performance optimizations
include cache blocking, vectorization, multi-thread and multi-
process parallelism, overlapping communication and computation,
and dynamically scheduling work.

The subject was initially unfamiliar with the sPPM code and with
CFD. The experiment was part-time for less than one month.
Table 5 summarizes changes in code size between reference
implementation and revised code. These line counts include
makefiles, input decks, and so on, but these are relatively small.

Table 5: sPPM Lines of Code

LOC Description

ASCI Revised

Main program 2486 484

Shock dynamics 2742 616

Boundaries 3431 22

Time stepping 2312 75

Global declarations 238 25

Some C I/O functions 366 54

Timers 49 17

Multi-platform threads support 1500 0

Makefile 407 21

Run script 57 23

Input deck 7 10

Reference output 11 11

TOTAL 13606 1358

Some reasons for code reduction have already been observed for
the other benchmarks. Additionally:

• sPPM strives for functional and performance portability --
for example, targeting superscalars, vectors, etc.

• sPPM suffers complexity from trying to maintain small
access strides in memory for best performance.

• A great deal of the I/O is unnecessarily complicated.

• There was a great deal of support for legacy threads, which
was made obsolete by adoption of OpenMP [14].

• Sophisticated schemes overlapped communication and
computation, something that would be best left to platform
infrastructure in an idealized world.

• Routines were replicated with special case optimizations.

Remarkably, given the extensive simplification of the code, the
revised version on a single CPU ran only 2.1x slower on a test
problem than the reference implementation. The cause of the
slowdown requires investigation, but is likely due, at least in part,
to the large memory strides in the revised version.

The challenge for computing systems is to achieve automatically
the impressive scalability achieved by extensive manual
techniques used in this reference implementation. There are
reasons to be hopeful, including the large problem sizes that are
needed to study multi-scale physics in 3d CFD and the higher-
level expression that results when the source code is improved,
but demonstration of such automatic scalability remains the
subject of future work.

3.5 Manual Optimizations
The subject reported severe difficulty understanding some of the
manually optimized code:

• global definition of many intermediate constants in an
attempt to identify common subexpressions;

• manually unrolled loops; and
• functions expanded in-line, for example for derivatives.

Some of those could actually be counterproductive in today’s
computational environments. All optimizations confounded the
relationship between specification and code.

3.6 Expressiveness and Fortran 90
Language features new to Fortran 90 enable code that is both
shorter and expressed more directly in terms of the problem. For
example, the timed portion of the NAS MG reference
implementation appears in Figure 1:

call resid(u,v,r,n1,n2,n3,a,k)
callnorm2u3(r,n1,n2,n3,rnm2,rnmu,nx(lt),ny(lt),nz(lt))
old2 = rnm2
oldu = rnmu
do it=1,nit
 call mg3P(u,v,r,a,c,n1,n2,n3,k)
 call resid(u,v,r,n1,n2,n3,a,k)
enddo
call norm2u3(r,n1,n2,n3,rnm2,rnmu,nx(lt),ny(lt),nz(lt))

Figure 1: NAS MG timed portion (original FORTRAN 77)
This code excerpt implements the portion of the specification
appearing in Figure 2, and the revised version appears in Figure 3.

Each of the four iterations consists of the following two
steps,
r = v - A u (evaluate residual)
u = u + Mk r (apply correction)
...
Start the clock before evaluating the residual for the first
time, ... Stop the clock after evaluating the norm of the
final residua.l

Figure 2: NAS MG timed portion (spec.)
do iter = 1, niter
 r = v - A(u) ! evaluate residual
 u = u + M(r) ! apply correction
enddo
r = v - A(u) ! evaluate residual
L2norm = sqrt(sum(r*r)/size(r))

Figure 3: NAS MG timed portion (revised Fortran 90)
The evident correspondence between the two promises greater
success and lower cost for code verification and maintenance.

4. ANALYSIS
The benefit (average reduction of LOC) and the cost (the average
increase in execution time performance) are calculated simply as
the ratio of the pretreatment quantity (LOC, execution time)
divided by the post treatment quantity (LOC, execution time).
Thus for the NAS BT benchmark we have 3687/4849 = 7.62 ~8.
For execution time, we use the convention that the factor is
always greater than 1 with the description of slower or faster to
indicate more or less execution time.

5. DISCUSSION
The central result of this study, namely that HPC code can be both
shrunk tenfold and dramatically clarified at the expense of a
twofold performance penalty, suggests rethinking the balance
between man and machine. A number of technologies offer the
prospect of recovering some of the cost of the performance loss.
There are many benefits. The lifetime costs of software are known
to correlate highly, and linearly, with code size. Also, the kind of
code produced in this case study is much more likely to be
portable, a significant factor in the lifetime cost of HPC software.
Finally, the increasing importance of verification in HPC software
will be well served by code that is not only smaller, but also
dramatically easier to understand in relationship to the problem
specifications. Experiments are needed to assess these effects
more precisely.

The study validates some of the design goals for Fortran 90: high
quality results were possible, levels of effort were moderate, and
maintenance could often be done gradually with frequent
regression testing. Other modern languages for HPC might offer
similar, or better, benefits, but the costs of learning and
conversion must be a necessary part of the analysis.

