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ABSTRACT
Profilers help programmers analyze their programs and iden-
tify performance bottlenecks. We implement a profiler frame-
work that helps to compare and analyze programs imple-
menting the same algorithms written in di↵erent languages.
Profiler implementers replicate common functionalities in
their language profilers. We focus on building a generic
profiler framework for dynamic languages to minimize the
recurring implementation e↵ort. We implement our profiler
in a framework that optimizes abstract syntax tree (AST) in-
terpreters using a just-in-time (JIT) compiler. We evaluate
it on ZipPy and JRuby+Tru✏e, Python and Ruby imple-
mentations in this framework, respectively. We show that
our profiler runs faster than the existing profilers in these
languages and requires modest implementation e↵ort. Our
profiler serves three purposes: 1) helps users to find the bot-
tlenecks in their programs, 2) helps language implementers
to improve the performance of their language implementa-
tion, 3) helps to compare and evaluate di↵erent languages
on cross-language benchmarks.

CCS Concepts
•Software and its engineering ! Interpreters; Run-
time environments; Just-in-time compilers;

Keywords
Profiling, dynamic languages, abstract syntax tree inter-
preters, Python, Ruby, PyPy, JRuby, Java virtual machine

1. MOTIVATION
A profiler is a program analysis tool that helps program-

mers identify frequently executed parts of the program and
detects performance bottlenecks. Typically, there are two
profiling modes: event-based profiling and sampling-based
profiling. Event-based profilers track every occurrence of
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certain events, such as method calls and returns, whereas
sampling-based profilers sample the current program state
at regular intervals. Event-based profilers are typically more
accurate, but add more overhead than sampling-based pro-
filers.
Many popular dynamic languages such as Python, Ruby,

and Perl are typically interpreted. Since there is already
an active interpreter during execution, it is straightforward
to implement an event-based profiler for these languages.
Therefore, the reference implementations typically provide
an event-based profiler. However, these languages and their
profilers are slow due to interpretation.
As the number and popularity of dynamic language ap-

plications grow, optimizing their performance and building
e�cient analysis tools for them become increasingly impor-
tant. Programmers now use dynamic languages to build
large scale applications. For example, YouTube, Dropbox,
Yelp, and Quora use Python, and Twitter and GitHub use
Ruby in their implementation. Similarly, Django and Ruby
on Rails are popular high-level web application frameworks
in Python and Ruby, respectively.
Tru✏e [28, 11] is a new framework for creating high-

performance implementations of dynamic languages. Lan-
guage implementers write an AST interpreter, then the frame-
work applies dynamic optimizations such as type specializa-
tion, and just-in-time compiles the AST to machine code.
There are Tru✏e implementations for JavaScript, Python,
Ruby, Smalltalk, and R, which show superior performance
compared to existing implementations [10, 30, 15].
We develop a profiler framework for Tru✏e language im-

plementations and evaluate it on two Tru✏e language im-
plementations: ZipPy (Python implementation in Tru✏e)
and JRuby+Tru✏e (Ruby implementation in Tru✏e).
Our contributions are:

• We provide a comprehensive event-based profiler frame-
work that profiles various events to analyze dynamic
language programs in more detail. Our profiler frame-
work helps to compare and evaluate the programs im-
plementing the same algorithms across di↵erent lan-
guages. We compare and evaluate two di↵erent lan-
guages, Python and Ruby, on cross-language bench-
marks implementing the same algorithms with our pro-
filer framework, and report our findings.

• We show how to implement a generic profiler frame-
work for languages running on the Tru✏e framework
that minimizes profiler implementation e↵ort.
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• We compare our profiler against existing profilers in
Python and Ruby, and report an average speedup of
10⇥ and 1.1⇥ over CPython and PyPy, and an aver-
age speedup 208⇥ and 12⇥ over Matz’s Ruby Inter-
preter (MRI), a.k.a. CRuby, and JRuby respectively.
We show that with modest implementation e↵ort, the
Tru✏e framework lets us construct a high-performance
profiler for languages running on top of it.

