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ABSTRACT 

The High Productivity Computing Systems (HPCS) program 
seeks a tenfold productivity improvement. Software Engineering 
has addressed this goal in other domains and identified many 
important principles that, when aligned with hardware and 
computer science technologies, do make dramatic improvements 
in productivity. Do these principles work for the HPC domain?  

This case study collects data on the potential benefits of perfective 
maintenance in which human productivity (programmability, 
readability, verifiability, maintainability) is paramount. An HPC 
professional rewrote four FORTRAN77/MPI benchmarks in 
Fortran 90, removing optimizations (many improving distributed 
memory performance) and emphasizing clarity. 

The code shrank by 5-10x and is significantly easier to read and 
relate to specifications. Run time performance slowed by about 
2x.  More studies are needed to confirm that the resulting code is 
easy to maintain and that the lost performance can be recovered 
with compiler optimization technologies, run time management 
techniques and scalable shared memory hardware. 

Categories and Subject Descriptors 
D.2.0 [Software Engineering]. D.1.3 [Programming 
Techniques]: Concurrent Programming –parallel programming  

Keywords 
High Performance Computing, Software Productivity, Software 
Maintenance, HPCS 

1. INTRODUCTION 
The High Performance Computing (HPC) community faces a 
crisis on two fronts:  concerns about correctness demand increased 
verification [16], and programming itself is becoming more 
complex due to growing problem sizes and the need for massive 

parallelism.  The HPC productivity bottleneck is moving from 
machines to people, much as it has in other domains, but Software 
Engineering has had little impact, in no small part by failing to 
address traditional HPC priorities.  Successful application of 
Software Engineering principles and practices must be grounded 
in the particular practices and priorities of HPC, and must be 
substantiated with cost-benefit data. 

The case study presented here starts collecting that data.  Based on 
well-known HPC benchmark codes, the study establishes a 
baseline evaluation of benefits from a perfective maintenance 
exercise in which manual optimizations are discarded and modern 
programming language abstractions are exploited for readability. 

The outcome is dramatic.  Code shrank, in most cases by a factor 
of 10, and the relationship between code and specification, 
previously inaccessible, became evident.  The former is known to 
reduce software cost, and the latter is an essential step toward 
verification.  Run time performance typically suffered by a factor 
of 2, a penalty that may be neutralized by automatic optimization 
and parallelization at both compile and run time. 
These results emphasize the need for empirical studies and for a 
data-driven evaluation of solutions in the context of HPC.  Related 
benefits such as requirements tracing and portability must also be 
quantified and brought into the cost-benefit equation.  The study 
also casts light on the HPC community’s pursuit of performance 
at the expense of human effort.  A credible cost-benefit analysis 
starts with “modern” implementations, and explicitly includes 
human productivity [6]. 

This research is part of the High Productivity Computing Systems 
(HPCS) program, funded by the Defense Advanced Research 
Projects Agency (DARPA) to “create new generations of high end 
programming environments, software tools, architectures, and 
hardware components” from the perspective of overall 
productivity rather than unrealistic benchmarks [5]. 
Section 2 describes the study design.  Section 3 presents the 
results, followed by further analysis in Section 4.  Section 5 
discusses the findings in the broader context of the program, and 
mention of related work appears in section 6. 

2. THE EXPERIMENT 
This is an exercise in perfective maintenance: changing programs 
in ways that do not affect essential functionality but which 
improve maintainability [12][17]. 
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2.1 Hypothesis 
This empirical study has elements of both a quasi-experiment [8] 
and a case study [19] – the quasi-experiment due to the repeated 
test (treatment of reordering maintenance and performance goals) 
of different benchmarks and a case study due to the single 
professional subject. The use of hypotheses allow us to test and 
explore the amount of code size reduction and the amount of 
performance expense. For completeness there are two hypotheses. 
H1: Perfective maintenance will not reduce the code size. 

H2: Perfective maintenance will not change execution 
performance. 

2.2 Experimental Setting 
The subject is a computational physicist with fifteen years of 
experience in the computing industry, conventionally trained to 
prioritize performance over maintainability.  The experiment was 
performed using a modern software engineering development 
environment and workstation for development and a target 
supercomputer for benchmark execution. 

2.3 Experimental Design 
The subject revised four parallel benchmarks relevant to the HPC 
community (external validity):  three of the NAS Parallel 
Benchmarks (NPB) [13][15] and the ASCI sPPM benchmark [10], 
all written in FORTRAN 77 [2]. This report refers to both the 
NPB benchmark specifications, which date back to the NPB1 
release, and the NPB serial and parallel (MPI) implementations, 
which are part of the NPB2.3 release [13]. 

