
30	 This article has been peer-reviewed.� Computing in Science & Engineering

S o f t w a r e
e n g i n e e r i n g

Hardware improvements do little to improve real productivity in scientific programming.
Indeed, the dominant barriers to productivity improvement are now in the software processes.
To break the gridlock, we must establish a degree of cooperation and collaboration with the
software engineering community that does not yet exist.

Scientific Computing’s
Productivity Gridlock: How
Software Engineering Can Help

L arge-scale highly parallel scientific
program developers have long struggled
with a productivity crisis: machines
grow bigger and faster, but it gets more

and more difficult to get useful work done. The
DARPA High Productivity Computing Systems
(HPCS) program challenged industry vendors to
design a dramatically different kind of petascale
computing system. According to HPCS, such a
system should be faster in the traditional hard-
ware sense, as well as 10 times more productive
at supporting scientific programming applications
of strategic national importance.1 Acknowledging
that productivity is poorly understood, DARPA
further challenged the vendors to collaborate with
the research community to develop an under-
standing of productivity that could further guide
and help evaluate high-end systems design.

Sun Microsystems took a broad view of the pro-
ductivity problem. Guided by software and hard-
ware technology studies, we assembled a team
of researchers with expertise in cultural anthro
pology, physics, scientific programming, empiri-
cal software engineering, software development
technologies, and programming languages. We
then studied the missions, technologies, and prac-
tices at government-funded institutions (DARPA’s
“mission partners”). These institutes represent
scientific computing’s highest end—that is, they
have the biggest machines and the strongest im-
perative to maximize both hardware utilization
and large-scale parallelism.

Our results helped us design a new class of machine
for productive high-end scientific programming.2
More broadly, we gained insight into the produc-
tivity problem’s nature and underlying causes,
as well as what they imply about how we might
navigate beyond this crisis. These insights are our
focus here.

Although the high-performance computing
community typically emphasizes hardware issues,
our findings suggest that the dominant barri-
ers to productivity improvement are in the soft-
ware processes. The development environment’s
unique goals and constraints have led the scien-
tific programming community to evolve its own
characteristic software development approach.
As our workflow studies show, this approach cre-
ates bottlenecks, imposing critical constraints on

Stuart Faulk
University of Oregon
Eugene Loh and Michael L. Van De Vanter
Sun Microsystems
Susan Squires
Tactics, LLC
Lawrence G. Votta
Brincos

1521-9615/09/$26.00 © 2009 IEEE

Copublished by the IEEE CS and the AIP

November/December 2009 � 31

developers’ ability to improve real (end-to-end)
productivity. Moreover, these bottlenecks are
inherent in the approach—particularly in its re-
liance on having multidisciplinary experts hand-
craft the code—and hence we can’t remove the
blocks without fundamentally changing the way
scientific codes are developed.

Although the software engineering community
can help here, doing so will require a level of col-
laboration and cooperation between the software
engineering and scientific computing communi-
ties that currently doesn’t exist.

Studying Productivity:
The Scientific Basis
A primary objective of Sun’s approach has been
to establish a sound scientific basis for studying
software productivity in the high-performance
computing domain. DARPA’s programmatic goal
was to address “real productivity,” which it de-
fined as “the ability to develop and deploy high-
performance supercomputer applications at an
acceptable time and cost.”1 While recognizing that
productivity was ill defined, the goal established
that the problem’s scope was not just hardware
performance, but also all aspects of the software
development life cycle. Such a scope includes soft-
ware development’s human and organizational
issues, the system administration, and the scien-
tists who would use the system.

Given this scope, we identified two important
goals:

embrace the broadest possible view of produc-•	
tivity, including not only customary metrics—
such as peak hardware speed and resource
utilization—but also human tasks, skills, moti-
vations, organizations, and culture; and
establish an investigation on the soundest pos-•	
sible scientific basis, drawing on established re-
search methodologies from all the relevant fields,
including those unfamiliar within many research
communities. (One example here is time and mo-
tion studies of software developers at work.3)

To accomplish these goals, we assembled an in-
terdisciplinary team with broad expertise across
the social, physical, and computational sciences.
This team created a scientific framework for ex-
ploiting multiple research disciplines appropriate
to the phenomena under investigation.4 Our work
is thus grounded in empirical data, validated by
multiple approaches (“triangulation”), and most
importantly, applied to the professionals that the
work actually targets.