• Our profiler framework helps both the language im-
plementer and user. Existing profilers in Python and
Ruby target the programming language users, i.e. they
help programmers to find the performance bottlenecks
in their programs. However, we also target the lan-
guage implementers in our profiler framework. We give
feedback to the language implementers to improve the
performance of their Tru✏e language implementation.

2. BACKGROUND

2.1 Truffle Framework
Dynamic languages provide flexibility such as dynamic

typing and heterogeneously typed high-level data structures
to programmers. With dynamic typing, variables get the
type of the object assigned to them at run time. For ex-
ample, “a + b” can perform integer addition, string con-
catenation, or a user-defined operation based on its input
operands at runtime. The Tru✏e framework optimizes dy-
namic languages by collecting type information, and specu-
latively replacing generic AST nodes with type-specialized
nodes [29]. This node-rewriting strategy relies on an im-
portant observation called type stability [6] that optimizes
dynamic typing. The observation is that the operand types
of an operation are unlikely to change during program execu-
tion. Therefore, Tru✏e speculatively rewrites generic nodes
to type-specialized versions, and it replaces nodes back to
generic nodes when speculation fails.

ZipPy [30] is the Python implementation developed with
the Tru✏e framework. Similarly, JRuby+Tru✏e [10] is the
Ruby implementation implemented with the Tru✏e frame-
work.

2.2 Existing Dynamic Language Profilers
Python [23] has a profiler called cProfile [24] implemented

as a C extension module. It is an event-based profiler which
records all method calls and returns, and measures time in-
tervals between these events. Another Python profiler is
profile. It is a pure Python module that has the same inter-
face as cProfile. The disadvantage of the profile module is
that it adds significant overhead to profiled programs.

Ruby [16] has a profile library that is part of the standard
library. Since it is a pure Ruby library, profiled programs
run slow. An alternative profiler is ruby-prof [25] which
is a C extension and therefore is many times faster than
the standard Ruby profiler. JRuby [12] is the implemen-
tation of Ruby on top of the Java virtual machine (JVM).
It uses the new invokedynamic bytecode [27], which im-
proves the costly invocation semantics of dynamic program-
ming languages targeting the JVM. JRuby has a built-in
profiler which is a clone of ruby-prof built into JRuby [13].
It produces similar output to ruby-prof, and users need to
enable the –profile flag to use it.

3. IMPLEMENTATION
An AST interpreter is a natural way to implement a lan-

guage. A parser typically builds an AST. Then, the language
implementer adds execute methods to the AST nodes that
implement an AST interpreter. Every node in the AST has a
list of child nodes, which it executes before returning a result
to its parent. Tru✏e language implementers write an AST
interpreter. Each language function has a root node, and
the execution starts by executing the root node. Listing 1
shows a Python function that adds two variables, and Fig-
ure 1 displays the generated AST for this function on the
left.

Listing 1: Example add function.
1 def add(a, b):
2 return a + b
3

4 add(10, 20)
5 add("hello", "world")

3.1 Instrumentation Framework
The Tru✏e platform includes multi-purpose instrumen-

tation support for building program analyzers and other
tools. An experimental built-in debugger in JRuby+Tru✏e
demonstrated that extremely low runtime overheads could
be achieved through tight integration with the underlying
Tru✏e platform [26]. A generalized instrumentation frame-
work is now in place, supporting development of a fully func-
tional multi-language debugging service along with other
tools such as code coverage. Here we focus on building an
e�cient profiler using Tru✏e instrumentation.
The instrumentation framework works by inserting ad-

ditional AST nodes, essentially rewriting a program to in-
clude instrumentation functionality. Instrumentation nodes
are no di↵erent from other Tru✏e AST nodes with respect
to optimization, so inactive instrumentation nodes add zero
overhead when running fully optimized. Instrumentation
provided by client tools can be added and removed dynam-
ically using core Tru✏e tree-rewriting mechanisms.
An AST node becomes instrumentable by insertion of a

wrapper node between the node and its parent. A wrapper
node is language-specific, so it must be implemented sepa-
rately by every language implementer. Each wrapper has
an attached language-independent probe node, which rep-
resents the association with the particular piece of source
code represented by the instrumentable node. The probe
node also manages the attachment and detachment of tool-
provided instrument nodes. When the execution reaches a
wrapper node, it notifies the probe node both before and
after executing its child; the probe node passes each of these
execution events to every attached instrument node.
Figure 1 shows the AST after inserting a wrapper node

and attaching a profiler instrument node to the add node on
the right. Listing 2 and Listing 3 show the implementation
of a wrapper and a profiler instrument node.

