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S o f t w a r e 
e n g i n e e r i n g

Hardware improvements do little to improve real productivity in scientific programming. 
Indeed, the dominant barriers to productivity improvement are now in the software processes. 
To break the gridlock, we must establish a degree of cooperation and collaboration with the 
software engineering community that does not yet exist.

Scientific Computing’s  
Productivity Gridlock: How  
Software Engineering Can Help

L arge-scale highly parallel scientific  
program developers have long struggled 
with a productivity crisis: machines 
grow bigger and faster, but it gets more 

and more difficult to get useful work done. The 
DARPA High Productivity Computing Systems 
(HPCS) program challenged industry vendors to 
design a dramatically different kind of petascale 
computing system. According to HPCS, such a 
system should be faster in the traditional hard-
ware sense, as well as 10 times more productive 
at supporting scientific programming applications 
of strategic national importance.1 Acknowledging 
that productivity is poorly understood, DARPA 
further challenged the vendors to collaborate with 
the research community to develop an under-
standing of productivity that could further guide 
and help evaluate high-end systems design.

Sun Microsystems took a broad view of the pro-
ductivity problem. Guided by software and hard-
ware technology studies, we assembled a team 
of researchers with expertise in cultural anthro
pology, physics, scientific programming, empiri-
cal software engineering, software development 
technologies, and programming languages. We 
then studied the missions, technologies, and prac-
tices at government-funded institutions (DARPA’s 
“mission partners”). These institutes represent 
scientific computing’s highest end—that is, they 
have the biggest machines and the strongest im-
perative to maximize both hardware utilization 
and large-scale parallelism. 

Our results helped us design a new class of machine 
for productive high-end scientific programming.2 
More broadly, we gained insight into the produc-
tivity problem’s nature and underlying causes, 
as well as what they imply about how we might 
navigate beyond this crisis. These insights are our 
focus here. 

Although the high-performance computing 
community typically emphasizes hardware issues, 
our findings suggest that the dominant barri-
ers to productivity improvement are in the soft-
ware processes. The development environment’s 
unique goals and constraints have led the scien-
tific programming community to evolve its own 
characteristic software development approach. 
As our workflow studies show, this approach cre-
ates bottlenecks, imposing critical constraints on 
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developers’ ability to improve real (end-to-end) 
productivity. Moreover, these bottlenecks are 
inherent in the approach—particularly in its re-
liance on having multidisciplinary experts hand-
craft the code—and hence we can’t remove the 
blocks without fundamentally changing the way 
scientific codes are developed. 

Although the software engineering community 
can help here, doing so will require a level of col-
laboration and cooperation between the software 
engineering and scientific computing communi-
ties that currently doesn’t exist.

Studying Productivity:  
The Scientific Basis
A primary objective of Sun’s approach has been 
to establish a sound scientific basis for studying 
software productivity in the high-performance 
computing domain. DARPA’s programmatic goal 
was to address “real productivity,” which it de-
fined as “the ability to develop and deploy high- 
performance supercomputer applications at an  
acceptable time and cost.”1 While recognizing that 
productivity was ill defined, the goal established 
that the problem’s scope was not just hardware 
performance, but also all aspects of the software 
development life cycle. Such a scope includes soft-
ware development’s human and organizational  
issues, the system administration, and the scien-
tists who would use the system.

Given this scope, we identified two important 
goals:

embrace the broadest possible view of produc-•	
tivity, including not only customary metrics—
such as peak hardware speed and resource 
utilization—but also human tasks, skills, moti-
vations, organizations, and culture; and
establish an investigation on the soundest pos-•	
sible scientific basis, drawing on established re-
search methodologies from all the relevant fields, 
including those unfamiliar within many research 
communities. (One example here is time and mo-
tion studies of software developers at work.3)

To accomplish these goals, we assembled an in-
terdisciplinary team with broad expertise across 
the social, physical, and computational sciences. 
This team created a scientific framework for ex-
ploiting multiple research disciplines appropriate 
to the phenomena under investigation.4 Our work 
is thus grounded in empirical data, validated by 
multiple approaches (“triangulation”), and most 
importantly, applied to the professionals that the 
work actually targets.

