
52CTWatch Quarterly November 2006 A

Software Productivity Research
In High Performance Computing

Susan Squires
Sun Microsystems Inc.

Michael L. Van De Vanter
Sun Microsystems Inc.

Lawrence G. Votta
Sun Microsystems Inc.

1 Post, D.E., Votta, L.G. “Computational Science
Requires a New Paradigm,” Physics Today,
58(1):35-41.
2 Defense Advanced Research Project Agency (DARPA)
Information Processing Technology O!ce, High
Productivity Computing Systems (HPCS) Program
- http://www.darpa.mil/ipto/programs/hpcs/

3 Kitchenham, B., P"eeger, S., Pickard, L., Jones, P.,
Hoaglin, D. El Emam, K., Rosenberg, J. “Preliminary
Guidelines for Empirical Research in Software
Engineering,” IEEE Transactions on Software
Engineering, 28:8, August 2002, pp. 721-734.

1. Introduction

!e challenge of utilizing supercomputers e"ectively at ever increasing scale is not being met,1
a phenomenon perceived within the high performance computing (HPC) community as a crisis
of “productivity.” Acknowledging that narrow focus on peak machine performance numbers
has not served HPC goals well in the past, and acknowledging that the “productivity” of a com-
puting system is not a well-understood phenomenon, the Defense Advanced Research Project
Agency (DARPA) created the High Productivity Computing Systems (HPCS) program:2

• Industry vendors were challenged to develop a new generation of supercomputers that are
dramatically (10 times!) more productive, not just faster; and

• A community of vendor teams and non-vendor research institutions were challenged to
develop an understanding of supercomputer productivity that will serve to guide future
supercomputer development and to support productivity-based evaluation of computing
systems.

!e HPCS Productivity Team at Sun Microsystems responded with two commitments:

1. Embrace the broadest possible view of productivity, including not only machine charac-
teristics but also human tasks, skills, motivations, organizations, and culture, just to name a
few; and

2. Put the investigation of these phenomena on the soundest scienti#c basis possible,
drawing on well-established research methodologies from relevant #elds, many of which
are unfamiliar within the HPC community.

Team members brought expertise from multiple research #elds with a speci#c focus on
a sound working knowledge of concepts and methods appropriate to investigating human
behavior. Socio-cultural concepts such as culture, ethnography, and social network analysis are
not typically well understood in the computing community, sometimes leading to re-invention
of methods already developed and validated in the social sciences. !e #rst author is a social
science professional with expertise in established practice. Other research-level expertise in the
team included physics (both experimental and computational), so$ware development (both
technologies and human factors), and empirical so$ware engineering. Given the breadth of the
challenge and the small team size, a #rst principle was that every project demands careful – and
quick – determination of appropriate outcomes, project constraints, and research methods.
Conclusions must be founded in data and backed by justi#cation for the design, execution,
and application. (See also Kitchenham et. al. for general guidelines on conducting empirical
research.)3

Social scientists have developed numerous methods that are both veri#able and reproducible
in many contexts. However, the sheer number of methodological options makes it crucial that
each project begin with clear research goals in order to identify the most e"ective combinations
of concepts, research designs, information sources, and methods.

53

!e research design presented in this paper is a three-stage framework, based on the scien-
ti#c method, that allows the team to draw on multiple research disciplines appropriate to the
phenomena under investigation. !e framework is grounded in empirical data, validated by
multiple approaches (“triangulation”), and applied to the practicing HPC professionals who
actually perform the work being studied.

Research #ndings described in this paper must be understood in the context of the framework,
as described in Section 2: de#nitions of the stages, methods used to collect and analyze infor-
mation within each stage, and the relationships among the stages. Sections 3, 4, and 5 discuss
how the framework was applied to studies of the HPC so$ware development community.
Although the productivity research program is still in progress, signi#cant #ndings have already
contributed to the community’s understanding of HPC so$ware development productivity.

2. A Three-stage Research Design

!e research design is summarized in Figure 1. !e stages are necessarily sequential; each
provides a foundation for research methods in the next.

Explore and

Discover
Test and Define

Evaluate and

Validate

Develop

Hypotheses

Test and Refine

Models

Replicate and

Validate

Findings

Qualitative
Qualitative and

Quantitative
Quantitative

STAGE

GOALS

METHODS

Figure 1. Research framework.