3.2 Cross-language Comparison
Existing profilers detect performance bottlenecks in a pro-

gram written in a specific language. For example, a Python
profiler analyzes a Python program, and identifies perfor-
mance bottlenecks in that program. Tru✏e focuses on im-
plementing high-performance implementations of multiple
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Figure 1: AST of an add function before and after inserting instrumentation nodes to the add operation
event.

Listing 2: Wrapper Node.
class Wrapper extends PythonNode {

@Child Node child;
ProbeNode probe;

@Override
Object execute(VirtualFrame frame) {

probe.enter(child, frame);
Object result = child.execute(frame);
probe.leave(child, frame);
return result;

}
}

Listing 3: Profiler Instrument Node.
class ProfilerInstrument extends Instrument {

@Override
void enter(Node astNode, VirtualFrame frame) {

...
}

@Override
void leave(Node astNode, VirtualFrame frame) {

...
}

}
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dynamic languages. Implementing a profiler on this frame-
work lets us compare programs across di↵erent languages.
Languages have their unique features, and using these unique
features results in executing di↵erent events. Profiling di↵er-
ent languages on cross-language benchmarks that implement
the same algorithms allows us to show common and di↵er-
ent features in languages. To the best of our knowledge, our
profiler is the first profiler that makes it possible to compare
and analyze the dynamic language programs implementing
the same algorithms across di↵erent languages.

3.3 Event-based Profiling
Event-based profilers track certain execution events. For

instance, method profilers count the number of times each
method executes at runtime. Counting AST nodes provides
information about the execution of a program, so we count
how many times each node executes in our profiler. We
divide collected events into five categories: control-flow, op-
eration, collection, variable access, and type distribution.

Control-flow: Profiles statement nodes that change the
control-flow such as loops, iterations, if, continue,
next, and break statements. For example, this cat-
egory shows a user how many times each loop or if
statement executes.

Operation: Profiles operation nodes such as arithmetic,
comparison, and logical operations in the program.

Collection: Profiles collections such as lists and arrays in
the given program. Profiled collection operations in-
clude reading an element from a collection, adding an
element to a collection, deleting an element from a col-
lection, and slicing a collection.

Variable access: Profiles nodes performing any kind of vari-
able access, such as a local, global, and an instance
variable access.

Type distribution: Profiles distribution of types of nodes
in a program.

We insert a wrapper node to the node that we want to
profile, and attach a profiler instrument node to the wrap-
per node. The profiler instrument node simply increments
the counter whenever the instrumented node executes. We
report how many times each node executes, and the source
code location of the node in the program. We can simply
extend our profiler to collect execution time of each event.
Although we divide the collected events info five categories,
the implementer can simply extend these categories based
on her language.
Dynamic typing adds a significant performance overhead

to language execution. Tru✏e uses type-specialized nodes
to reduce this overhead. Demonstrating the distribution
of types of nodes in a program is useful for two reasons.
First, the language implementer can verify whether type-
specializations are performed correctly in her implementa-
tion. Second, the language user could monitor the types
in the program. In the example showed in Listing 1, the
function executes two times: with integer arguments and
string arguments, so the profiler reports two types for the
add operation.
For type distribution profiling, we insert a wrapper node,

and attach an instrument node that maps types to counters.

Whenever a node executes, we check whether we have ob-
served this type before. If this is a new type, we add it to the
map. In ZipPy, type distribution profiling profiles the types
for operations and variable accesses. It only profiles the
types for variable accesses in JRuby+Tru✏e because Ruby
represents operations as method calls.