We’ve described details of the research para-
digm, the studies, and their results elsewhere.2 
Here, we’ve synthesized our findings to convey a 
broad understanding of the productivity problem’s 
nature from the intuitive perspective as a process 
for producing scientific results. Our problem 
statement and recommendations are thus neces-
sarily broad as well, but are based not on anecdotal 
evidence but rather represent conclusions drawn 
from careful study.

Scientific Computing’s  
Productivity Crisis
In studying scientific programming practices, we 
encountered people possessed of extraordinary 
skill, dedication, and resourcefulness in their 
pursuit of strategically important missions that 
routinely entailed unprecedented programming 
challenges. Simultaneously, we saw many mani-
festations of a productivity crisis: frustratingly 
long and troubled software development times, a 
growing shortage of expertise in critical areas,5 a 
dysfunctional market in supporting tools,6 acute 
problems in achieving required portability (both 
portable software and portable programming 
skills), and growing concern about the reliability 
of scientific results based on that software.7 

Although the broader computing community 
has experienced and addressed many of these  
issues in other domains, a “software chasm” has 
historically inhibited knowledge transfer into the 
scientific programming domain, where modern soft
ware engineering practices scarcely exist.8 This 
communication gap is a recurring theme through-
out our findings; it’s a gap grounded in the diverse 
values and constraints of the scientific and general 
computing communities (from which scientific 
programmers evidently seceded decades ago).

So, rather than adapt and apply software engi-
neering technologies (such as processes, methods, 
and tools), scientific programmers overwhelm-
ingly favor handcrafted solutions because “the 
computer scientists don’t address our needs” and 
“there isn’t enough money.” Although such views 
might be justified by experience, they’ve isolated 
the scientific programming community from 
much needed help. The community has essentially 
become stuck at local optima—that is, approaches 
such as platform-specific optimizations that might 
help address near-term problems but that provide 
no clear path to (and indeed, often inhibit) global 
productivity improvement. This inability to start 
solving productivity problems, even as overall 
productivity declines, is the so-called productivity 
gridlock in scientific computing.
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The Communication Gap
Our research shows two cultures “separated by a 
common language.” Visualize for a moment scien-
tific computing as an isolated island, colonized 
by explorers from afar and then abandoned for 
decades. Returning visitors (software engineers) 
find the inhabitants (scientific programmers)  
apparently speaking the same language, but  
communication—and thus collaboration—is nearly 
impossible; the technologies, culture, and language 
semantics themselves have evolved and adapted to 
circumstances unknown to the original colonizers.

The visitors marvel at the islanders’ intelligent 
adaptation and extraordinary accomplishments, 
but are simultaneously appalled at the primitive 
conditions in which they live. The islanders, for 
their part, often laugh at the visitors, whose boat-
loads of modern technologies will surely fail to 
help them survive the harsh local environment.

Divergent values and constraints nearly preclude 
effective communication: one side sees the other 
as backward and stubborn; the other side sees the 
former as arrogant and irrelevant. Both are correct, 
within their own frames of reference, but the status 
quo offers little possibility for improvement.

Scientific Programming vs.  
Software Engineering
In visiting the scientific programming commu-
nity, software engineers note two striking differ-
ences from other computing domains: the tools, 
practices, and even the vernacular are unfamiliar, 
and few people seem to be trained primarily in com-
puter science.

We gathered a baseline of data about scien
tific computing environments—including several 
government-funded laboratories9—and identified 
their distinctive characteristics. As the following 
list shows, some characteristics are unique to sci-
entific programming, but many differ mainly in 
relative emphasis.