We’ve described details of the research para-
digm, the studies, and their results elsewhere.2
Here, we’ve synthesized our findings to convey a
broad understanding of the productivity problem’s
nature from the intuitive perspective as a process
for producing scientific results. Our problem
statement and recommendations are thus neces-
sarily broad as well, but are based not on anecdotal
evidence but rather represent conclusions drawn
from careful study.

Scientific Computing’s
Productivity Crisis
In studying scientific programming practices, we
encountered people possessed of extraordinary
skill, dedication, and resourcefulness in their
pursuit of strategically important missions that
routinely entailed unprecedented programming
challenges. Simultaneously, we saw many mani-
festations of a productivity crisis: frustratingly
long and troubled software development times, a
growing shortage of expertise in critical areas,5 a
dysfunctional market in supporting tools,6 acute
problems in achieving required portability (both
portable software and portable programming
skills), and growing concern about the reliability
of scientific results based on that software.7

Although the broader computing community
has experienced and addressed many of these
issues in other domains, a “software chasm” has
historically inhibited knowledge transfer into the
scientific programming domain, where modern soft
ware engineering practices scarcely exist.8 This
communication gap is a recurring theme through-
out our findings; it’s a gap grounded in the diverse
values and constraints of the scientific and general
computing communities (from which scientific
programmers evidently seceded decades ago).

So, rather than adapt and apply software engi-
neering technologies (such as processes, methods,
and tools), scientific programmers overwhelm-
ingly favor handcrafted solutions because “the
computer scientists don’t address our needs” and
“there isn’t enough money.” Although such views
might be justified by experience, they’ve isolated
the scientific programming community from
much needed help. The community has essentially
become stuck at local optima—that is, approaches
such as platform-specific optimizations that might
help address near-term problems but that provide
no clear path to (and indeed, often inhibit) global
productivity improvement. This inability to start
solving productivity problems, even as overall
productivity declines, is the so-called productivity
gridlock in scientific computing.

32� Computing in Science & Engineering

The Communication Gap
Our research shows two cultures “separated by a
common language.” Visualize for a moment scien-
tific computing as an isolated island, colonized
by explorers from afar and then abandoned for
decades. Returning visitors (software engineers)
find the inhabitants (scientific programmers)
apparently speaking the same language, but
communication—and thus collaboration—is nearly
impossible; the technologies, culture, and language
semantics themselves have evolved and adapted to
circumstances unknown to the original colonizers.

The visitors marvel at the islanders’ intelligent
adaptation and extraordinary accomplishments,
but are simultaneously appalled at the primitive
conditions in which they live. The islanders, for
their part, often laugh at the visitors, whose boat-
loads of modern technologies will surely fail to
help them survive the harsh local environment.

Divergent values and constraints nearly preclude
effective communication: one side sees the other
as backward and stubborn; the other side sees the
former as arrogant and irrelevant. Both are correct,
within their own frames of reference, but the status
quo offers little possibility for improvement.

Scientific Programming vs.
Software Engineering
In visiting the scientific programming commu-
nity, software engineers note two striking differ-
ences from other computing domains: the tools,
practices, and even the vernacular are unfamiliar,
and few people seem to be trained primarily in com-
puter science.

We gathered a baseline of data about scien
tific computing environments—including several
government-funded laboratories9—and identified
their distinctive characteristics. As the following
list shows, some characteristics are unique to sci-
entific programming, but many differ mainly in
relative emphasis.

Words mean different things. •	 Scientific program-
mers write “codes.” A “serial” code doesn’t use
parallelism. “Scaling” a serial code rewrites and
adapts it for parallel execution. Such terms are
unknown in the general software engineering
community.
It’s about the science•	 . Codes are valued only to
the extent that they efficiently solve problems at
hand.
Scientific codes are expensive•	 . Small teams of two
to eight highly trained professionals (not soft-
ware engineers) might spend four to six years
developing new mathematical models, adapting