!is framework is broadly analogous to realizations of the scienti#c method used in many
disciplines, although the correspondence can be obscured somewhat by di"erences among the
phenomena being studied and the methods appropriate to their study.

Stage 1: Explore & Discover. At the outset of an investigation researchers may not know the
appropriate questions or issues to address, let alone have a coherent theory of the phenomena
being studied. !e #rst stage in the framework, based mainly on qualitative methods, is open-
ended; it is designed to produce the insights necessary for hypothesis generation. Such insights
can be considered an explicit “model” of the phenomena, analogous to the “paradigm” in which
scienti#c inquiry is undertaken and through which experimental data are interpreted.

Stage 2: Test & De!ne. Rigor is added using methods that produce additional data sur-
rounding theories generated in the #rst stage. !is provides feedback on insights, supplies con-
crete data for model re#nement, and leads to deeper understanding of what can be measured
and how those measurements can be interpreted. !is stage of “experimental design” is the
necessary bridge between theory and experimentation.

Stage 3: Evaluate & Validate. Finally, more focused and mostly quantitative techniques are
applied precisely in order to collect data, interpret the results, and validate the outcomes.

CTWatch Quarterly November 2006 A

An important bene#t of this framework is the reliable “roadmap” for moving from qualitative
data collection and analysis, which are appropriate for discovery, to more quantitative data col-
lection and analysis methods, which are appropriate to de#nitional and evaluative research.

!e immediate challenge in a study of such breadth as so$ware development is not so much
in creating new methods, although researchers can be tempted to do so when investigating phe-
nomena outside their area of training. A great many methods are available for studying human
behaviors, the vast majority of which are known to graduate students who have taken class
work in research design, advanced statistics, ethnographic interviewing, and content analysis.4
!e greater challenge is to determine exactly when, how, and why to use particular methods to
draw out the implications of #ndings. !is research framework makes it possible to select the
appropriate qualitative and quantitative methods for data collection and analysis.

Stage Character Methods

1. Explore & Discover Open Ethnography
Case study
Contextual observations
Semi-structured Interviews
Participation
Document review
Language patterning

2. Test & De!ne Focused Quasi-experimental studies
Concept mapping
Structured interviews
Questionnaires
Comparative studies
Focus groups
Semiotic analysis

3. Evaluate & Validate Structured Social network analysis
Surveys
Controlled experiments
Product testing
User-experience simulations
Human testing
Quality measurement

 Table 1 displays a sample of speci#c data collection and analysis methods appropriate to
each stage, with the more qualitative methods appearing early and more quantitative methods
appearing later. For example the case study with its open-ended qualitative observational and
interview methods is most useful for early discovery research; on the other hand, surveys are
appropriate in later stages when their design can be informed by data already collected. Data
collection methods are just that: standardized techniques that enable researchers to gather valid
and relevant information.

Qualitative and quantitative techniques are both useful, but only when used appropriately.
For example, some methods are better to discern patterns, others to test speci#c ideas. Some
methods are better to describe behavioral phenomena, others for opinions. Some methods excel
at documenting how people interact with things, others at discerning how they interact amongst
themselves. Some methods are better for discovering just how similar things or people are;
others are better at teasing out causes from consequences. Qualitative data provide tremendous
clues about people on a group level; examples of such “cultural” clues include descriptions of
perceptions about how people use or classify objects, the nature of their personal interactions,

Software Productivity Research In High Performance Computing

Table 1. Sample methods from the
research toolbox.

4 Bernard, H. Handbook of Methods in Cultural
Anthropology. Walnut Creek: Altamara Press. 1999.

55

and opinions about the world around them. Quantitative data are also extremely useful, for
example the number of lines of code (LOC) contained in an application or the number of full
time personnel on a code project.

When techniques are combined appropriately, based on sound methodology, it becomes
possible to create and distinguish among the most important human processes within and
across groups of people.

3. Discovery Research, Stage 1: The Use of the Case Study Method

Discovery is the most open-ended and the most time consuming of the three research stages.
!e goal is to uncover and understand the socio-cultural system that frames human action;
that understanding must be consistent with the way local people understand it and it must be
expressed in terms of the local (emic) categories people use to describe and categorize their
own reality. Researchers collect and analyze verbal, observational and contextual information
to characterize what people say and do in their natural environment. Consistencies and, more
frequently, inconsistencies help identify unarticulated or unrecognized needs, gaps and adapta-
tions o$en called “work-arounds” and “disconnects.” Translating disconnects into the frame
of reference of socio-cultural systems allows the researcher to identify and neutralize well-
established assumptions. Such assumptions would otherwise be taken as given, which leads to
stereotypic treatment and precludes understanding of the important and di%cult issues.