Words mean different things. •	 Scientific program-
mers write “codes.” A “serial” code doesn’t use 
parallelism. “Scaling” a serial code rewrites and 
adapts it for parallel execution. Such terms are 
unknown in the general software engineering 
community.
It’s about the science•	 . Codes are valued only to 
the extent that they efficiently solve problems at 
hand.
Scientific codes are expensive•	 . Small teams of two 
to eight highly trained professionals (not soft-
ware engineers) might spend four to six years 
developing new mathematical models, adapting 

numerical techniques, and creating a highly paral-
lel code to solve a particular problem.
Codes are long lived•	 . A successful scientific code 
might be maintained, evolved, and extended for 
20 to 30 years, as long as it solves problems for the 
“customers.”
Performance really matters.•	  Addressing ever 
larger and more complex problems, scientific 
programmers focus almost exclusively on per-
formance. Typically half of a project’s develop-
ment time is spent scaling and optimizing an 
otherwise sound scientific code. Manual opti-
mizations, machine-specific tricks, and mathe-
matical shortcuts are common, possibly binding 
the code closely to a particular machine and 
software environment. The only development 
tools that matter are dedicated to performance.
Hardware platforms change often•	 . A high-end ma-
chine typically becomes obsolete in four years. 
Codes port often, even during initial develop-
ment, and might require significant rework to 
improve performance.
Portability also really matters•	 . In perpetual con-
flict with performance goals, developers direct 
great effort toward code portability. The road is 
littered with once useful codes for which porting 
ceased to be funded.
It’s all Fortran 77 and C++.•	  New projects still 
commit to these languages and, once commit-
ted, don’t change. These are the safe choices: 
the only two likely to be supported on every 
system for decades into the future.
Hardware costs dominate.•	  Personnel costs play 
a small role in hardware decisions. The recent 
migration from shared to distributed memory 
machines was motivated by inexpensive micro-
processors, but came at the expense of more diffi-
cult programming. An example here is requiring 
standardization on a low-level message-passing 
interface (MPI) library for parallelization.

The properties that scientific programmers 
consider critical (performance, hardware costs, 
and portability) are among the least significant to 
most software engineers. In fact, current software 
engineering practice intentionally abstracts away 
from such hardware properties. Conversely, issues 
important to software engineers (highly main-
tainable code, robust programming languages 
and practices, increasingly higher abstraction lev-
els, time to market) receive almost no attention 
from scientific programmers.

As a result, solutions that appear natural to 
software engineers often don’t work and might 
actually be counterproductive when applied in the 
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scientific programming context. This has resulted in 
antipathy between the two camps and fostered the 
view that software engineering has little to offer 
the scientific programming community.

In fact, software engineers don’t understand 
the scientists’ problems, most of which relate to 
topics that are barely taught in computer science 
curricula (such as floating-point arithmetic10). Even 
worse, scientific computing’s distinct needs create 
critical conflicts among requirements—such as  
performance, hardware utilization, and portability—
that are seldom experienced elsewhere.

Where Are the Productivity Bottlenecks?
To identify how and where current practices limit 
code development, we constructed an empirical 
workflow model of scientific programming activi-
ties. Among our data sources were extended ob-
servation of scientific programmers at work. For 
this, we drew on telemetric instrumentation of 
development tools, time-stamped journals writ-
ten by the programmers, code inspections, and 
interviews.

Early analyses revealed that looking for bottle-
necks in the traditional “edit-compile-run” loop 
offered little useful insight. For example, a coding 
period might be part of the mainstream code devel-
opment, but it also might be an experiment—that 

is, downloading, modifying, and running a piece 
of code just to learn something. Alternately, time 
away from the keyboard (of which there’s a great 
deal) might include a phone call for debugging 
help or additional insight into a numerical com-
putation method.

As Figure 1 shows, our analysis also suggests 
that a realistic model must focus on the required 
skills as much as the time spent. This is a recur-
ring theme in case studies of both successful and 
failed projects9 and the key barrier to new pro-
grammers’ effectiveness.11 

Data from all of our studies revealed four gen-
eral areas of effort.

Developing correct scientific programs•	 . This activ-
ity is characterized by both exploring an area 
of science and searching for relevant and trac-
table numerical methods. The outcome is a se-
rial code that addresses the target problem and 
is scientifically sound.
Serial optimization and tuning.•	  This includes re-
fining a serial code to ensure correctness and 
desired accuracy levels and improving serial per-
formance (a critical predecessor to paralleliza-
tion). This effort draws heavily on mathematical 
and scientific insight, such as knowing where to 
cut corners without decreasing accuracy.