numerical techniques, and creating a highly paral-
lel code to solve a particular problem.
Codes are long lived•	 . A successful scientific code
might be maintained, evolved, and extended for
20 to 30 years, as long as it solves problems for the
“customers.”
Performance really matters.•	 Addressing ever
larger and more complex problems, scientific
programmers focus almost exclusively on per-
formance. Typically half of a project’s develop-
ment time is spent scaling and optimizing an
otherwise sound scientific code. Manual opti-
mizations, machine-specific tricks, and mathe-
matical shortcuts are common, possibly binding
the code closely to a particular machine and
software environment. The only development
tools that matter are dedicated to performance.
Hardware platforms change often•	 . A high-end ma-
chine typically becomes obsolete in four years.
Codes port often, even during initial develop-
ment, and might require significant rework to
improve performance.
Portability also really matters•	 . In perpetual con-
flict with performance goals, developers direct
great effort toward code portability. The road is
littered with once useful codes for which porting
ceased to be funded.
It’s all Fortran 77 and C++.•	 New projects still
commit to these languages and, once commit-
ted, don’t change. These are the safe choices:
the only two likely to be supported on every
system for decades into the future.
Hardware costs dominate.•	 Personnel costs play
a small role in hardware decisions. The recent
migration from shared to distributed memory
machines was motivated by inexpensive micro-
processors, but came at the expense of more diffi-
cult programming. An example here is requiring
standardization on a low-level message-passing
interface (MPI) library for parallelization.

The properties that scientific programmers
consider critical (performance, hardware costs,
and portability) are among the least significant to
most software engineers. In fact, current software
engineering practice intentionally abstracts away
from such hardware properties. Conversely, issues
important to software engineers (highly main-
tainable code, robust programming languages
and practices, increasingly higher abstraction lev-
els, time to market) receive almost no attention
from scientific programmers.

As a result, solutions that appear natural to
software engineers often don’t work and might
actually be counterproductive when applied in the

November/December 2009 � 33

scientific programming context. This has resulted in
antipathy between the two camps and fostered the
view that software engineering has little to offer
the scientific programming community.

In fact, software engineers don’t understand
the scientists’ problems, most of which relate to
topics that are barely taught in computer science
curricula (such as floating-point arithmetic10). Even
worse, scientific computing’s distinct needs create
critical conflicts among requirements—such as
performance, hardware utilization, and portability—
that are seldom experienced elsewhere.

Where Are the Productivity Bottlenecks?
To identify how and where current practices limit
code development, we constructed an empirical
workflow model of scientific programming activi-
ties. Among our data sources were extended ob-
servation of scientific programmers at work. For
this, we drew on telemetric instrumentation of
development tools, time-stamped journals writ-
ten by the programmers, code inspections, and
interviews.

Early analyses revealed that looking for bottle-
necks in the traditional “edit-compile-run” loop
offered little useful insight. For example, a coding
period might be part of the mainstream code devel-
opment, but it also might be an experiment—that

is, downloading, modifying, and running a piece
of code just to learn something. Alternately, time
away from the keyboard (of which there’s a great
deal) might include a phone call for debugging
help or additional insight into a numerical com-
putation method.

As Figure 1 shows, our analysis also suggests
that a realistic model must focus on the required
skills as much as the time spent. This is a recur-
ring theme in case studies of both successful and
failed projects9 and the key barrier to new pro-
grammers’ effectiveness.11

Data from all of our studies revealed four gen-
eral areas of effort.

Developing correct scientific programs•	 . This activ-
ity is characterized by both exploring an area
of science and searching for relevant and trac-
table numerical methods. The outcome is a se-
rial code that addresses the target problem and
is scientifically sound.
Serial optimization and tuning.•	 This includes re-
fining a serial code to ensure correctness and
desired accuracy levels and improving serial per-
formance (a critical predecessor to paralleliza-
tion). This effort draws heavily on mathematical
and scientific insight, such as knowing where to
cut corners without decreasing accuracy.

Figure 1. Programming workflow. As case studies of successful and failed projects show, realistic models
must focus as much on the required skills as the time spent.

Skill sets
needed at
each stage

Skill sets
needed at
each stage

Optimizing and
tuning

Consult
peers DebugBuild

Re�ne problem
statement

Consult
references

Program

Run

Obtain problem
statement

1. Understand the question

2. Formulate approach

4. Code

5. Evaluate approach (validation
and veri�cation)

Science and
programming

Science and
programming

Optimizing and
parallelizing

AnalyzeRun

Adjust as
needed

Assess
results

Write sample
code

Design/select
algorithms

Consult
peers

Consult
references

Debug/tuneBuild

Parallelize

Run

3. Experiment prototype 6. Code for HPC

Science

Science and
programming

34� Computing in Science & Engineering

Code parallelization and optimization.•	 This activ-
ity entails modifying code for parallel execution
and requires additional optimization and tun-
ing. Decomposing a numerical code for efficient
distributed memory execution requires parallel
programming expertise as well as mathemati-
cal and scientific insight. This phase can occupy
half of a development cycle.
Porting and modifying existing parallel code•	 . This
activity migrates a code to a new system and
must maintain correctness and as much re-
source utilization and performance as possible.