3.1 HPCS Stage 1 Methods

!e key to a successful discovery in a context such as HPC so$ware development is the
combination of two approaches: case studies and rapid ethnographic methods.

!e case study approach is a well understood method for gathering initial information about
a situation, as de#ned by Robert K. Yin: “an in-depth look at one or more speci#c incidents or
examples.”5 !e case study typically employs a set of qualitative, open-ended methodologies to
explore a topic or problem domain and develop hypotheses. Methods may include data col-
lection techniques such as Document Reviews, Observation, Collection of Contextual Artifacts,
Self-Reporting, and Interviews. !e breadth of data that can be collected provides foundational
knowledge for developing hypotheses. !e case study approach has been used in so$ware engi-
neering6 7 8 9 and has played a signi#cant role in the HPCS productivity research program.10 11 12 13 14

!e objective of rapid ethnographic assessment in discovery research is typically to construct
a socio-cultural model of the local living system.15 16 All rapid ethnographic approaches share
three important characteristics “(1) a system perspective, (2) triangulated data collection, and
(3) iterative data collection and analysis”.15 4 !e value of the case study and rapid ethnographic
assessment approaches is growing; they have been used by the National Center for Atmospheric
Research,17 Department of Energy,18 19 20 NASA,21 and for describing technical change at the
Department of Defense.22

!e application of these approaches stresses open-ended interviews, site tours (contextual
observation), participant observation, literature reviews, cultural history, and semiotic (content)
analysis. An example from the HPCS research will demonstrate how discovery research gen-

5 Yin, R.K. Case Study Research: Design and Methods.
Sage Publications, Second Edition, 1994.
6 Card, D.N., Church, V.E., Agresti, W.W., “An Empirical
Study of Software Design Practices,” IEEE Transactions
on Software Engineering, 1986. 12(2): 264-271.
7 Müller, M.M. and Tichy, W.F. “Case Study: Extreme
Programming in a University Environment,” In
Proceedings of 23rd International Conference on
Software Engineering. May 12-19, 2001. pp. 537-544.
8 Perry, D.E., Sim, S.E., and Easterbrook, S.M. “Case
Studies for Software Engineers,” In Proceedings of 26th
International Conference on Software Engineering, ICSE
2004. pp. 736-738.
9 Seaman, C.B. and Basili, V.R. “An Empirical Study of
Communication in Code Inspections,” In Proceedings of
19th International Conference on Software Engineering.
Boston, MA. May 17-23, 1997. p. 96-106.
10 Carver, J., Hochstein, L., Kendall, R., Nakamura, T.,
Zelkowitz, M., Basili, V., Post, D. “Observations about
Software Development for High End Computing,”
CTWatch Quarterly, Volume 2, Number 4A, November
2006 – http://www.ctwatch.org/quarterly/
11 Kendall, R., Carver, J., Mark, A., Post, D., Squires, S.,
Sha#er, D. “Case Study of the Hawk Code Project,” Los
Alamos National Laboratory Report LA-UR-05-9011,
2005.
12 Kendall, R., Post, D., Squires, S., Halverson, C.
“Case Study of the Condor Code Project,” Los Alamos
National Laboratory Report LA-UR-05-9291, 2005.
13 Kendall, R., Post, D., Squires, S., Carver, J. “Case
Study of the Eagle Code Project,” Los Alamos National
Laboratory Report LA-UR-06-1092.
14 Post, D., Kendall, R., Whitney, “Case Study of the
Falcon Code Project,” Proceedings Second International
Workshop on Software Engineering for High
Performance Computing System Applications, St. Louis,
15 May 2005.
15 Beebe, J. “Basic Concepts and Techniques of Rapid
Appraisal,” Human Organization, 54(1): 42-51. 1995.
16 Trotter, R., Schensul, J. “Methods in Applied
Anthropology,” in Handbook of Methods in Cultural
Anthropology, H. Russell Bernard (ed.), Walnut Creek:
Altamara Press. 1999.
17 Lahsen, M. “Seductive Simulations: Uncertainty
Distributions around Climate Modeling,” Social Studies
of Science 36(6): 895-992. December 2005.
18 Gusterson, H. Nuclear Rites: A Weapons Laboratory
at the End of the Cold War, University of California
Press: Berkeley. 1996.
19 Gusterson, H. People of the Bomb: Portraits of
America’s Nuclear Complex, University of Minnesota
Press: Minneapolis. 2004
20 McNamara, L., Trucano, T. “So Why Do You Trust
That Model? Some Thoughts on Modeling, Simulation,
Social Science and Decision Making,” Advanced
Concepts Group News and Views, 8:2. Albuquerque,
NM: Sandia National Laboratories. 2006.
21 Shalin, V., Wales, R., “Shift Handovers in ISS Mission
Control,” in Human Organizational Risk Management
Workshop, NASA-Ames April 25-27 2001.
22 MacKenzie, D. “Missile Accuracy: A Case Study in
the Social Processes of Technological Change,” in The
Construction of Technological Systems, Wiebe Bijker,
Thomas Hughes and Trevor Pinch (Eds) MIT Press:
Cambridge MA. 1987.