Figure 1. Programming workflow. As case studies of successful and failed projects show, realistic models 
must focus as much on the required skills as the time spent.
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Code parallelization and optimization.•	  This activ-
ity entails modifying code for parallel execution 
and requires additional optimization and tun-
ing. Decomposing a numerical code for efficient 
distributed memory execution requires parallel 
programming expertise as well as mathemati-
cal and scientific insight. This phase can occupy 
half of a development cycle.
Porting and modifying existing parallel code•	 . This 
activity migrates a code to a new system and 
must maintain correctness and as much re-
source utilization and performance as possible.

This workflow model revealed extraordinary 
challenges in two general categories:

Manual programming. •	 This activity involves a 
tremendous amount of effort—programming 
and otherwise—that isn’t intrinsic to the scien-
tific problem domain, but rather emerges from 
the chosen technologies.
Expertise.•	  Most tasks demand multiple skill sets, 
including the domain science, numerical meth-
ods and programming, and parallelization.

These areas represent key bottlenecks in existing 
scientific programming processes that can’t be re-
moved without making fundamental changes to 
the way scientific codes have traditionally been 
developed.

What Is the “Expertise Gap”?
We revisited suggestions that an “expertise gap” 
lies at the heart of the crisis,11 including one 
agency’s assessment that its main problem was 
that it couldn’t find enough people who could do 
the work. Drawing on our own case studies and 
five others gathered in collaboration with the re-
search community,9 we identified some common 
patterns.

In a representative case, one team member was 
recruited for specialized scientific knowledge, but 
had little programming expertise. A year spent 
collaborating with a scientific programming ex-
pert produced a code that was judged a failure; the 
outcome was blamed on insufficient communica-
tion between the two. Another project stalled at 
a later phase when no parallelization expert was 
available—a situation resolved only when a man-
ager with this experience stepped in, leaving the 
management role (running interference with the 
customer, negotiating resources) to be backfilled.

Across all case studies, four distinct skill sets 
were seen as essential: domain science, scientific 
programming, scaling, and management. The skills 

are only useful, however, when they synchronize 
through communication and collaboration.

This is the expertise gap: it’s difficult to find in-
dividuals or a set of individuals with the required 
mix of expertise in a specific application domain 
and experience on a specific hardware platform. 
This problem only worsens as machines become 
more complex. Further, expertise is developed 
through what amounts to an apprenticeship pro-
gram that takes years: most professionals we in-
terviewed saw their careers as based in science 
and engineering, with software playing the role 
of a necessary craft to be learned on the job or in 
graduate school.

Clearly, the expertise gap is a serious obstacle 
to productivity and limits the scientific program-
ming community’s ability to “scale out” to more 
application domains.5 

Where Are the Tools?
“Better tools” should be an effective response 
to the expertise gap, making individual experts 
more productive. Unfortunately, the tools situ-
ation in the scientific programming community 
offers scant reason for optimism. Indeed, as we 
discovered, the unavailability of crucial tools (the 
“means of production” in economic terms) is often 
held responsible for a productivity decline.6 

Pervasive complaints about tools included that 
they were hard to learn, don’t scale, differ across 
platforms, are slow to appear on new platforms, 
and are poorly supported and too expensive. Sev-
eral factors contribute to this state.

The general computing community’s high- •	
productivity tools—such as the current genera-
tion of integrated development environments—
are built around assumptions and practices that 
don’t apply to scientific programming.
Scientific code becomes tightly bound to the •	
specialized tools used to build it, including 
compilers, libraries, and performance analyz-
ers. Lifetime maintenance depends on tools 
that might not be available on every platform 
over the decades.
Purchasing decisions and budgeting models •	
are short-term and hardware-focused. Vendors 
have little incentive to supply quality software 
(operating systems, development tools, job 
management); this is particularly true in rela-
tion to long-term portability. 
The field is highly specialized and so are the •	
tools. Because the market is small, prices are 
high, which discourages underfunded research 
institutions from buying the best tools.
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Tool investment by those who fund scientific •	
missions is insufficient.12 The small companies 
who market tools (usually drawing on tech-
nologies developed in research organizations) 
often fail.
When smaller companies are sold, and espe-•	
cially when they’re acquired by system ven-
dors, successful cross-platform tools sometimes 
disappear from the market. One project we 
interviewed lost a year to recoding when a high-
quality compiler disappeared in this fashion.