3.4 Method Profiling
Both Python and Ruby implementations have method

profilers that measure the number of method invocations
and the time spent in each method. Since detecting fre-
quently executed methods is a useful feature, we also add
this functionality to our profiler. We insert a wrapper node
to call nodes and attach an instrument node that collects
invocation counter and time. We record the time before and
after a call node executes and calculate the elapsed time.
Listing 4 shows the implementation of our method profiler
instrument.
In ZipPy, our method profiler output is similar to cProfile

for Python. We show the total number of calls and execu-
tion time for each user-defined and built-in function in the
running application. We show the total time spent in each
function by excluding time made in calls to sub-functions,
and cumulative time spent in this and all sub-functions. On
the other hand, Ruby represents many of its internals as
methods calls such as operators, and property accesses. For
example, Ruby translates “a + b” statement into “a.+(b)”,
which is a call to a method named “+”. We are interested in
profiling user-defined methods in our method profiler. Our
method profiler in JRuby+Tru✏e produces output similar
to the built-in profiler in JRuby. We show the total time
spent in each method, and break the total time into self and
children time. Self time shows the time spent in the method
itself, excluding calls to child methods. Children time shows
the time spent in calls to the child methods.

4. EVALUATION
In this section, we present a detailed evaluation of our

profiler in ZipPy and JRuby+Tru✏e.

4.1 Experimental Setup
We include all the benchmarks that are available in both

ZipPy and JRuby+Tru✏e implementations. There are six
benchmarks (binarytrees, fannkuchredux, mandelbrot, nbody,

pidigits, spectralnorm) from the Computer Language Bench-
marks Game [7], and one benchmark (richards) from the
V8 benchmark suite [8], which was originally developed for
BCPL.

• binarytrees: recursive calls to allocate and deallocate
binary trees

• fannkuchredux: repeatedly access a tiny integer-sequence

• mandelbrot: generates a Mandelbrot set

• nbody: perform an N-body simulation of the Jovian
planets

• pidigits: streams arbitrary-precision arithmetic

• richards: performs an OS kernel simulation

• spectralnorm: calculate an eigenvalue using the power
method
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Listing 4: Method Profiler Instrument Node.
class MethodProfilerInstrument extends Instrument {

long counter;
long startTime;
long totalElapsedTime;

@Override
public void enter(Node astNode, VirtualFrame frame) {

counter++;
startTime = System.nanoTime();

}

@Override
public void leave(Node astNode, VirtualFrame frame) {

long endTime = System.nanoTime();
long elapsedTime = endTime - startTime;
totalElapsedTime = totalElapsedTime + elapsedTime;

}
}

Our system configuration is as follows:

• CPython 3.3.2.

• PyPy 3.2.1.

• MRI (CRuby) 1.9.3.

• JRuby 1.7.13.

• Tru✏e 0.5

• Intel Xeon E5-2660 running at a frequency of 2.20
GHz, the Ubuntu Linux 3.2.0-64 kernel and gcc 4.6.3.

We execute each benchmark ten times and report individ-
ual and average execution times.

4.2 Profiler Implementation Effort Compari-
son

We implement and evaluate our profiler in ZipPy and
JRuby+Tru✏e, but our profiler is reusable among other
implementations of Tru✏e such as JavaScript, Smalltalk,
and R. Table 1 lists the number of lines of generic profiler
framework code shared by ZipPy and JRuby+Tru✏e, and
language-dependent code implemented separately in ZipPy
and JRuby+Tru✏e. Although language-dependent parts
are similar in both ZipPy and JRuby+Tru✏e, the language
implementers must implement them separately for their own
language. It also shows the number of lines of code used to
implement Python cProfile profiler and JRuby’s built-in pro-
filer. As a result, we implement a generic profiler framework
with modest implementation e↵ort.