This workflow model revealed extraordinary
challenges in two general categories:

Manual programming. •	 This activity involves a
tremendous amount of effort—programming
and otherwise—that isn’t intrinsic to the scien-
tific problem domain, but rather emerges from
the chosen technologies.
Expertise.•	 Most tasks demand multiple skill sets,
including the domain science, numerical meth-
ods and programming, and parallelization.

These areas represent key bottlenecks in existing
scientific programming processes that can’t be re-
moved without making fundamental changes to
the way scientific codes have traditionally been
developed.

What Is the “Expertise Gap”?
We revisited suggestions that an “expertise gap”
lies at the heart of the crisis,11 including one
agency’s assessment that its main problem was
that it couldn’t find enough people who could do
the work. Drawing on our own case studies and
five others gathered in collaboration with the re-
search community,9 we identified some common
patterns.

In a representative case, one team member was
recruited for specialized scientific knowledge, but
had little programming expertise. A year spent
collaborating with a scientific programming ex-
pert produced a code that was judged a failure; the
outcome was blamed on insufficient communica-
tion between the two. Another project stalled at
a later phase when no parallelization expert was
available—a situation resolved only when a man-
ager with this experience stepped in, leaving the
management role (running interference with the
customer, negotiating resources) to be backfilled.

Across all case studies, four distinct skill sets
were seen as essential: domain science, scientific
programming, scaling, and management. The skills

are only useful, however, when they synchronize
through communication and collaboration.

This is the expertise gap: it’s difficult to find in-
dividuals or a set of individuals with the required
mix of expertise in a specific application domain
and experience on a specific hardware platform.
This problem only worsens as machines become
more complex. Further, expertise is developed
through what amounts to an apprenticeship pro-
gram that takes years: most professionals we in-
terviewed saw their careers as based in science
and engineering, with software playing the role
of a necessary craft to be learned on the job or in
graduate school.

Clearly, the expertise gap is a serious obstacle
to productivity and limits the scientific program-
ming community’s ability to “scale out” to more
application domains.5

Where Are the Tools?
“Better tools” should be an effective response
to the expertise gap, making individual experts
more productive. Unfortunately, the tools situ-
ation in the scientific programming community
offers scant reason for optimism. Indeed, as we
discovered, the unavailability of crucial tools (the
“means of production” in economic terms) is often
held responsible for a productivity decline.6

Pervasive complaints about tools included that
they were hard to learn, don’t scale, differ across
platforms, are slow to appear on new platforms,
and are poorly supported and too expensive. Sev-
eral factors contribute to this state.

The general computing community’s high- •	
productivity tools—such as the current genera-
tion of integrated development environments—
are built around assumptions and practices that
don’t apply to scientific programming.
Scientific code becomes tightly bound to the •	
specialized tools used to build it, including
compilers, libraries, and performance analyz-
ers. Lifetime maintenance depends on tools
that might not be available on every platform
over the decades.
Purchasing decisions and budgeting models •	
are short-term and hardware-focused. Vendors
have little incentive to supply quality software
(operating systems, development tools, job
management); this is particularly true in rela-
tion to long-term portability.
The field is highly specialized and so are the •	
tools. Because the market is small, prices are
high, which discourages underfunded research
institutions from buying the best tools.

November/December 2009 � 35

Tool investment by those who fund scientific •	
missions is insufficient.12 The small companies
who market tools (usually drawing on tech-
nologies developed in research organizations)
often fail.
When smaller companies are sold, and espe-•	
cially when they’re acquired by system ven-
dors, successful cross-platform tools sometimes
disappear from the market. One project we
interviewed lost a year to recoding when a high-
quality compiler disappeared in this fashion.

The result? Scientific programming projects view
tools as a risk, not as a lever of productivity. Sup-
port models for this vital infrastructure are sim-
ply not aligned with its strategic value. To cope,
scientific programming shops divert project re-
sources into developing open source tools—not as
an avenue to innovation as they might wish, but
as a risk-mitigation strategy to ensure long-term
access to the tools they already use.

Code Correctness and Productivity
While code correctness isn’t traditionally consid-
ered a productivity issue, our multidisciplinary
analysis suggests that it should be a major con-
cern. We define increased (real) productivity here
as increased production of useful scientific results
for the resources expended. It follows trivially
that producing more but scientifically incorrect
results doesn’t increase productivity and might in
fact signify a decrease.