The result? Scientific programming projects view 
tools as a risk, not as a lever of productivity. Sup-
port models for this vital infrastructure are sim-
ply not aligned with its strategic value. To cope, 
scientific programming shops divert project re-
sources into developing open source tools—not as 
an avenue to innovation as they might wish, but 
as a risk-mitigation strategy to ensure long-term 
access to the tools they already use.

Code Correctness and Productivity
While code correctness isn’t traditionally consid-
ered a productivity issue, our multidisciplinary 
analysis suggests that it should be a major con-
cern. We define increased (real) productivity here 
as increased production of useful scientific results 
for the resources expended. It follows trivially 
that producing more but scientifically incorrect 
results doesn’t increase productivity and might in 
fact signify a decrease.

In conjunction with our analysis of workflow 
and the expertise gap, this led us to ask the ques-
tion: What levels of effort and expertise are required 
to assure the scientific correctness of codes? As with 
other skills, we found that the effort involved, the 
length of time, and the expertise required result in 
a distinct productivity bottleneck. This challenge, 
simply put, is trust in computational outcomes’ va-
lidity. If the results of scientific calculations can’t be 
fully trusted, their value to the scientific community 
clearly diminishes. Indeed, this is now viewed as 
“the most serious limiting factor for computa-
tional science.”7 

When asked about strategies for building con-
fidence in their codes, the scientific programmers 
we studied answered strictly in terms of the sci-
ence. Typical responses? That the output “looked 
right” to the domain scientist, and confidence in 
the code grew over time. One scientist lament-
ed the abandonment of an earlier code because  
it took them five years to start feeling “com-
fortable” with its replacement. A software engi-
neer would seriously question a validation and 

verification strategy that relies on software output 
inspection and takes years to carry out. 

Scientists are trained to manage threats to valid-
ity in experimental design but not in their codes. 
Software engineers have over the years developed 
many tools, technologies, and practices that con-
tribute to increased software quality and reliabil-
ity, but these appear largely unknown to scientific 
programmers.

Toward Solutions
Software engineering has much to offer toward 
solving this crisis, but only if the two sides can 
establish communication across a chasm of differ-
ing values and constraints. This will demand flex-
ibility on both sides.

Software Engineering’s Contribution
The software engineering community has de-
veloped a wide range of processes, methods, and 
techniques that help address productivity across 
the complete software life cycle. Some of these 
approaches could help resolve the current pro-
ductivity bottlenecks, but only with effective col-
laboration and training. Others are conceptually 
relevant, but haven’t been developed within sci-
entific computing’s assumptions and constraints. 
Such technologies often deliberately abstract away 
control over parameters that scientific program-
mers consider critical.

The upshot is that software engineers must 
return to their basic strategies and reapply them 
to develop and adapt to scientific computing’s 
demands. In the near term, scientific program-
mers must be given tools to observe and control 
the performance-related parameters that matter 
to them. Successful longer-term advances will 
make those parameters less important. In every 
instance, software engineers must be prepared to 
make the case for these technologies using scien-
tific programming’s frame of reference, not just 
that of software engineering.

Software engineering also offers strategies for 
managing the expertise gap, though specific tech-
nologies must be reengineered to address scien-
tific computing’s needs and constraints. 

Overall, we identified three basic software en-
gineering strategies that are successful in other 
domains and could help ameliorate existing pro-
ductivity bottlenecks by guiding the development 
of better scientific computing programming envi-
ronments (languages, tools, instrumentation, and 
so on).

The first strategy is automation. The level-of-
effort bottleneck can be improved only by asking 
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the machine to perform more of the repetitive 
work. Parallelization is at the top of this list for 
scientific computing, followed by data layout and 
latency management, among others.

The second strategy is abstraction. The exper-
tise gap arises from the inherent, irreducible dif-
ficulty in developing and maintaining expertise 
in three distinct disciplines over time. To address 
the bottleneck this entails, we must make it easier 
for scientists to write correct, efficient programs 
without also having to become experts in parallel 
programming and the idiosyncrasies of particu-
lar hardware platforms (such as complex memory 
models and high hardware failure rates). We must 
dedicate substantial automation toward provid-
ing scientifically relevant computational abstrac-
tions. Important higher-level abstractions will 
allow scientific programmers to express desired 
computations in ways that reflect the science and 
mathematics of the problem domain rather than 
the computing system.