6. RELATED WORK
Other studies have shown significant code reduction from
distributed to shared memory implementations: approximately 2x
for the NAS MG benchmark [4] and an average of 1.77 from MPI
to serial implementations over 8 benchmarks [9].
These results are broadly consistent with Weinberg’s studies on
the cost of multiple goals: “Optimization goals tend to be highly
conflicting with other goals” [18]. Goals are also constraints; this
case study can be seen as removing constraints on software that
derive from the “accidental” rather the “essential” nature of the
task, in the terminology of Fred Brooks (following Aristotle) [3].
The “accidental” in this case includes the limitations of
FORTRAN 77, the demand for utmost performance, and
confounding platform architectures.

7. CONCLUSIONS
At the cost of a relatively modest performance penalty at run-
time, HPC software written in FORTRAN 77 can be improved
through perfective maintenance with dramatic reduction in human
cost (across the entire software life cycle) and reduce the growing
cost of verification.

This cost-benefit equation must be explored further, not only with
investigation into performance improvements, but also by
expanding the scope of the data across more HPC professionals
and more kinds of HPC code. This empirical data is needed to
support the kind of credible analysis the HPC community will
expect in order to evaluate solutions to the HPCS problem.

8. ACKNOWLEDGMENTS
We would like to thank our HPCS colleagues at Sun
Microsystems and elsewhere in the HPC community for their
helpful discussions and comments.

This material is based upon work supported by DARPA under
Contract No.NBCH3039002.

9. REFERENCES
[1] The Accelerated Strategic Computing Initiative (ASCI), now

known as Advanced Simulation and Computing (ASC)
<http://www.nnsa.doe.gov/asc/>.

[2] American National Standards Institute American National
Standard Programming Language FORTRAN. ANSI X3.9-
1978, New York, NY, 1978.

[3] Brooks, F. P. Jr., No silver bullet: essence and accidents of
software engineering. Computer 20,4 (April 1987) 10-19.

[4] Chamberlain, B. L., Deitz, S. J., and Snyder, L. A
comparative study of the NAS MG benchmark across
parallel languages and architectures. Proceedings of the ACM
Conference on Supercomputing (2000).

[5] Defense Advanced Research Project Agency (DARPA)
Information Processing Technology Office, High

Productivity Computing Systems (HPCS) Program.
<http://www.darpa.mil/ipto/programs/hpcs/>.

[6] Gustafson, J. Purpose-Based Benchmarks. International
Journal of High Performance Computing Applications:
Special Issue on HPC Productivity, 18,4 (November 2004).

[7] ISO/IEC International Standard ISO/IEC 1539-1:1997(E)
Information Technology - Programming Languages –
Fortran. Geneva, Switzerland, 1997.

[8] Judd, C. M., Smith, E. R., and Kidder, L. H. Research
Methods in Social Relations Holt, Rinehart and Winston,
Inc., sixth edition, 1991.

[9] Kepner, J., HPC Productivity Model Synthesis. International
Journal of High Performance Computing Applications:
Special Issue on HPC Productivity 18,4 (November 2004).

[10] LLNL The ASCI sPPM Benchmark Code. Lawrence
Livermore National Laboratory,
<http://www.llnl.gov/asci/purple/benchmarks/limited/sppm/>

[11] Loh, E. Van De Vanter, M.L, and Votta, L. G. Can Software
Engineering Solve the HPCS Problem, Sun Microsystems
Laboratories Technical Report, 2005 (in preparation).

[12] Mockus, A. and Votta, L.G. Identifying Reasons for
Software Changes Using Historical Databases. Proceedings
of the International Conference on Software Maintenance –
ICSM2000, San Jose, California (October 2000) 120-130.

[13] NASA The NAS Parallel Benchmarks (NPB). NASA
Advanced Supercomputing Division,
<http://www.nas.nasa.gov/Software/NPB/index.html>.

[14] OpenMP, <http://www.openmp.org/>.

[15] Saphir, W. C., et al. New implementations and results for the
NAS Parallel Benchmarks 2. 8th SIAM Conference on
Parallel Processing for Scientific Computing, Minneapolis,
MN, (March 14-17, 1997).

[16] Post. D. E., and Votta, L. G. Computational Science Requires
a New Paradigm. Physics Today, 58(1): p. 35-41.

[17] Swanson, E.B. The Dimensions of Maintenance.
Proceedings of the 2nd International Conference on Software
Engineering, San Francisco, California (1976) 492 – 497.

[18] Weinberg, G. M., Schulman, E. L., Goals and Performance
in Computer Programming. HUMAN FACTORS 16,1 (1974)
70-77.

[19] Yin, R. K. Case Study Research: Design and Methods. Sage
Publications, second edition, 1994.

APPENDIX A
Comments and blank lines are excluded from line counts (LOC).
Performance was measured on a Sun Fire 6800 server with 48
Gbyte of memory and 24 UltraSPARC III+ CPUs at 900 MHz
with 8 Mbyte of L2 cache each. The Fortran 95 compiler from the
Sun ONE Studio 8 Compiler Suite was used with typical switches:
• -fast (common performance-oriented switches)
• -xarch=v9b (UltraSPARC-III settings, for 64-bit binaries)

• -parallel –reduction (in cases where autoparallelization was
used)