CTWatch Quarterly November 2006 A

erates cultural insights; those cultural insights lead to better understanding and help develop
hypotheses that can be tested in the subsequent research stage.

3.2 Example: The HPC “Expertise Gap”

Anecdotal evidence from DARPA and the HPCS Mission Partners suggested that an
“expertise gap” lay at the heart of the crisis in HPC application development.23 Case studies were
conducted #rst to explore the expertise issue, starting with a detailed look at how professional
HPC programmers and teams spend their time. Qualitative data collection methods included
semi-structured interviews with individual HPC programmers, and contextual observations
at sites in which HPC programmers work. Of course the raw data from these methods did
not directly lead to the kind of insights that are the goal of this research stage. Combining
and comparing the data, the team began to identify patterns across individuals and teams, plot
bottlenecks and create models of HPC programmers, all based on information taken directly
from the HPC professionals and the context of their work.

From #ve case studies a pattern emerged in the area of expertise. In all cases at least one
founding team member had been recruited for special knowledge of science, but in each case
the scientist was not an HPC programmer and had little or no knowledge of FORTRAN or
C++. !e scientist’s #rst required task was either to learn one of the programming languages or
to build a working relationship with someone who did know it. In either case, the educational
process took considerable time before the individual/pair could perform e"ectively. Project
management was typically taken on by another person whose role was to “run interference”
by keeping the sponsor happy and negotiating for time on a shared large machine. Teams in
this context typically take about four to six years to get a working code. Success is commonly
attributed to having the right mix of expertise. !e team was successful only when they had the
appropriate mix of knowledge, represented by four areas:

• Science
• Programming
• Scaling / Optimizing
• Management

Even having the range of knowledge is insu%cient. E"ective communication and collabo-
ration among the experts can be very challenging and is crucial to project success.

Underlying the ethnographic case study approach is the understanding that all people belong
to one or more networks of interlocking social relationships in which members share a common
or core set of beliefs, values and behaviors. Anthropologists and other trained ethnographers
use various methods to uncover the core sets of beliefs, such as:

• Gathering individual (emic) perspectives from members of these socio-cultural groups;
• Examining the collected information to identify patterns of shared beliefs, behaviors,

values and rules;
• Constructing group “mental models” from identi#ed patterns to understand the meaning

at the core of the system; and
• Interpreting how the members of a socio-cultural network use their mental models to con-

struct and express appropriate shared behaviors, beliefs, and values, to provide a contextual
frame of meanings for products, and services.

Software Productivity Research In High Performance Computing

23 Sarkar, V., Williams, C., Ebcioglu, K. “Application
Development Productivity Challenges for High-End
Computing,” First Workshop on Productivity and
Performance in High-End Computing, Madrid Spain, pp
14-18. February 2004.

57

!e case studies of HPC so$ware development led to recognizable patterns that might
explain why HPC expertise is so scarce. A hypothesis was developed postulating that domain
speci#c expertise in at least four di"erent areas is needed to use highly parallel machines. As
machines get bigger and more complex, the pool of experts narrows. Very, very few people have
complete skill sets. Team approaches are the best strategy at the moment, but this by itself does
not appear to represent a long-term solution. !e next research step was to cra$ a more focused
study to test the hypothesis and to understand in more detail when and how the various areas of
expertise were used; this takes place in the second stage of the research framework.