In conjunction with our analysis of workflow
and the expertise gap, this led us to ask the ques-
tion: What levels of effort and expertise are required
to assure the scientific correctness of codes? As with
other skills, we found that the effort involved, the
length of time, and the expertise required result in
a distinct productivity bottleneck. This challenge,
simply put, is trust in computational outcomes’ va-
lidity. If the results of scientific calculations can’t be
fully trusted, their value to the scientific community
clearly diminishes. Indeed, this is now viewed as
“the most serious limiting factor for computa-
tional science.”7

When asked about strategies for building con-
fidence in their codes, the scientific programmers
we studied answered strictly in terms of the sci-
ence. Typical responses? That the output “looked
right” to the domain scientist, and confidence in
the code grew over time. One scientist lament-
ed the abandonment of an earlier code because
it took them five years to start feeling “com-
fortable” with its replacement. A software engi-
neer would seriously question a validation and

verification strategy that relies on software output
inspection and takes years to carry out.

Scientists are trained to manage threats to valid-
ity in experimental design but not in their codes.
Software engineers have over the years developed
many tools, technologies, and practices that con-
tribute to increased software quality and reliabil-
ity, but these appear largely unknown to scientific
programmers.

Toward Solutions
Software engineering has much to offer toward
solving this crisis, but only if the two sides can
establish communication across a chasm of differ-
ing values and constraints. This will demand flex-
ibility on both sides.

Software Engineering’s Contribution
The software engineering community has de-
veloped a wide range of processes, methods, and
techniques that help address productivity across
the complete software life cycle. Some of these
approaches could help resolve the current pro-
ductivity bottlenecks, but only with effective col-
laboration and training. Others are conceptually
relevant, but haven’t been developed within sci-
entific computing’s assumptions and constraints.
Such technologies often deliberately abstract away
control over parameters that scientific program-
mers consider critical.

The upshot is that software engineers must
return to their basic strategies and reapply them
to develop and adapt to scientific computing’s
demands. In the near term, scientific program-
mers must be given tools to observe and control
the performance-related parameters that matter
to them. Successful longer-term advances will
make those parameters less important. In every
instance, software engineers must be prepared to
make the case for these technologies using scien-
tific programming’s frame of reference, not just
that of software engineering.

Software engineering also offers strategies for
managing the expertise gap, though specific tech-
nologies must be reengineered to address scien-
tific computing’s needs and constraints.

Overall, we identified three basic software en-
gineering strategies that are successful in other
domains and could help ameliorate existing pro-
ductivity bottlenecks by guiding the development
of better scientific computing programming envi-
ronments (languages, tools, instrumentation, and
so on).

The first strategy is automation. The level-of-
effort bottleneck can be improved only by asking

36� Computing in Science & Engineering

the machine to perform more of the repetitive
work. Parallelization is at the top of this list for
scientific computing, followed by data layout and
latency management, among others.

The second strategy is abstraction. The exper-
tise gap arises from the inherent, irreducible dif-
ficulty in developing and maintaining expertise
in three distinct disciplines over time. To address
the bottleneck this entails, we must make it easier
for scientists to write correct, efficient programs
without also having to become experts in parallel
programming and the idiosyncrasies of particu-
lar hardware platforms (such as complex memory
models and high hardware failure rates). We must
dedicate substantial automation toward provid-
ing scientifically relevant computational abstrac-
tions. Important higher-level abstractions will
allow scientific programmers to express desired
computations in ways that reflect the science and
mathematics of the problem domain rather than
the computing system.

The final strategy is measurement. Many new
technologies will be needed here; to succeed, we
must observe traditional parameters critical to
scientific programming (such as processor utili-
zation), along with feedback and continuous im-
provement in software development practices.

Scientific Programming’s Role
Members of the scientific programming commu-
nity have developed extraordinary mastery of nu-
merical algorithms, optimization techniques, and
problem decomposition, but they fail to appreci-
ate how their goals have outgrown their software
development practices. Addressing this requires
two steps: investment and modernization.

The scientific programming community’s in-
sufficient investment in software infrastructure
is ultimately responsible for many of the prob-
lems we observed.12 Those who fund missions
and lead the community must broaden their view
of software development. This means optimiz-
ing across the entire development cycle—if not
multiple cycles—rather than optimizing locally
on next-run performance. It also means funding
software infrastructure development, indepen-
dent of specific vendors, which will add stability
and create opportunity for the needed productiv-
ity growth.