4.3 Cross-language Comparison
Our profiler helps to compare and evaluate the programs

implementing the same algorithms written in di↵erent lan-
guages. As an experiment, we compare and evaluate two
di↵erent languages, Python and Ruby, on cross-language
benchmarks implementing the same algorithms with our pro-
filer. Table 2 and Table 3 list the total number of executed
nodes in ZipPy and JRuby+Tru✏e in various categories.
They execute di↵erent numbers of nodes in each profiling

Implementation Number of Lines of Code

Generic 1073
ZipPy 508
JRuby+Tru✏e 516
Python cProfile profiler 1650
JRuby built-in profiler 2223

Table 1: Profiler implementation e↵ort comparison
details.

category for the same benchmarks. We highlight the cat-
egories that show significantly di↵erent results in two lan-
guages on cross-language benchmarks.
Python and Ruby have their unique features, and using

these unique features results in executing di↵erent num-
bers of nodes. For example, mandelbrot operates on com-
plex numbers. Python has a built-in complex type, whereas
Ruby does not provide a built-in complex type. Therefore,
Ruby performs many more operations to do complex number
arithmetic. Python has a builtin method called abs which
operates on complex numbers, and mandelbrot intensively
uses this function, so it performs more methods calls than
Ruby. In nbody, Ruby defines a class and creates objects
for every Jovian planet, whereas Python uses a collection
to hold Jovian planets. Therefore, Ruby performs many in-
stance method calls, and Python performs more collection
operations in nbody. As a result, our profiler makes it possi-
ble to compare and analyze the programs implementing the
same algorithms across di↵erent languages.

4.4 Event-based Profiling Performance
Figure 2 demonstrates the contribution of each event count-

ing category to the total execution time in ZipPy respec-
tively. Control-flow, operation, collection, variable access,
and type distribution profiling add an average 4%, 7%, 3%,
25%, 34% overhead in ZipPy. Control-flow, operation, and
collection profiling add a low overhead in ZipPy. However,
variable access and type distribution profiling add a higher
overhead. For example, fannkuchredux performs a signifi-
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ZipPy Call Control-flow Operation Collection VariableAccess

binarytrees 329 ⇥ 106 495 ⇥ 106 410 ⇥ 106 1 2 ⇥ 109

fannkuchredux 739 12 ⇥ 109 13 ⇥ 109 9 ⇥ 109 55 ⇥ 109

mandelbrot 416 ⇥ 106 905 ⇥ 106 1 ⇥ 109 1 2 ⇥ 109

nbody 387 116 ⇥ 106 1 ⇥ 109 1 ⇥ 109 3 ⇥ 109

pidigits 1 ⇥ 106 8 ⇥ 106 27 ⇥ 106 0 61 ⇥ 106

richards 1 ⇥ 109 3 ⇥ 109 2 ⇥ 109 165 ⇥ 106 11 ⇥ 109

spectralnorm 470 ⇥ 106 481 ⇥ 106 5 ⇥ 109 480 ⇥ 106 8 ⇥ 109

Table 2: Total number of event counters in ZipPy.

JRuby+Tru✏e Call Control-flow Operation Collection Variable Access

binarytrees 658 ⇥ 106 495 ⇥ 106 575 ⇥ 106 0 2 ⇥ 109

fannkuchredux 216 5 ⇥ 109 10 ⇥ 109 10 ⇥ 109 53 ⇥ 109

mandelbrot 34 920 ⇥ 106 4 ⇥ 109 0 9 ⇥ 109

nbody 573 ⇥ 106 116 ⇥ 106 2 ⇥ 109 109 ⇥ 106 6 ⇥ 109

pidigits 4 ⇥ 103 8 ⇥ 106 27 ⇥ 106 0 68 ⇥ 106

richards 2 ⇥ 109 2 ⇥ 109 761 ⇥ 106 29 ⇥ 106 5 ⇥ 109

spectralnorm 932 ⇥ 106 481 ⇥ 106 4 ⇥ 109 462 ⇥ 106 7 ⇥ 109

Table 3: Total number of event counters in JRuby+Tru✏e.

cant number of variable accesses as shown in Table 2, so
variable access profiling adds a significant overhead in that
benchmark. Type distribution profiling collects types for
operations and variable accesses, therefore, it also adds a
high overhead in fannkuchredux benchmark.

Figure 3 demonstrates the contribution of each event count-
ing category to the total execution time in JRuby+Tru✏e.
Control-flow, operation, collection operation, variable ac-
cess, and type distribution profiling add an average 4%,
13%, 4%, 41%, 45% overhead in JRuby+Tru✏e respectively.
Similar to ZipPy, control-flow, operation and collection op-
eration profiling only add a small overhead, but variable
access and type distribution profiling add a higher overhead
in JRuby+Tru✏e.