The goal of the perfective maintenance task was to prioritize 
maintainability over performance: 
• remove specialized code for distributed memory; 
• remove source level optimizations; 

• use abstractions provided by Fortran 90 [7], a modern 
superset of FORTRAN 77; and 

• remove code known to be not portable. 
The dependent variables are code size and execution performance 
on the target system. 
The construct validity threats are summarized as: do we think 
what and how we are changing and removing from the code 
accomplishes the priority shift? Clearly, the treatment 
accomplishes much of the priority shift, and the issue is one of 
how much more could be accomplished. The results in the next 
section allay much of this concern. 

The internal validity addresses the concern of undetected 
influences on the dependent variables code size and execution 
performance. Inspection of the code and executing benchmark test 
limit the possibility and magnitude of any influences. 

Finally, the external validity threats are effects that limit our 
ability to generalize the experiment. Specifically, we are studying 
benchmarks here – kernels of computation – to expect the ratio of 
size reduction to execution performance is not relevant and thus 
not a threat. We would like to generalize to the kernels of major 
computational codes. How the benchmarks are created, calibrated 
and maintain address this validity threat.  

3. DATA 
Table 1 summarizes quantitative results of the experiment, 
expressed both as reduction in lines of code (LOC) and run time 
performance penalty; measurement details appear in Appendix A.  
Each benchmark is discussed separately below, followed by 
comments on qualitative results. The experiments appear in the 
order they were conducted.  Some learning about Fortran 90 and 
computational fluid dynamics occurred during the experiments. 

Table 1: Summary of Results 

Benchmark LOC 
before 

LOC 
after 

Size 
reduction 

Slowdown 

NAS BT 3687 484 8x 3x 
NAS MG 1701 150 11x 2x?/6x? 
NAS CG 839 81 4x/10x  ≥2x 
ASCI sPPM 13606 1358 10x 2x 
Approximately 2x of the size reduction was due to removal of 
explicit parallelism, a result consistent with other studies of the 
size contribution of MPI [4][9]. 

3.1 NAS BT Benchmark 
BT is a “synthetic application,” representative of applications 
involving computational fluid dynamics.  The subject had general 
familiarity with NAS Parallel Benchmarks, but none with BT. The 
experiment took approximately two weeks of full time effort. 

Table 2 summarizes code size changes between the reference 
implementation and revised code.  These summaries are 
approximate, given the difficulty of precise accounting. 

Table 2: NAS BT Lines of Code 

LOC Description 
NPB 

(MPI) 
NPB 

(serial) 
Revised 

Global declarations 269 246 19 
Main program 105 74 54 
Initialize 201 148 19 
Time step & solve 1165 596 62 
Exact solution 13 13 35 
Compute dU/dt 625 596 82 
Compute left-hand sides 717 716 102 
Self test 247 228 111 
Inter-process comm.. 345 0 0 
Total 3687 2617 484 

Reductions varied considerably, for example: 
• Global declarations shrank for three reasons:  removal of 

confusing intermediate constants (manual optimizations); 
adoption of Fortran 90 array syntax and module support; and 
removal of variables that didn’t need to be global. 

• The main program and self test contain code for which little 
improvement was possible. 

• Initialize was reduced by relocating some code, removing 
unnecessary code (previously hard to detect because of code 
complexity), and adopting Fortran 90 array syntax. 

• Time step & solve showed the greatest reduction: removing 
hand optimizations and exploiting Fortran 90 array syntax 
and MATMUL. As the code clarified, comments (not 
counted in the LOC results) also shrank. 

• Exact solution acquired related bits of code from elsewhere. 



• Time differential dU/dt shrank, not only by exploiting 
Fortran 90 features (bringing the code in much closer 
alignment with the specification), but also by detection and 
removal of approximately 300 lines of redundant code. 

One of the most striking results was a dramatic increase in 
correspondence between specification and code (section 3.6).   

The revised code exhibited a 2.7x slowdown on the class W data 
set (one of several specified as part of the NAS Parallel 
Benchmarks) when compared to the original implementation. 

3.2 NAS MG Benchmark 
MG is a “kernel” benchmark, intended to characterize multigrid 
computations.  It is much shorter than BT:  the specification is 2.5 
pages of PDF, in contrast to 30 pages for BT.  The subject, who 
had prior implementation experience with the benchmark, set out 
to simplify the NPB reference code, but eventually rewrote it from 
scratch in a few hours.  The experiment took about one working 
day over a period of a week. Table 3 summarizes changes in code 
size between the reference implementation and the revised code. 

Table 3: NAS MG Lines of Code 
LOC Description 

NPB 
(MPI) 

NPB 
(serial) 

Revised 

Global declarations 80 89 0 

Main program 201 160 35 

Initialize v 202 213 35 

Operators 281 277 80 

Communications 665 144 0 

Other 272 124 0 

Total 1701 1007 150 

Code reductions were similar to those for the BT benchmark, and 
the result was similarly more concise and readable. 