4. De!nition Research, Stage 2: Combining Qualitative with
Quantitative Measurement

De#nition Research helps test an idea or hypothesis focusing the research on more detailed
use, use features, and meaning associated with activities and helps de#ne work models and
work&ow. !e methods used during De#nition Research di"er from Discovery because of what
has already been learned during Discovery: parameters of the topic, the concepts, and something
about the individuals. De#nition Research usually starts with a series of questions, based on
some grounded hypothesis generated during discovery. For example, researchers investigating
programming techniques can compare existing codes in context to make inferences about how
proposed changes might change both the programming work and the results.

De#nition research concentrates on details, so any interviews conducted in this stage are
more structured than during Discovery. !ese interviews follow a set of well-understood rules;
for example the interviewer builds rapport in the #rst segment and subsequently seeks deeper
information. Details are summarized at the conclusion of the interview in order to con#rm
the data with the respondent. Verbal and written statements are validated through observed
actions. In order to fully understand the speci#cs of the context, researchers listen for native
language: words, terms, and descriptions.

4.1 HPCS Stage 2 Methods

An advantage of both Discovery and De#nition Research is that relatively few cases are
needed to discern relevant cultural patterns and to learn about shared understandings and
behaviors in a group. !is approach has powerful implications for quantifying human behavior
patterns in ways never imagined a few years ago. Notre Dame mathematician Albert-Laszlo
Barabasi recently wrote in Science that our grouping ability to collect data about human actions
combined “with the sophisticated tool of network theory, . . . (provides) a glimpse of an unprec-
edented opportunity to quantify human dynamics.”24 Social network analysis can take millions
of bits of data and construct reliable and predictive human patterns. But such an approach can
begin with small data sets as well.

Mathematician Duncan Watts points out that “the world that we live in is not at all random.
We are very much constrained by our socioeconomic status, our geographical location, our
background, our education and our profession, our interests and hobbies. All these things
make our circle of acquaintances highly nonrandom.”25 Watts and fellow mathematician Steven
Strogatz are among a growing number of researchers who have been examining highly struc-
tured social networks in order to understand and use mathematical formulations to predict
membership connectiveness. !eir work has been inspired by, and extends the work of, the
theoretical mathematician Paul Erdös, who has been indirectly responsible for popularizing

24 Barabasi, A.L. “Network Theory – the Emergence
of the Creative Enterprise,” Science, 308(29): 639-650.
April 2005.

25 Watts, D., Strogatz, S. Interview in Discover. 1998.

CTWatch Quarterly November 2006 A

the idea of six degrees of separation: the idea that only six other individuals link all humankind
through their social networks to almost everybody else in the world.

Although Watts and Strogatz are most interested in the interconnectiveness of social net-
works, many others such as Borgatti and Everett26 (see also Mathematical Social Sciences and
Social Networks) focus on the highly nonrandom nature of social networks. !eir goal is to
devise statistically reliable mathematical formulae that predict the number of individuals who
need to be interviewed in order to capture the shared characteristics of social networks: shared
beliefs, values and behaviors. !e analysis of Handwerker and Wozniak suggests the surprising
low number of seven,27 although this number is reliable only when certain criteria are met:

1. !e information gathered is about shared or core understandings within the social
network. !is is not about group variation.

2. !e cognitive domain of the social network is internally consistent and ordered.
3. Information is gathered from key members of the social network: cultural experts.
4. Informants are interviewed independently of others in their social network. Informants

must not be allowed to confound information by checking or comparing notes with other
members.

5. !ere are no known divisions within the social network: no sub-groupings that might
have distinct sets of core knowledge and behaviors.27

One way to determine if a social network is bounded is to analyze patterns that emerge from
the data. Highly redundant information about membership of a group and their perceptions of
cultural norms are strong evidence that there is consensus about who is in the group and what
they consider appropriate. However, if any of the criteria are not met, then another individual
must be interviewed. Once a consensus is identi#ed, then it is recorded as a discovery and the
researcher moves on. In our Discovery research we were able to identify these shared work
patterns with a high level of con#dence, making it possible to identify potential participants for
the following research stage.