The final strategy is measurement. Many new 
technologies will be needed here; to succeed, we 
must observe traditional parameters critical to 
scientific programming (such as processor utili-
zation), along with feedback and continuous im-
provement in software development practices.

Scientific Programming’s Role
Members of the scientific programming commu-
nity have developed extraordinary mastery of nu-
merical algorithms, optimization techniques, and 
problem decomposition, but they fail to appreci-
ate how their goals have outgrown their software 
development practices. Addressing this requires 
two steps: investment and modernization.

The scientific programming community’s in-
sufficient investment in software infrastructure 
is ultimately responsible for many of the prob-
lems we observed.12 Those who fund missions 
and lead the community must broaden their view 
of software development. This means optimiz-
ing across the entire development cycle—if not 
multiple cycles—rather than optimizing locally 
on next-run performance. It also means funding 
software infrastructure development, indepen-
dent of specific vendors, which will add stability 
and create opportunity for the needed productiv-
ity growth.

Scientific programming must also modernize. 
Antipathy toward computer scientists must be 
abandoned and a fair hearing given to the case for 
improved practices. When the available technolo-
gies don’t fit, scientific programmers must enlist 
software engineers to adapt them.

Promising Experiments
We ran a set of experiments that concretized the 
kind of productivity improvement that software 
engineering techniques can offer in the scientific 
computing realm. A professional scientific pro-
grammer rewrote several well-known HPC codes. 
The simplest were kernels from the NAS Parallel 
Benchmark suite (www.nas.nasa.gov/Resources/
Software/npb.html), while the largest were the 
14,000-line ASCI computational fluid dynam-
ics code, Simplified Piecewise Parabolic Method 
(www.lcse.umn.edu/research/sppm/README.
html), and the 7,000-line Gyrokinetic Toroidal 
Code code (http://gk.ps.uci.edu/GTC) for study-
ing plasma microturbulence in fusion devices. 

The objective of rewriting the code was to 
demonstrate improved programmability (that is, 
improved readability, maintainability, and verifi-
ability). Specific changes included

stripping out explicit MPI data distribution;•	
removing manual optimizations;•	
exercising modern languages features, such as •	
Fortran 90 and array syntax; 
refactoring source code to increase the abstrac-•	
tion level;
recasting source code to represent more clearly •	
the underlying specification or mathematical 
algorithms;
increasing code reuse, whether of user-written •	
routines or available library functions (“copy 
and paste” lets you quickly write new source 
code, but it has a terrible impact on source bloat 
and maintainability); 
removing platform-specific source code;•	
eliminating performance instrumentation, as •	
its purpose is better served by performance 
analysis tools; and
removing bug workarounds and other historical •	
relics.

We achieved our experiments’ objectives and 
obtained encouraging results in four areas: read-
ability, compactness, expressivity of existing lan-
guages, and performance.

Readability. The rewritten code became consid-
erably more readable and thus verifiable against 
algorithmic specifications. Figure 2 shows this 
at a small scale in the benchmark excerpt. We 
consulted with Stephane Ethier, who wrote the 
much larger GTC code, and he said he was im-
pressed with the rewritten code’s compactness 
and its expression of the underlying plasma 
physics.
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Compactness. As Figure 3 shows, we reduced source 
code from three to 11 times its original volume 
across a range of cases. Approximately two times 
the size reduction was due to removal of explicit 
data decomposition and distribution; this result is 
consistent with other studies of MPI’s contribu-
tion to code size. This simple reduction in code 
volume alone is significant, as the lifetime costs of 
software correlate strongly with code size.13

Expressiveness. Another striking result was that 
an existing programming language—in this 
case, Fortran 90 and its array syntax—proved 
to be quite expressive. Our first rewriting ex-
periments weren’t constrained to constructs 
or languages that could be compiled, or even 
that existed at all. That is, they were invita-
tions to “program outside the box.” Despite that 
freedom, the experiments tended to produce 
programs using existing language features—
admittedly, these were sometimes “modern” fea-
tures ahead of widespread adoption or mature 
compiler support.