The revised code performs poorly, largely due to a compiler 
problem (believed fixable) with stencil performance for array 
syntax. It appears that the code autoparallelizes reasonably well, at 
least to conventional scales.  Details appear the full report [11]. 

3.3 NAS CG Benchmark 
CG is another “kernel” benchmark, approximately as complex as 
MG and much simpler than BT. It is intended to characterize 
conjugate gradient computations. The subject had prior 
implementation experience with the benchmark.  The experiment 
took place over two days with most of the effort going to 
simplifying the NPB code and working with sparse matrices.  
Table 4 summarizes changes in code size between two of the 
reference implementations and the revised code. 

Table 4: NAS CG Lines of Code 
LOC Description 

NPB 
(MPI) 

NPB 
(serial) 

Revised 

Core functionality 839 309 81 

Data fabrication 197 197 158 

Total 1036 506 239 

The relative compactness of the derived code derives from much 
the same phenomena reported for the BT and MG benchmarks. 

A significant portion of the perfective maintenance effort (and the 
resulting code) for CG involved reverse engineering an arcane 
data fabrication algorithm used in the original code.  The 
algorithm, which is not fully determined in the specification, must 
be reproduced exactly in order to satisfy correctness checks.  
Using other reasonable algorithms for fabricating matrix data 
would permit overall code reduction closer to 10x. 
The revised code autoparallelizes well.  More details on scalability 
appear in the full report [11]. 

3.4 ASCI sPPM Benchmark 
sPPM is a computational fluid dynamics (CFD) benchmark that 
uses the "simplified" Piecewise Parabolic Method (sPPM). Its 
performance targets were 1 teraflops and beyond for procurements 
within the Accelerated Strategic Computing Initiative (ASCI) [1]. 
Although not a "real application," sPPM is the most complex of 
the four codes studied.  The shock-wave physics is handled with 
fairly involved numerical algorithms.  Performance optimizations 
include cache blocking, vectorization, multi-thread and multi-
process parallelism, overlapping communication and computation, 
and dynamically scheduling work. 

The subject was initially unfamiliar with the sPPM code and with 
CFD.  The experiment was part-time for less than one month. 
Table 5 summarizes changes in code size between reference 
implementation and revised code.  These line counts include 
makefiles, input decks, and so on, but these are relatively small. 

Table 5: sPPM Lines of Code 

LOC Description 

ASCI Revised 

Main program  2486       484 

Shock dynamics  2742      616 

Boundaries       3431      22 

Time stepping  2312        75 

Global declarations  238          25 

Some C I/O functions  366         54 

Timers         49      17 

Multi-platform threads support 1500       0 

Makefile       407       21 

Run script  57     23 

Input deck  7      10 

Reference output  11          11 

TOTAL 13606     1358 

 

Some reasons for code reduction have already been observed for 
the other benchmarks.  Additionally: 

• sPPM strives for functional and performance portability -- 
for example, targeting superscalars, vectors, etc. 

• sPPM suffers complexity from trying to maintain small 
access strides in memory for best performance. 

• A great deal of the I/O is unnecessarily complicated. 



• There was a great deal of support for legacy threads, which 
was made obsolete by adoption of OpenMP [14]. 

• Sophisticated schemes overlapped communication and 
computation, something that would be best left to platform 
infrastructure in an idealized world. 

• Routines were replicated with special case optimizations. 

Remarkably, given the extensive simplification of the code, the 
revised version on a single CPU ran only 2.1x slower on a test 
problem than the reference implementation.  The cause of the 
slowdown requires investigation, but is likely due, at least in part, 
to the large memory strides in the revised version. 

The challenge for computing systems is to achieve automatically 
the impressive scalability achieved by extensive manual 
techniques used in this reference implementation. There are 
reasons to be hopeful, including the large problem sizes that are 
needed to study multi-scale physics in 3d CFD and the higher-
level expression that results when the source code is improved, 
but demonstration of such automatic scalability remains the 
subject of future work. 

3.5 Manual Optimizations 
The subject reported severe difficulty understanding some of the 
manually optimized code: 

• global definition of many intermediate constants in an 
attempt to identify common subexpressions;  

• manually unrolled loops; and 
• functions expanded in-line, for example for derivatives. 

Some of those could actually be counterproductive in today’s 
computational environments. All optimizations confounded the 
relationship between specification and code. 