One of the HPCS goals during the De#nition research stage was to understand the work&ow
of HPC programmers and to identify how and where current HPC development paradigms
limit code development. For example, a hypothesis from the Discovery stage was that one
limiting factor is the level and range of expertise needed. De#nition research was designed
to validate the hypothesis and, if validated, shed additional light on the development process:
where speci#c expertise was deployed and where programmers encounter signi#cant time and
e"ort bottlenecks.

4.2 Example: HPC Work!ow

Two methods were chosen to collect data: one quantitative, one qualitative. Quantitative
information on programmer activity (time on task details) was collected using HackyStat, an
in-process so$ware engineering measurement and analysis tool.28 HackyStat recorded hours of
event traces from development tools (for example “open #le,” and “build”) while HPC profes-
sionals developed code. Additional (qualitative) data was collected in the form of real-time,
time-stamped journals written by professional code developers who agreed to record a personal
narrative of their work.

Software Productivity Research In High Performance Computing

26 Borgatti, S., Everett, M.G. “Network Analysis of
2-mode Data,” Social Networks, 19(3): 243-269. 1997.

27 Handwerker, W.P., Wozniak, D. “Sampling
Strategies for the Collection of Anthropological Data:
An Extension of Boaz’s Answer to Galton’s Problem,”
Current Anthropology, 38(5): 869-875. 1997.

28 Johnson, P., Paulding, M. “Understanding HPC
Development through Automated Process and Product
Measurement with HackyStat,” Second Workshop on
Productivity and Performance in High-End Computing
(P-PHEC), San Francisco, Feb. 13, 2005.

59

By combining HackyStat telemetry data that measured activity with programmer journals,
the team was able to corroborate, validate, and interpret results. For example, the signi#cance
of the expertise gaps and bottlenecks to the HPC productivity problem became apparent when
studying individual professionals and their time usage; the journal entries represented real-time
accounts of code development from the programmer’s perspective. !ese patterns were used
to de#ne a typical HPC development work&ow, identify where in the work&ow the most e"ort
is being expended, characterize the expertise pro#les associated with work&ow tasks, and draw
conclusions about productivity bottlenecks and their root causes.

!ese results are summarized in Figure
2, which illustrates the typical work&ow
that developers go through in creating and
optimizing HPC applications along with the
skill sets required to perform each activity.
A typical work&ow includes understanding
the problem that needs to be solved, for-
mulating an initial computational solution,
empirically evaluating the proposed solution
through prototyping or experimentation,
coding for sequential execution, evaluating
the overall computational approach, then
coding and optimizing the results for a par-
allel platform.

Activities that consume the greatest
proportion of resources, e"ort, time, and
expertise, within the overall programming
e"ort were also identi#ed:

• Developing correct scienti!c programs:
activities associated with translating an
understanding of the scienti#c problem
that must be solved (e.g., a predictive
weather model) into code.

• Code optimization and tuning: activities
associated with re#ning a serial version of
the code to ensure correctness and achieve
desired levels of accuracy and e%ciency.

• Code parallelization and optimization: activities associated with parallelizing the code and
tuning to achieve high machine utilization and rapid execution.

• Porting: where a solution exists, this comprises the activities associated with translating the
existing solution to a representation appropriate for a new computing platform.

Once the expertise problem was understood and the likely location that consumed the most
time and e"ort for those experts was pinpointed, the question of how widely these #ndings could
be applied was raised. Full validation required mapping the extent of the expertise gap, calling
for a large quantitative survey of the sort suitable for the next stage of the research framework.

Figure 2. Work Model of HPC Programmers.

CTWatch Quarterly November 2006 A

5. Evaluative Research, Stage 3: Developing Quantitative Models for
validating HPCS Programmer Work"ow

Like rapid ethnographic research, evaluative research has its own history that can be traced
back to the middle of the 20th century. In 1967 Michael Scriven proposed that all evaluation
could be broken down into two distinct types, formative and summative evaluation.29 Formative
evaluation validates and improves upon an idea or hypothesis. Summative evaluation answers
the question, “to what extent?” Evaluative researchers use a toolbox of methods from many of
the social sciences to validate a hypothesis or determine its extent in a population. Methods are
typically quantitative. Again the HPCS research provides an example, although this phase of the
program is in very early stages and the results are still preliminary.