Scientific programming must also modernize.
Antipathy toward computer scientists must be
abandoned and a fair hearing given to the case for
improved practices. When the available technolo-
gies don’t fit, scientific programmers must enlist
software engineers to adapt them.

Promising Experiments
We ran a set of experiments that concretized the
kind of productivity improvement that software
engineering techniques can offer in the scientific
computing realm. A professional scientific pro-
grammer rewrote several well-known HPC codes.
The simplest were kernels from the NAS Parallel
Benchmark suite (www.nas.nasa.gov/Resources/
Software/npb.html), while the largest were the
14,000-line ASCI computational fluid dynam-
ics code, Simplified Piecewise Parabolic Method
(www.lcse.umn.edu/research/sppm/README.
html), and the 7,000-line Gyrokinetic Toroidal
Code code (http://gk.ps.uci.edu/GTC) for study-
ing plasma microturbulence in fusion devices.

The objective of rewriting the code was to
demonstrate improved programmability (that is,
improved readability, maintainability, and verifi-
ability). Specific changes included

stripping out explicit MPI data distribution;•	
removing manual optimizations;•	
exercising modern languages features, such as •	
Fortran 90 and array syntax;
refactoring source code to increase the abstrac-•	
tion level;
recasting source code to represent more clearly •	
the underlying specification or mathematical
algorithms;
increasing code reuse, whether of user-written •	
routines or available library functions (“copy
and paste” lets you quickly write new source
code, but it has a terrible impact on source bloat
and maintainability);
removing platform-specific source code;•	
eliminating performance instrumentation, as •	
its purpose is better served by performance
analysis tools; and
removing bug workarounds and other historical •	
relics.

We achieved our experiments’ objectives and
obtained encouraging results in four areas: read-
ability, compactness, expressivity of existing lan-
guages, and performance.

Readability. The rewritten code became consid-
erably more readable and thus verifiable against
algorithmic specifications. Figure 2 shows this
at a small scale in the benchmark excerpt. We
consulted with Stephane Ethier, who wrote the
much larger GTC code, and he said he was im-
pressed with the rewritten code’s compactness
and its expression of the underlying plasma
physics.

November/December 2009 � 37

Compactness. As Figure 3 shows, we reduced source
code from three to 11 times its original volume
across a range of cases. Approximately two times
the size reduction was due to removal of explicit
data decomposition and distribution; this result is
consistent with other studies of MPI’s contribu-
tion to code size. This simple reduction in code
volume alone is significant, as the lifetime costs of
software correlate strongly with code size.13

Expressiveness. Another striking result was that
an existing programming language—in this
case, Fortran 90 and its array syntax—proved
to be quite expressive. Our first rewriting ex-
periments weren’t constrained to constructs
or languages that could be compiled, or even
that existed at all. That is, they were invita-
tions to “program outside the box.” Despite that
freedom, the experiments tended to produce
programs using existing language features—
admittedly, these were sometimes “modern” fea-
tures ahead of widespread adoption or mature
compiler support.

We also recognized that high-level program-
ming languages aren’t always required. Some-
times, scientists want to “program in mathematics”
for quick prototyping. For large-scale production
programs, however, they want to program partic-
ular algorithms, incorporating the special insights
that would otherwise leave many orders of perfor-
mance magnitude behind.

Performance. The scientific programming com-
munity’s first concern is cost in performance,
including parallel speedup. In our experiments,
the programmer found the performance shortfall
to be rather tolerable—around two times for the
bulk of considered cases. This held in cases up to
even 100 threads, with support from commercial,

automatically parallelizing compilers and large-
scale shared memory hardware.14 Many scientific
programmers would see such a performance loss as
quite serious. However, our studies convinced us
that the performance loss is recoverable through
strategic manual optimizations—or ideally from
community investment in the supporting tech-
nologies. Software examples include

interprocedural analysis, including for extract-•	
ing concurrency;
low-overhead work-sharing and stealing, for ef-•	
ficient concurrency;

Figure 2. Comparing the code. (a) The original Fortran 77 code
and (b) the specification. (c) The rewritten Fortran 90 code is both
compact and expressive of the underlying plasma physics.

call resid(u,v,r,n1,n2,n3,a,k)
callnorm2u3(r,n1,n2,n3,rnm2,rnmu,nx(lt),ny(lt),nz(lt))
old2 = rnm2
oldu = rnmu
do it = 1,nit
 call mg3P(u,v,r,a,c,n1,n2,n3,k)
 call resid(u,v,r,n1,n2,n3,a,k)
enddo
call norm2u3(r,n1,n2,n3,rnm2,rnmu,nx(lt),ny(lt),nz(lt))

(a)

Each of the four iterations consists of the following two steps,
r = v - Au (evaluate residual)
u = u + Mkr (apply correction)
...
Start the clock before evaluating the residual for the first time, ...
Stop the clock after evaluating the norm of the final residual.