Control-flow profiling is especially useful for language users
because they can observe which loops or statements are hot
in their program. Statement-granularity profiling might be
more insightful than method-granularity profiling to the pro-
grammers in some cases. Collection profiling is also useful
for language users. Python and Ruby each provide a rich
set of collections, and users heavily use them in their pro-
grams. To the best of our knowledge, there is no Python
or Ruby profiler that provides information about collection
usage. Therefore, our unique collection profiling gives hints
to users about how to optimize their collection usage. For
example, tuples are immutable collections and lists are mu-
table collections in Python. By looking at the collection
profiling output, users might learn that they never modify
the list, therefore, they can use a tuple instead. As future
work, we plan to give feedback and suggestions about col-
lections based on the collected profiling information in our
profiler. Type distribution is an important category for both
users and implementers. When the types are not stable in a
given program, Tru✏e is not able to optimize that program
well. Our type distribution profiling draws users attention
to the nodes that frequently change their type during execu-
tion. Then, the user might modify their program for better

performance.
Our event-based profiler is not limited to the event cat-

egories shown here. It is extensible, so the profiler imple-
menter can add more events to capture her language’s char-
acteristics.

4.5 Method Profiling Performance
Figure 4 shows method profiling performance across dif-

ferent Python implementations. We compare our method
profiler in ZipPy against CPython [23] and PyPy [22] using
cProfile module to profile methods. CPython is the refer-
ence Python implementation that has an interpreter written
in C. PyPy is the Python implementation written in a sub-
set of Python, and uses a tracing JIT compiler to optimize
frequently executed parts of the program [5]. The x axis
labels benchmarks, and y axis displays the execution time
in a logarithmic scale. On average, our profiler runs 10⇥
faster than CPython and 1.1⇥ faster than PyPy profiler in
ZipPy. PyPy performs slightly better than ZipPy in nbody

and pidigits benchmarks without profiling. When profiling
is enabled, ZipPy performs better than PyPy in binarytrees,
fannkuchredux, mandelbrot and richards, and PyPy performs
better than ZipPy in spectralnorm. Among our benchmarks,
binarytrees, mandelbrot, richards, and spectralnorm perform
the highest number of calls as displayed in Table 2. As a re-
sult, profiling methods adds a higher overhead in these four
benchmarks.
PyPy is a fast alternative implementation of Python that

uses a tracing JIT compiler for producing optimized code,
however, it is not able to perform well when profiling is
enabled. The reason is that cProfile is a module written in
C, and PyPy is not able to optimize C extension modules.
The PyPy community states that they support C extension
modules just to provide basic functionality. They advise
users to use a native Python implementation instead of a C
module for better performance. We also use profile module
which is a pure Python module to profile our benchmarks
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in PyPy. However, PyPy performs worse with this module,
so we only include the numbers from PyPy while using the
cProfile module.

Figure 5 shows method profiling performance among dif-
ferent Ruby implementations. We compare our method pro-
filer against MRI (CRuby) using ruby-prof and JRuby’s built-
in profiler. We report an average speedup of 208⇥ over MRI
profiler, and an average speedup of 12⇥ over JRuby’s built-
in profiler. With and without profiling, JRuby+Tru✏e per-
forms better than JRuby and MRI in all the benchmarks.

As mentioned before, Ruby represents many of its inter-
nals as method calls. Since we are interested in profiling
user-defined methods, we exclude operation method calls in
MRI profiler. Similarly, JRuby specializes certain basic op-
eration calls, and does not profile them.

We verify the results of our method profilers by comparing
the number of method invocations across di↵erent profilers.
We find out that our method profilers give the same results
for the number of method invocations as the profilers that
we compare them against.