3.6 Expressiveness and Fortran 90 
Language features new to Fortran 90 enable code that is both 
shorter and expressed more directly in terms of the problem.  For 
example, the timed portion of the NAS MG reference 
implementation appears in Figure 1: 

call resid(u,v,r,n1,n2,n3,a,k) 
callnorm2u3(r,n1,n2,n3,rnm2,rnmu,nx(lt),ny(lt),nz(lt)) 
old2 = rnm2 
oldu = rnmu 
do  it=1,nit 
    call mg3P(u,v,r,a,c,n1,n2,n3,k) 
    call resid(u,v,r,n1,n2,n3,a,k) 
enddo 
call norm2u3(r,n1,n2,n3,rnm2,rnmu,nx(lt),ny(lt),nz(lt)) 

Figure 1:  NAS MG timed portion (original FORTRAN 77) 
This code excerpt implements the portion of the specification 
appearing in Figure 2, and the revised version appears in Figure 3. 

Each of the four iterations consists of the following two 
steps, 
r = v - A u   (evaluate residual) 
u = u + Mk r (apply correction) 
... 
Start the clock before evaluating the residual for the first 
time,  ... Stop the clock after evaluating the norm of the 
final residua.l 

Figure 2:  NAS MG timed portion (spec.)  
do iter = 1, niter 
  r = v - A(u)    ! evaluate residual 
  u = u + M(r)    ! apply correction 
enddo 
r = v - A(u)    ! evaluate residual 
L2norm = sqrt(sum(r*r)/size(r)) 

Figure 3:  NAS MG timed portion (revised Fortran 90) 
The evident correspondence between the two promises greater 
success and lower cost for code verification and maintenance. 

4. ANALYSIS 
The benefit (average reduction of LOC) and the cost (the average 
increase in execution time performance) are calculated simply as 
the ratio of the pretreatment quantity (LOC, execution time) 
divided by the post treatment quantity (LOC, execution time). 
Thus for the NAS BT benchmark we have 3687/4849 = 7.62 ~8. 
For execution time, we use the convention that the factor is 
always greater than 1 with the description of slower or faster to 
indicate more or less execution time. 

5. DISCUSSION 
The central result of this study, namely that HPC code can be both 
shrunk tenfold and dramatically clarified at the expense of a 
twofold performance penalty, suggests rethinking the balance 
between man and machine. A number of technologies offer the 
prospect of recovering some of the cost of the performance loss.  
There are many benefits. The lifetime costs of software are known 
to correlate highly, and linearly, with code size.  Also, the kind of 
code produced in this case study is much more likely to be 
portable, a significant factor in the lifetime cost of HPC software.  
Finally, the increasing importance of verification in HPC software 
will be well served by code that is not only smaller, but also 
dramatically easier to understand in relationship to the problem 
specifications.  Experiments are needed to assess these effects 
more precisely. 



The study validates some of the design goals for Fortran 90: high 
quality results were possible, levels of effort were moderate, and 
maintenance could often be done gradually with frequent 
regression testing.  Other modern languages for HPC might offer 
similar, or better, benefits, but the costs of learning and 
conversion must be a necessary part of the analysis. 

6. RELATED WORK 
Other studies have shown significant code reduction from 
distributed to shared memory implementations: approximately 2x 
for the NAS MG benchmark [4] and an average of 1.77 from MPI 
to serial implementations over 8 benchmarks [9]. 
These results are broadly consistent with Weinberg’s studies on 
the cost of multiple goals: “Optimization goals tend to be highly 
conflicting with other goals” [18].  Goals are also constraints; this 
case study can be seen as removing constraints on software that 
derive from the “accidental” rather the “essential” nature of the 
task, in the terminology of Fred Brooks (following Aristotle) [3].  
The “accidental” in this case includes the limitations of 
FORTRAN 77, the demand for utmost performance, and 
confounding platform architectures. 

7. CONCLUSIONS 
At the cost of a relatively modest performance penalty at run-
time, HPC software written in FORTRAN 77 can be improved 
through perfective maintenance with dramatic reduction in human 
cost (across the entire software life cycle) and reduce the growing 
cost of verification.  

This cost-benefit equation must be explored further, not only with 
investigation into performance improvements, but also by 
expanding the scope of the data across more HPC professionals 
and more kinds of HPC code.  This empirical data is needed to 
support the kind of credible analysis the HPC community will 
expect in order to evaluate solutions to the HPCS problem. 
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APPENDIX A 
Comments and blank lines are excluded from line counts (LOC).  
Performance was measured on a Sun Fire 6800 server with 48 
Gbyte of memory and 24 UltraSPARC III+ CPUs at 900 MHz 
with 8 Mbyte of L2 cache each.  The Fortran 95 compiler from the 
Sun ONE Studio 8 Compiler Suite was used with typical switches: 
• -fast (common performance-oriented switches) 
• -xarch=v9b (UltraSPARC-III settings, for 64-bit binaries) 

• -parallel –reduction  (in cases where autoparallelization was 
used)

 