(b)

do iter = 1, niter
 r = v - A(u) ! evaluate residual
 u = u + M(r) ! apply correction
enddo
r = v - A(u) ! evaluate residual
L2norm = sqrt(sum(r*r)/size(r))

(c)

Figure 3. Reduction ratio of the original benchmark code size in noncomment source lines divided by rewritten
benchmark code size in NCSL. Standards compared are Nucleic Acid Builder (NAB); the Scalable Synthetic
Compact Application #2 (SSCA2) graph analysis benchmark; Gyrokinetic Toroidal Code (GTC); Conjugate
Gradient (CG); Block Tridiagonal (BT); Multigrid (MG); and Simplified Piecewise Parabolic Method (sPPM).

6
7
8
9

10
11
12

Ra
tio

NAB SSCA2 GTC CG BT MG sPPM
0
1
2
3
4
5

Benchmark

High-programming NCSL
Original NCSL

38� Computing in Science & Engineering

mature compiler support for modern language •	
features, rather than just legacy or conservative
programming practices; and
runtime parallelization or concurrency checks.•	

Hardware examples include

support for globally addressable memory;•	
low-latency and high-throughput interconnects;•	
latency-hiding techniques, such as scout threads •	
and prefetch; and
concurrency-supporting techniques such as •	
transactional memory and active messages.

Application developers. Finally, support for higher
programmability in scientific software must also
come from the application developers them-
selves. Too often, software is developed expedi-
ently, at the expense of verifiability or long-term
maintenance. Expressive, compact code requires
programming for expressivity from the start, fol-
lowed by ongoing perfective maintenance (rewrit-
ing the code to achieve a nonfunctional goal) over
a program’s lifetime.

Although we need more studies to quantify
these results, we see an opportunity for concrete
return-on-investment analysis that can make the
case for dramatic change in scientific program-
ming practices.

Scientific computing’s productivity grid-
lock can be overcome, but only if pro-
gramming practices change significantly.2
Doing more of the same is a recipe for

certain failure.
Success will require revisiting many common

assumptions in software engineering and then
re-engineering those solutions accordingly. It will
also require far greater communication and col-
laboration between the software engineering and
scientific computing communities. Our experi-
ence working in the latter suggests that this col-
laboration will be both fruitful and rewarding.

Acknowledgments
We’re grateful to members of Sun’s Extended Pro-
ductivity Team and our HPCS program colleagues.
We particularly thank our case study collabora-
tors, including Douglass Post, Richard Kendall, and
Walter Tichy, as well as Tom Nash and Philip John-
son, whose work deepened our understanding of the
productivity problem. Thanks also to our reviewers
whose thoughtful comments have significantly im-
proved this paper. DARPA supported this work under
contract number NBCH3039002.

References
C. Holland, 1.	 DoD Research and Development Agenda

for High Productivity Computing Systems, Pentagon

white paper, US Defense Dept., 2001.

M. Van De Vanter et al., 2.	 Productive Petascale

Computing: Requirements, Hardware, and Software,

tech. report TR-2009-183, Sun Microsystems,

2009.

D.E. Perry, N.A. Staudenmayer, and L.G. Votta, 3.	

“Understanding and Improving Time Usage in Soft-

ware Development,” A. Wolf and A. Fuggetta, eds.,

Software Process, vol. 5, John Wiley & Sons, 1995,

pp. 111–135.

S. Squires, M. Van de Vanter, and L. Votta, “Software 4.	

Productivity Research in High Performance Comput-

ing,” CTWatch Quarterly, vol. 2, no. 4A, 2006; www.

ctwatch.org/quarterly/articles/2006/11/software-

productivity-research-in-high-performance-computing.