5. RELATED WORK
Measuring execution frequencies to guide programmers to

apply optimizations has a long history. Knuth [14] reports
an early study of frequency counts of each statement in For-
tran programs in 1971. Graham et al. [9] describe the imple-
mentation of the gprof performance analysis tool for Unix
applications. They developed the tool for Berkeley Unix in
1982, and it has been part of the GNU project since 1988.
The gprof tool gathers execution counts and execution time
for called subroutines. It uses a combination of instrumenta-
tion and sampling. When the compiler compiles the profiled
program, it augments the code at the prologue of each sub-
routine that counts the number of times of each subroutine.
The gprof tool also samples the program counter at fixed in-
tervals to collect execution time, so the resulting data from
execution time is a statistical approximation.

Ball et al. [1, 2] introduce path profiling that records exe-
cution frequency of basic blocks or control-flow edges during
an execution for purposes like performance tuning, profile-
directed compilation, and test coverage. They describe an
algorithm to insert less instrumentation code, and place it
in less frequently executed parts of the program to reduce
the instrumentation overhead. Unlike gprof, their technique
records exact execution frequency, not a statistical sample.
In 1999, Melski et al. [17] extend this technique to collect
information about interprocedural paths.

Traditional profilers perform o✏ine, that is, they collect
information in a separate run, and then use the collected
information afterwards. However, dynamic compilation sys-
tems such as JIT compilers need to collect information and
consume it online. Oren et al. [21] describe an online path
profiling in 2002.

The Java Virtual Machine Profiling Interface (JVMTI) [20]
is an interface to tools that need an access to VM state,
such as profiling, debugging, monitoring, and thread analy-
sis. The interface provides support for bytecode instrumen-
tation to modify the Java bytecode in a Java program. It
can maintain exact counters or statistically sample events.

Binder et al. [4] describe their Java Profiler tool JP that
instruments the bytecode of Java programs to profile the
number of executed methods and bytecode in a given pro-
gram. JP is an event-based profiler implemented in pure

Java, and its implementation does not rely on JVMTI.
Microsoft provides Visual Studio Profiler [18] for the Win-

dows .NET platform. It supports a single profiling environ-
ment for the languages running on this platform such as C,
C++, Visual Basic, C], etc. It provides cross-language sup-
port which allows interaction with code written in a di↵erent
programming language.
Bergel [3] introduces Compteur, which is the message-

based code profiler for the Pharo implementation of the
Smalltalk language. Pharo is an object-oriented program-
ming language and environment in the tradition of Smalltalk,
and relies on message passing. Compteur uses message count-
ing as a profiling metric, and shows more stable measure-
ments than execution sampling.
Morandat et al. [19] describe ProfileR, a profiling tool for

the VM they implement for R language. It is an event-
based profiler measuring the time spent in operations such
as memory management, I/O, and foreign calls.
Our technique di↵ers from existing profilers in several

aspects: First, we instrument the AST nodes generated
from the source code whereas they instrument the compiled
binary code, or managed bytecode. Second, the inserted
nodes in our implementation are subject to full runtime op-
timizations, and could be activated or deactivated at run-
time. Third, some of the existing profilers use sampling,
whereas our profiler is event-based tracking every occurrence
of events. Fourth, some of the existing techniques require
significant implementation e↵ort, but our profiler requires
little implementation. Fifth, our profiler makes it possible
to compare the programs implementing the same algorithms
across di↵erent languages. Lastly, our technique benefits
both the language implementer and the user.

6. CONCLUSION
We implement a profiler framework that makes it possible

to compare languages on cross-language benchmarks imple-
menting the same algorithms. Our profiler is an event-based
profiler that provides a more comprehensive profiling to fur-
ther investigate dynamic language programs. We implement
our high-performance profiler for dynamic languages in the
context of the Tru✏e framework that optimizes AST inter-
preters with a JIT compiler. Our generic profiler frame-
work minimizes profiler implementation e↵ort. It benefits
both the language user and implementer, and compares the
programs implementing the same algorithms across di↵erent
languages. We evaluate our profiler framework on Python
and Ruby implementations, however, it is applicable to any
language running on top of Tru✏e. Our profiler runs faster
than existing profilers on average and requires modest e↵ort.
As future work, we plan to add a user-friendly visual in-

terface to our profiler. For instance, we plan to add syntax
highlighting to show the frequently executed parts of the
program in the source code. Similarly, we plan to display
the distribution of types in the source program.
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