We also recognized that high-level program-
ming languages aren’t always required. Some-
times, scientists want to “program in mathematics” 
for quick prototyping. For large-scale production 
programs, however, they want to program partic-
ular algorithms, incorporating the special insights 
that would otherwise leave many orders of perfor-
mance magnitude behind.

Performance. The scientific programming com-
munity’s first concern is cost in performance, 
including parallel speedup. In our experiments, 
the programmer found the performance shortfall 
to be rather tolerable—around two times for the 
bulk of considered cases. This held in cases up to 
even 100 threads, with support from commercial, 

automatically parallelizing compilers and large-
scale shared memory hardware.14 Many scientific 
programmers would see such a performance loss as 
quite serious. However, our studies convinced us 
that the performance loss is recoverable through 
strategic manual optimizations—or ideally from 
community investment in the supporting tech-
nologies. Software examples include

interprocedural analysis, including for extract-•	
ing concurrency;
low-overhead work-sharing and stealing, for ef-•	
ficient concurrency;

Figure 2. Comparing the code. (a) The original Fortran 77 code 
and (b) the specification. (c) The rewritten Fortran 90 code is both 
compact and expressive of the underlying plasma physics.

call resid(u,v,r,n1,n2,n3,a,k)
callnorm2u3(r,n1,n2,n3,rnm2,rnmu,nx(lt),ny(lt),nz(lt))
old2 = rnm2
oldu = rnmu
do it = 1,nit
 call mg3P(u,v,r,a,c,n1,n2,n3,k)
 call resid(u,v,r,n1,n2,n3,a,k)
enddo
call norm2u3(r,n1,n2,n3,rnm2,rnmu,nx(lt),ny(lt),nz(lt))

(a)

Each of the four iterations consists of the following two steps,
r = v - Au (evaluate residual)
u = u + Mkr (apply correction)
...
Start the clock before evaluating the residual for the first time, ...
Stop the clock after evaluating the norm of the final residual.

(b)

do iter = 1, niter
 r = v - A(u) ! evaluate residual
 u = u + M(r) ! apply correction
enddo
r = v - A(u) ! evaluate residual
L2norm = sqrt(sum(r*r)/size(r))

(c)

Figure 3. Reduction ratio of the original benchmark code size in noncomment source lines divided by rewritten 
benchmark code size in NCSL. Standards compared are Nucleic Acid Builder (NAB); the Scalable Synthetic 
Compact Application #2 (SSCA2) graph analysis benchmark; Gyrokinetic Toroidal Code (GTC); Conjugate 
Gradient (CG); Block Tridiagonal (BT); Multigrid (MG); and Simplified Piecewise Parabolic Method (sPPM).
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mature compiler support for modern language •	
features, rather than just legacy or conservative 
programming practices; and
runtime parallelization or concurrency checks.•	

Hardware examples include

support for globally addressable memory;•	
low-latency and high-throughput interconnects;•	
latency-hiding techniques, such as scout threads •	
and prefetch; and
concurrency-supporting techniques such as •	
transactional memory and active messages.

Application developers. Finally, support for higher 
programmability in scientific software must also 
come from the application developers them-
selves. Too often, software is developed expedi-
ently, at the expense of verifiability or long-term 
maintenance. Expressive, compact code requires 
programming for expressivity from the start, fol-
lowed by ongoing perfective maintenance (rewrit-
ing the code to achieve a nonfunctional goal) over 
a program’s lifetime.

Although we need more studies to quantify 
these results, we see an opportunity for concrete 
return-on-investment analysis that can make the 
case for dramatic change in scientific program-
ming practices.

Scientific computing’s productivity grid-
lock can be overcome, but only if pro-
gramming practices change significantly.2 
Doing more of the same is a recipe for 

certain failure.
Success will require revisiting many common 

assumptions in software engineering and then 
re-engineering those solutions accordingly. It will 
also require far greater communication and col-
laboration between the software engineering and 
scientific computing communities. Our experi-
ence working in the latter suggests that this col-
laboration will be both fruitful and rewarding.  
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