One of the patterns that emerged from case study research suggested that HPCS code teams
were more concerned about programming correctness than performance. !e work&ow pin-
pointed the most likely places where a programmer would #nd the most di%culty. Up to this
point the conventional wisdom had been accepted without question, namely that performance
was the paramount concern of the programmer. To evaluate the extent of this pattern, which
was uncovered in Stage 1 and 2, a survey was administered to HPC programmers at National
Labs and in private institutions where large, highly parallel code is written. Quantitative statis-
tical procedures were used to analyze the survey data. Table 3 provides the resulting response
distribution when asked about the top issues facing the HPC programmer.

Portability
Economic Cost

 Fault Tolerant
Program Correctness

Performance

Table 2. Response Distribution of Top Issues.

!e case studies in the #rst stage of this research had provided information about what
programmers said and the empirical studies of programmers in the second stage supported
the #ndings from the earlier research and validated the work&ow of the programmer with the
quantitative data. Not surprisingly, the survey data collected in the third stage of the research
con#rmed that performance is important in HPC code, but also con#rmed that programming
correctly is at least as important, as reported by 90% of those surveyed. !e perceived value
of performance is a strong shared value in the HPC community; however, the concern about
correctness appears to be at least as strong although not verbalized as o$en.

!is example highlights the need to follow the research stages from hypothesis development
(Stage 1) and question generation (Stage 2) before attempts to quantify. Unfortunately there
is a tendency to jump to quantitative research because of the supposed reliability of numbers.
However, quantitative results are only as good as models of the phenomena that are the context
for interpretation of the data. In the example, without having proceeded through the logical pro-
gression from hypothesis to validation, the signi#cant concern for program correctness might
have been overlooked. And, of course, the link between correctness and need for expertise is

Software Productivity Research In High Performance Computing

29 Scriven, M. “Beyond Formative and Summative
Evaluation,” In G. W. McLaughlin & D. C. Phillips (Eds.)
Evaluation and Education: At Quarter Century. Chicago,
IL: University of Chicago Press, pp. 19-64. 1991.

61

clear. Such an oversight might have led to hardware and so$ware design decisions that turn out
to be counterproductive in the area of program correctness.

6. Conclusions

!e three research stages and associated methods described in this paper have immense
potential to increase understanding of so$ware development, both in the HPC community
and beyond. Research results to date include fundamental discoveries about productivity.30 31

32 33 !ese #ndings are grounded in empirically validated models that re&ect the experience of
practicing HPC professionals.

We are just beginning to understand how central to the e"orts of HPCS research are the
essential and intimate relationships among people, tools, and code: independent changes in each
are unlikely to produce the dramatic 10x increase in so$ware productivity that was envisioned
by the founders of the DARPA HPCS program and which is desperately needed by the HPC
community. Meeting that goal demands aligning those changes around a deep understanding
of what makes so$ware development productive: for machines, for individuals, for organiza-
tions, and for communities. As the technology historian, Kingery noted, “... No one denies
the importance of things, but learning from them requires rather more attention than reading
texts.”34

Acknowledgments
We would like to thank our HPCS colleagues at Sun Microsystems and elsewhere in the HPC community for their
helpful discussions and comments.

30 Loh, E., Van De Vanter, M. L, Votta, L.G. “Can
Software Engineering Solve the HPCS Problem?”
in Proceedings of Second International Workshop on
Software Engineering for High Performance Computing
System Applications, St. Louis, 15 May 2005.
31 Squires, S., Tichy, W.F., Votta, L.G. “What Do
Programmers of Parallel Machines Need? A Survey,”
Second Workshop on Productivity and Performance in
High-End Computing (P-PHEC), San Francisco, Feb.
13, 2005.
32 Squires, S., Van De Vanter, M. L, Votta, L.G. “Yes,
There Is an ‘Expertise Gap’ in HPC Application
Development,” Third Workshop on Productivity and
Performance in High-End Computing (P-PHEC), Austin,
Feb. 12, 2006.
33 Van De Vanter, M. L, Post, D.E, Zosel, M. “HPC
Needs a Tool Strategy,” in Proceedings of Second
International Workshop on Software Engineering for
High Performance Computing System Applications, St.
Louis, 15 May 2005.
34 Kingery, W. (Ed), Editor’s Preface, Learning from
Things: Method and Theory of Material Culture Studies.
Washington, D.C.: Smithsonian Institution Press. 1996.