S. Squires, M. Van De Vanter, and L. Votta, “Yes, 5.	

There Is an ‘Expertise Gap’ in HPC Applications De-

velopment,” Proc. 3rd Int’l Workshop on Productivity

and Performance in High-End Computing (PPHEC’06),

IEEE CS Press, 2006, pp. 5–10.

M. Van De Vanter, D. Post, and M. Zosel, “HPC 6.	

Needs a Tool Strategy,” Proc. 2nd Int’l Workshop

Software Eng. High-Performance Computing Systems

Applications, ACM Press, 2005, pp. 55–59.

D. Post and L. Votta, “Computational Science 7.	

Demands a New Paradigm,” Physics Today, vol. 58,

no. 1, 2005, pp. 35–41.

D. Kelly, “A Software Chasm: Software Engineering 8.	

and Scientific Computing,” IEEE Software, vol. 24,

no. 6, 2007, pp. 120–119.

J. Carver et al., “Software Development Environ-9.	

ments for Scientific and Engineering Software: A

Series of Case Studies,” Proc. 29th Int’l Conf. Software

Eng., IEEE CS Press, 2007, pp. 550–559.

D. Goldberg, “What Every Computer Scientist 10.	

Should Know about Floating-Point Arithmetic,” ACM

Computing Surveys, vol. 23, no. 1, 1991, pp. 5–48.

V. Sarkar, C. Williams, and K. Ebcioglu, “Application 11.	

Development Productivity Challenges for High-End

Computing,” Proc. 1st Workshop Productivity and

Performance High-End Computing, ACM Press, 2004,

pp. 14–18.

S. Graham, M. Snir, and C. Patterson, eds., 12.	 Getting

Up To Speed: The Future of Supercomputing, Nat’l

Academies Press, 2005.

B.W. Boehm, 13.	 Software Engineering Economics, Prentice

Hall, 1981.

E. Loh, M. Van De Vanter, and L. Votta, “Can Soft-14.	

ware Engineering Solve the HPCS Problem?” Proc.

2nd Int’l Workshop Software Eng. High-Performance

Computing Systems Applications, ACM Press, 2005,

pp. 27–31.

November/December 2009 � 39

Stuart Faulk is an associate research professor in the
Computer Science Department at the University of Or-
egon. His research interests include software produc-
tivity, software processes, requirements engineering,
and software product lines. Faulk has a PhD in com-
puter science from the University of North Carolina at
Chapel Hill. Contact him at faulk@cs.uoregon.edu.

Eugene Loh is a senior staff engineer at Sun Micro-
systems, where he focuses on performance analysis
within high-performance computing and has studied
programming and performance issues as part of Sun’s
HPCS Phase II work. His research interests include
performance analysis of HPC applications. Loh has a
PhD in physics from the University of California, Santa
Barbara. Contact him at eugene.loh@sun.com.

Susan Squires is executive director of customer insight
research at Tactics, LLC, and a practicing anthro-
pologist with wide experience in customer research,
strategic planning, and program management. Her
research interests include technology usability, scien-
tific workflow modeling, and the intersection of tech-
nology use and workgroup organization. Squires has
a PhD in anthropology from Boston University and
is a fellow of the Society for Applied Anthropology.
Contact her at susan.squires@acelere.net.

Michael L. Van De Vanter is a senior staff engineer at
Sun Microsystems, where he was a member of Sun’s
HPCS Core Productivity team and principal investiga-
tor of the Jackpot Project. His research interests in-
clude software development technologies, practices,
and tools. Van De Vanter has a PhD in computer sci-
ence from the University of California Berkeley, and
is a member of the IEEE Computer Society and the
ACM. Contact him at mlvdv@ieee.org.

Lawrence G. Votta is a consultant for software
fault tolerance and productivity at Brincos. He was
a Sun Microsystems Distinguished Engineer, work-
ing to improve software and system reliability and
serving as a principle investigator for the DARPA
High Productivity Computing System (HPCS) ini-
tiative and leading the productivity analysis team.
His research interests include high-availability
computing and empirical software engineering.
Votta has a PhD in physics from the Massachusetts
Institute of Technology. Contact him at votta@
alum.mit.edu.

The #1 AI Magazine
www.computer.org/intelligent IE

E
E

Cutting Edgestay
on

the

IEEE Intelligent Systems provides

peer-reviewed, cutting-edge arti-

cles on the theory and applications

of systems that perceive, reason,

learn, and act intelligently.

of Artificial Intelligence

Selected articles and columns from IEEE Computer
Society publications are also available for free at

http://ComputingNow.computer.org.

